JP2006239689A - Acid component-removing agent, method for producing it and method for removing acid component - Google Patents

Acid component-removing agent, method for producing it and method for removing acid component Download PDF

Info

Publication number
JP2006239689A
JP2006239689A JP2006112258A JP2006112258A JP2006239689A JP 2006239689 A JP2006239689 A JP 2006239689A JP 2006112258 A JP2006112258 A JP 2006112258A JP 2006112258 A JP2006112258 A JP 2006112258A JP 2006239689 A JP2006239689 A JP 2006239689A
Authority
JP
Japan
Prior art keywords
acidic component
sodium
removing agent
pore
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006112258A
Other languages
Japanese (ja)
Other versions
JP4259539B2 (en
Inventor
Hachiro Hirano
八朗 平野
Makoto Yoshida
吉田  誠
Shigeru Sakurai
茂 桜井
Masaharu Tanaka
正治 田中
Makoto Kusaka
良 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006112258A priority Critical patent/JP4259539B2/en
Publication of JP2006239689A publication Critical patent/JP2006239689A/en
Application granted granted Critical
Publication of JP4259539B2 publication Critical patent/JP4259539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acid component-removing agent that can efficiently adsorb and remove acid components such as hydrogen chloride and sulfur oxide, e.g., from waste gas in refuse incineration and combustion waste gas discharged from boilers and the like and can facilitate final waste disposal. <P>SOLUTION: This acid component-removing agent comprises sodium hydrogencarbonate that has a volume-based mean particle diameter of from 1 to 9 μm as measured by a laser diffraction and scattering method and, in a pore distribution in a powder layer form as measured by mercury porosimetry, the pore volume of pores having a diameter in the range of 1 to 10 μm is not less than 0.4 cm<SP>3</SP>/g. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気体中の酸性成分除去剤、その製造方法及び気体中から酸性成分を除去する方法に関する。   The present invention relates to an acid component removing agent in gas, a method for producing the same, and a method for removing an acid component from gas.

ゴミ焼却炉などから排出される排気ガスから、塩化水素や硫黄酸化物を吸収して除去するために、消石灰を酸性成分除去剤として用いることが知られている。この場合、焼却炉等からの排ガス排出路における150〜300℃、特には150〜200℃の温度域に消石灰を分散し、バグフィルターや電気集塵機等で捕集し、濾過層を形成して酸性成分を除去している。   In order to absorb and remove hydrogen chloride and sulfur oxide from exhaust gas discharged from a refuse incinerator or the like, it is known to use slaked lime as an acidic component remover. In this case, slaked lime is dispersed in a temperature range of 150 to 300 ° C., particularly 150 to 200 ° C. in an exhaust gas discharge path from an incinerator or the like, collected by a bag filter or an electric dust collector, etc. to form a filtration layer and become acidic Ingredients are removed.

しかし消石灰は、反応当量に対して3〜4倍当量と過剰に使用する必要があるため、廃棄するダスト量が増加する等の欠点があった。さらにこれらダストはコンクリートを用いて固化するため、埋め立て用の最終処分場の用地を圧迫している。塩化水素と消石灰の反応生成物は塩化カルシウムであり水溶性のため、水に溶解させて除去することもできるが、過剰に投入された消石灰の一部は生石灰となるが水に不溶のため、水によるダストの減少効果は少ない。さらに、最終処分場では塩化カルシウムを含む浸出水の処理時にカルシウムスケールが発生し、トラブルの原因となっている。   However, since slaked lime needs to be used in an excess of 3 to 4 times the reaction equivalent, there is a drawback that the amount of dust to be discarded increases. Furthermore, since these dusts are solidified using concrete, they are putting pressure on the landfill site. The reaction product of hydrogen chloride and slaked lime is calcium chloride and is water-soluble, so it can be dissolved and removed in water, but some of the slaked lime that is added excessively becomes quick lime but is insoluble in water. There is little reduction effect of dust by water. Furthermore, at the final disposal site, calcium scale is generated during the treatment of leachate containing calcium chloride, causing trouble.

また、消石灰のかわりに、酸性成分除去剤として炭酸水素ナトリウムを用いることが知られている。この場合、未反応の炭酸水素ナトリウムは炭酸ナトリウムとなり、水溶性のためダストの減少に効果的である。例えば、特表平9−507654には、炭酸水素ナトリウムを98質量%超かつ炭酸ナトリウムを2質量%未満含む組成物からなる酸性成分除去剤が記載されている。この組成物の平均粒径は50μm以下であり、好ましくは10〜30μmであることが記載されている。   Moreover, it is known to use sodium hydrogen carbonate as an acidic component removing agent instead of slaked lime. In this case, unreacted sodium hydrogen carbonate is converted to sodium carbonate, which is effective in reducing dust because of its water solubility. For example, JP-A-9-507654 describes an acidic component remover composed of a composition containing sodium hydrogen carbonate in excess of 98 mass% and sodium carbonate in less than 2 mass%. It is described that the average particle size of this composition is 50 μm or less, preferably 10 to 30 μm.

しかし、炭酸水素ナトリウムの価格は消石灰に比べ高価なため、反応率が高くて少量で効果の得られる炭酸水素ナトリウムを、安価で工業的規模で供給することが望まれている。さらに、使用時に微粉砕機の設置が不要で直ちに使用でき、被処理ガス中への注入が容易でかつ安定しており、ガス中で良好に分散し、反応速度が速く、使用場所での貯槽や倉庫での長期保存が可能であることが望ましい。
特表平9−507654号公報
However, since the price of sodium hydrogen carbonate is higher than that of slaked lime, it is desired to supply sodium hydrogen carbonate at a low cost and on an industrial scale, which has a high reaction rate and is effective in a small amount. In addition, there is no need to install a pulverizer at the time of use, it can be used immediately, easy and stable injection into the gas to be treated, it is well dispersed in the gas, the reaction rate is fast, and the storage tank at the place of use It is desirable that it can be stored for a long time in a warehouse.
JP-T 9-507654

一般的にゴミ焼却場等における酸性成分除去剤としては、消石灰が使用されている。消石灰は安価であるが、上述のように廃棄する水不溶性のダストの増加、最終処分場における浸出水のカルシウムスケールの発生によるトラブルの問題等、廃棄物処理において問題がある。また、炭酸水素ナトリウムを使用する場合には高価なため、反応効率を高め使用量を削減することが必要である。また、使用量を削減できれば、付帯する設備を小型化でき、処理すべきダストを削減できる。   Generally, slaked lime is used as an acidic component removing agent in a garbage incineration plant or the like. Although slaked lime is inexpensive, there are problems in waste disposal, such as an increase in water-insoluble dust to be discarded as described above, and troubles due to the generation of calcium scale in the leachate at the final disposal site. Moreover, since it is expensive when using sodium hydrogencarbonate, it is necessary to increase the reaction efficiency and reduce the amount used. Moreover, if the amount used can be reduced, the incidental equipment can be reduced in size, and dust to be processed can be reduced.

そこで本発明は、排気ガスから効率良く塩化水素や硫黄酸化物や窒素酸化物等の酸性成分を除去でき、かつ廃棄処理も容易で廃棄物量を削減できる酸性成分除去剤を工業的に提供することを目的とする。   Therefore, the present invention industrially provides an acidic component remover that can efficiently remove acidic components such as hydrogen chloride, sulfur oxides, and nitrogen oxides from exhaust gas, and can be easily disposed of to reduce the amount of waste. With the goal.

本発明は、レーザー回折散乱法により測定した体積基準の平均粒径が1〜9μmであって、粉体層の水銀圧入法による細孔分布において、細孔直径1〜10μmの範囲の細孔容積が0.4cm/g以上である炭酸水素ナトリウムを含む酸性成分除去剤及びその製造方法を提供する。 In the present invention, the volume-based average particle diameter measured by the laser diffraction scattering method is 1 to 9 μm, and the pore volume in the pore diameter range of 1 to 10 μm in the pore distribution by the mercury intrusion method of the powder layer The present invention provides an acidic component remover containing sodium hydrogen carbonate having a hydrogen content of 0.4 cm 3 / g or more and a method for producing the same.

本発明の酸性成分除去剤においては、炭酸水素ナトリウムの平均粒径は、レーザー回折散乱式粒度分布測定装置を使用して測定した体積基準での平均粒径の数値をいうものとする。以下、単に平均粒径というときは、この方法で測定した値をいうものとする。なお、本明細書では、平均粒径は日機装株式会社製、商品名:マイクロトラックFRA9220を用いて測定した。   In the acidic component removing agent of the present invention, the average particle diameter of sodium hydrogen carbonate refers to the numerical value of the average particle diameter on a volume basis measured using a laser diffraction / scattering particle size distribution analyzer. Hereinafter, when the average particle diameter is simply referred to, it means a value measured by this method. In addition, in this specification, the average particle diameter was measured using the Nikkiso Co., Ltd. brand name: Microtrac FRA9220.

本発明の酸性成分除去剤は、気体中に存在する酸性成分と反応して、当該気体から酸性成分を除去する。除去の対象である酸性成分は特に限定されず、塩化水素、二酸化硫黄、三酸化硫黄、窒素酸化物等の各種酸性成分に適用できる。特に、塩化水素等の塩素を含む化合物に本発明の酸性成分除去剤を適用すると、従来に比べ反応効率が高く、使用も容易である。以下、塩化水素について説明を行うが、他の酸性成分についても同様である。   The acidic component removing agent of the present invention reacts with an acidic component present in a gas to remove the acidic component from the gas. The acidic component to be removed is not particularly limited and can be applied to various acidic components such as hydrogen chloride, sulfur dioxide, sulfur trioxide, and nitrogen oxide. In particular, when the acidic component remover of the present invention is applied to a compound containing chlorine such as hydrogen chloride, the reaction efficiency is higher and the use is easier than before. Hereinafter, hydrogen chloride will be described, but the same applies to other acidic components.

炭酸水素ナトリウムを使用すると、焼成により炭酸水素ナトリウム粒子が炭酸ナトリウムに変換する際に、粒子が多孔質化して塩化水素と効率的に反応し、塩化水素を効率よく除去できる。本発明者らは、焼成前後の炭酸水素ナトリウムと炭酸ナトリウムの粒子径と細孔分布と形状を詳細に測定及び観察することにより、その多孔質化により得られる細孔構造と塩化水素との反応特性とは、炭酸水素ナトリウムの平均粒径に敏感に影響されることを見出し、本発明に至った。   When sodium hydrogen carbonate is used, when the sodium hydrogen carbonate particles are converted to sodium carbonate by firing, the particles become porous and react efficiently with hydrogen chloride, thereby efficiently removing hydrogen chloride. By measuring and observing in detail the particle size, pore distribution and shape of sodium bicarbonate and sodium carbonate before and after firing, the present inventors have reacted the pore structure and hydrogen chloride obtained by the porous structure. The characteristics were found to be sensitively influenced by the average particle size of sodium hydrogen carbonate, and the present invention was achieved.

本発明の酸性成分除去剤においては、炭酸水素ナトリウムの平均粒径が1〜9μmの範囲にある。炭酸水素ナトリウムの平均粒径が9μmを超える場合、炭酸水素ナトリウムを焼成して炭酸ナトリウムとしたときに、炭酸水素ナトリウムの外表面の輪郭を維持したまま、直径が数十nm以下の微細な穴が空いたスポンジ状の炭酸ナトリウム粒子となる。一方、炭酸水素ナトリウムの平均粒径が9μm以下では、粒径に対して比較的大きな直径の細孔が形成されるために、粒子形状は表面が大きく凹凸して不定形の輪郭を呈するようになる。   In the acidic component removing agent of the present invention, the average particle size of sodium hydrogen carbonate is in the range of 1 to 9 μm. When the average particle diameter of sodium hydrogen carbonate exceeds 9 μm, when sodium hydrogen carbonate is baked into sodium carbonate, fine holes with a diameter of several tens of nm or less are maintained while maintaining the contour of the outer surface of sodium hydrogen carbonate. Becomes spongy sodium carbonate particles. On the other hand, when the average particle size of sodium hydrogen carbonate is 9 μm or less, pores having a relatively large diameter are formed with respect to the particle size, so that the particle shape has a rough surface and an irregular shape. Become.

本発明の要点は、平均粒径9μm以下の炭酸水素ナトリウムが焼成されて炭酸ナトリウムとなったときに上記のような特殊な細孔構造が得られ、該細孔構造が酸性ガスの吸収に非常に効果的なことにある。従来技術においては、粒径の大きな炭酸水素ナトリウムによる酸性ガスの吸収の例示はあるものの、平均粒径9μm以下の炭酸水素ナトリウムは使用されておらず、また炭酸水素ナトリウムの微粒子化により焼成後の炭酸ナトリウムの細孔構造、粒子形状が変化することも知られていない。   The gist of the present invention is that when sodium hydrogen carbonate having an average particle size of 9 μm or less is baked to become sodium carbonate, the above-mentioned special pore structure is obtained, and this pore structure is very effective in absorbing acid gas. Is effective. In the prior art, although there is an example of absorption of acidic gas by sodium hydrogen carbonate having a large particle diameter, sodium hydrogen carbonate having an average particle diameter of 9 μm or less is not used, and after baking, It is not known that the pore structure and particle shape of sodium carbonate change.

本発明者らは、気流中を粒子が飛散しているときや、バグフィルターに捕捉されて粒子堆積層を形成しその粒子間隙を塩化水素等の酸性成分のガスが流通する場合において、上記形状により酸性成分の粒子表面への拡散及び反応が容易になり、良好な酸性成分との反応を促進すると推測している。炭酸水素ナトリウムは、平均粒径が8μm以下である場合はさらに好ましい。   When the particles are scattered in an air stream, or when an acidic component gas such as hydrogen chloride flows through the particle gap by being trapped by a bag filter to form a particle deposition layer, It is presumed that this facilitates the diffusion and reaction of the acidic component to the particle surface and promotes the reaction with a good acidic component. Sodium bicarbonate is more preferable when the average particle size is 8 μm or less.

炭酸水素ナトリウムの平均粒径の下限は、酸性成分との反応の点では特に限定されないが、平均粒径が1μmに満たない場合は、互いに固着する傾向が強く、後述の固着防止剤を併用した場合にも十分な流動性を保持できなかったり、又は多量の固着防止剤の添加が必要となるなどの問題が生じる。さらに、工業的に生産するには、粉砕に要する設備と動力の費用とが過大になるおそれがある。   The lower limit of the average particle size of sodium bicarbonate is not particularly limited in terms of reaction with the acidic component, but when the average particle size is less than 1 μm, there is a strong tendency to stick to each other, and an anti-sticking agent described later is used in combination. In some cases, sufficient fluidity cannot be maintained or a large amount of anti-sticking agent needs to be added. Furthermore, for industrial production, there is a risk that the equipment and power costs required for grinding will be excessive.

本発明の酸性成分除去剤における炭酸水素ナトリウムは、粉体層の水銀圧入法による細孔分布において、細孔直径1〜10μmの範囲の細孔容積が0.4cm3/g以上であることが好ましい。本明細書において、粉体層の水銀圧入法による細孔分布は、炭酸水素ナトリウムの粉体層について水銀圧入法で測定した数値をいい、具体的には、直径15mm、高さ30mmの円柱状セル中に、0.25gの粉体をスパチュラから軽く降り落とすようにして充填した粉体層で測定する。以下、単に細孔容積というときは、この方法で測定したものをいうものとする。 Sodium bicarbonate in the acidic component removing agent of the present invention has a pore volume in the range of pore diameters of 1 to 10 μm of 0.4 cm 3 / g or more in the pore distribution by the mercury intrusion method of the powder layer. preferable. In the present specification, the pore distribution by the mercury intrusion method of the powder layer refers to a numerical value measured by the mercury intrusion method for the sodium hydrogen carbonate powder layer, specifically, a cylindrical shape having a diameter of 15 mm and a height of 30 mm. Measurement is performed with a powder layer in which 0.25 g of powder is gently dropped from a spatula into a cell. Hereinafter, when simply referred to as pore volume, it means that measured by this method.

さらに本発明の酸性成分除去剤における炭酸水素ナトリウムは、200℃で1時間焼成したときに得られる炭酸ナトリウムが、炭酸水素ナトリウム同様の粉体特性を示すことが好ましい。すなわち、得られた炭酸ナトリウムは、粉体層の水銀圧入法による細孔分布において、細孔直径1〜10μmの範囲の細孔容積が0.4cm3/g以上であることが好ましい。 Furthermore, as for the sodium hydrogen carbonate in the acidic component removing agent of the present invention, it is preferable that the sodium carbonate obtained when baked at 200 ° C. for 1 hour shows the same powder characteristics as sodium hydrogen carbonate. That is, the obtained sodium carbonate preferably has a pore volume in the range of 1 to 10 μm in pore diameter of 0.4 cm 3 / g or more in the pore distribution of the powder layer by mercury porosimetry.

なお、炭酸水素ナトリウムを炭酸ナトリウムに変換する焼成操作は、事前に約200℃に予熱した直径60mmのシャーレに5gの炭酸水素ナトリウムを薄く散布して、これを200℃に保持した熱風循環乾燥機に静置して、1時間経過後に取り出すことにより行った。   In addition, the baking operation which converts sodium hydrogen carbonate to sodium carbonate is a hot-air circulating dryer in which 5 g of sodium hydrogen carbonate is thinly sprayed on a petri dish having a diameter of 60 mm preheated to about 200 ° C. and kept at 200 ° C. The sample was taken out after 1 hour.

炭酸水素ナトリウム及び炭酸ナトリウムの細孔直径1〜10μmの範囲にある細孔容積が上述の範囲にある場合は、高い酸性成分除去効率を発現できる。この効果の発現の機構は詳細には明確ではないが、酸性成分除去剤への酸性成分の拡散の容易さと、細孔直径1〜10μmの範囲の細孔容積との間に相関関係があるものと考えられる。すなわち、本発明の酸性成分除去剤では、炭酸水素ナトリウムの平均粒径が9μm以下であるため、炭酸ナトリウムになったときに1μm以上の大きな直径の細孔が形成され、その結果、粒子形状は表面が大きく凹凸となって不定形の輪郭を示すことによりガスの拡散が容易になることが関与すると推測される。   When the pore volume in the range of 1 to 10 μm pore diameter of sodium hydrogen carbonate and sodium carbonate is in the above range, high acidic component removal efficiency can be expressed. Although the mechanism of the manifestation of this effect is not clear in detail, there is a correlation between the ease of diffusion of the acidic component into the acidic component removing agent and the pore volume in the pore diameter range of 1 to 10 μm. it is conceivable that. That is, in the acidic component removing agent of the present invention, since the average particle diameter of sodium hydrogen carbonate is 9 μm or less, pores having a large diameter of 1 μm or more are formed when sodium carbonate is formed. As a result, the particle shape is It is presumed that the diffusion of gas is facilitated by the fact that the surface is greatly uneven and has an irregular outline.

炭酸水素ナトリウムの平均粒径が9μmを超える場合の炭酸ナトリウムでは、直径1μm以上の細孔は形成されないか、形成されても割合が低い。例えば、平均粒径83μmの炭酸水素ナトリウムを200℃で1時間焼成した場合、得られる炭酸ナトリウムは、細孔直径0.1〜1.0μmの細孔容積が0.30cm3/g、細孔直径1.0〜10μmの細孔容積が0.04cm3/gとなる。また、平均粒径21μmの炭酸水素ナトリウムを200℃で1時間焼成した場合、得られる炭酸ナトリウムは、細孔直径0.1〜1.0μmの細孔容積が0.28cm3/g、細孔直径1.0〜10μmの細孔容積が0.24cm3/gとなる。 In sodium carbonate in which the average particle diameter of sodium hydrogencarbonate exceeds 9 μm, pores having a diameter of 1 μm or more are not formed or the ratio is low even if formed. For example, when sodium bicarbonate having an average particle size of 83 μm is baked at 200 ° C. for 1 hour, the resulting sodium carbonate has a pore diameter of 0.1 to 1.0 μm and a pore volume of 0.30 cm 3 / g. The pore volume with a diameter of 1.0 to 10 μm is 0.04 cm 3 / g. When sodium bicarbonate having an average particle diameter of 21 μm is baked at 200 ° C. for 1 hour, the resulting sodium carbonate has a pore volume of 0.18 to 1.0 μm and a pore volume of 0.28 cm 3 / g. The pore volume with a diameter of 1.0 to 10 μm is 0.24 cm 3 / g.

すなわち、細孔の多くは細孔直径0.1〜1.0μmであり、粒子に比較的細い細孔が空いた形状となっている。そのため、酸性成分は細く長い流路を拡散する必要が生じ、酸性成分の拡散に時間がかかるため反応には不都合となる。一方、酸性成分を短い時間で除去するのに効果があると考えられる細孔直径1.0〜10μmの細孔容積は0.4cm3/g未満になるため、酸性成分の吸収性能が低い。 That is, many of the pores have a pore diameter of 0.1 to 1.0 μm, and the particles have relatively thin pores. Therefore, it is necessary for the acidic component to diffuse through a thin and long channel, and it takes time to diffuse the acidic component, which is inconvenient for the reaction. On the other hand, since the pore volume with a pore diameter of 1.0 to 10 μm considered to be effective for removing the acidic component in a short time is less than 0.4 cm 3 / g, the absorption performance of the acidic component is low.

炭酸水素ナトリウムは、100℃以上の温度で焼成すると、炭酸ナトリウムとなる。例えば、炭酸水素ナトリウムを200℃で1時間焼成して得られた炭酸ナトリウムを観察すると、焼成の前後で平均粒径に大きな変化は生じない。具体的には、本発明者らが観察した、炭酸水素ナトリウムの平均粒径が0.7〜50μmの範囲では、焼成前後で平均粒径がほとんど変化していない。   Sodium bicarbonate becomes sodium carbonate when fired at a temperature of 100 ° C. or higher. For example, when sodium carbonate obtained by baking sodium bicarbonate at 200 ° C. for 1 hour is observed, the average particle size does not change significantly before and after baking. Specifically, when the average particle diameter of sodium hydrogen carbonate observed by the present inventors is in the range of 0.7 to 50 μm, the average particle diameter hardly changes before and after firing.

炭酸水素ナトリウム(分子量84.01、比重2.19)の真の体積と、該炭酸水素ナトリウムから得られる炭酸ナトリウム(分子量105.99、比重2.53)の真の体積との差は、炭酸ナトリウムの質量を基準とした場合0.33cm3/gである。すなわち、炭酸水素ナトリウムがその外形状を維持したまま炭酸ナトリウムになる場合、この0.33cm3/gが炭酸ナトリウムの細孔容積となる。この炭酸ナトリウムが、塩化水素と反応して食塩(分子量58.44、比重2.161)となった場合には、若干真の体積が増えるため細孔容積が減少するが、それでも計算上0.19cm3/gの細孔容積が残る。これが消石灰などのカルシウム系の酸性成分除去剤に比較して、炭酸水素ナトリウムが反応率が高い理由の一つであり、本質的に有利な点である。 The difference between the true volume of sodium bicarbonate (molecular weight 84.01, specific gravity 2.19) and the true volume of sodium carbonate (molecular weight 105.99, specific gravity 2.53) obtained from the sodium bicarbonate is When based on the mass of sodium, it is 0.33 cm 3 / g. That is, when sodium bicarbonate becomes sodium carbonate while maintaining its outer shape, this 0.33 cm 3 / g is the pore volume of sodium carbonate. When this sodium carbonate reacts with hydrogen chloride to form sodium chloride (molecular weight 58.44, specific gravity 2.161), the true volume slightly increases and the pore volume decreases. A pore volume of 19 cm 3 / g remains. This is one of the reasons why sodium hydrogen carbonate has a higher reaction rate than calcium-based acidic component removers such as slaked lime, and is essentially advantageous.

従来のカルシウム系の酸性成分除去剤においては、酸性成分の処理過程で過剰に使用された酸性成分除去剤から塩化カルシウム以外に水不溶性のカルシウム塩を生成し、固形廃棄物を生成する。一方、本発明の酸性成分除去剤では、酸性成分の処理過程での生成物は、例えば塩化水素の場合、主として塩化ナトリウム及び炭酸ナトリウムである。このため、他の重金属等の飛灰から分離すれば、水に溶解して処理できるので、固形廃棄物の量を低減できる。この点では、カリウム系の酸性成分除去剤も同様に有利であるが、カリウム系では吸湿性が高く、また一般的に入手する際の価格の点でも炭酸水素ナトリウムの方が有利である。   In the conventional calcium-based acidic component remover, a water-insoluble calcium salt is produced in addition to calcium chloride from the acidic component remover used in excess during the treatment of the acidic component, and solid waste is produced. On the other hand, in the acidic component removing agent of the present invention, the product in the process of treating the acidic component is mainly sodium chloride and sodium carbonate in the case of hydrogen chloride, for example. For this reason, if it isolate | separates from fly ash, such as another heavy metal, since it can melt | dissolve and process in water, the amount of solid waste can be reduced. In this respect, a potassium-based acidic component remover is also advantageous, but potassium-based is highly hygroscopic, and sodium hydrogencarbonate is more advantageous in terms of cost when generally available.

本発明の酸性成分除去剤は、排ガス中の酸性成分、特に塩化水素成分の除去において工業的に有効に使用できる。本発明では、酸性成分除去剤と塩化水素ガスとの反応性が良好であるので、少量の酸性成分除去剤で充分に塩化水素ガスを吸着除去できる。また、反応生成物である食塩や未反応の炭酸ナトリウムは水溶性であるので、排ガス中の酸性成分除去後のダストは水に溶解する。そして、重金属類は、水酸化物や硫化物や炭酸化物として選択的に沈殿としたり、イオン交換することにより、食塩と炭酸ナトリウムの水溶液から分離除去できる。また、水溶液中に不溶の酸化物はそのまま分離できる。したがって、本発明によれば廃棄物量を大幅に削減できるという優れた効果がある。   The acidic component removing agent of the present invention can be used industrially effectively in the removal of acidic components in exhaust gas, particularly hydrogen chloride components. In the present invention, since the reactivity between the acidic component removing agent and hydrogen chloride gas is good, the hydrogen chloride gas can be sufficiently removed by adsorption with a small amount of acidic component removing agent. Moreover, since the reaction product sodium chloride and unreacted sodium carbonate are water-soluble, the dust after removal of acidic components in the exhaust gas dissolves in water. The heavy metals can be separated and removed from the aqueous solution of sodium chloride and sodium carbonate by selectively precipitating as hydroxides, sulfides or carbonates or by ion exchange. Moreover, the oxide insoluble in the aqueous solution can be separated as it is. Therefore, according to the present invention, there is an excellent effect that the amount of waste can be greatly reduced.

すなわち、本発明の酸性成分除去剤は、ゴミ焼却場等から排出される排ガス中の酸性成分、特に塩化水素を効率良く除去し、また発生する焼却残さを減少でき、最終処分場でカルシウムスケールの発生を防止できるなどの効果を有し、環境への影響を大幅に低減できる。   That is, the acidic component removing agent of the present invention can efficiently remove acidic components, particularly hydrogen chloride, in exhaust gas discharged from a garbage incineration plant, etc., and reduce the generated incineration residue. It has the effect of preventing the occurrence and can greatly reduce the impact on the environment.

本発明の酸性成分除去剤は、例えば平均粒径50μm以上の炭酸水素ナトリウムを、平均粒径が9μm以下になるように粉砕して製造できる。粉砕法としては、乾式粉砕又は湿式粉砕のどちらも採用できる。   The acidic component removing agent of the present invention can be produced, for example, by pulverizing sodium bicarbonate having an average particle size of 50 μm or more so that the average particle size is 9 μm or less. As the pulverization method, either dry pulverization or wet pulverization can be employed.

乾式粉砕の場合、衝撃式粉砕機(高速回転する羽根等による粉砕機)、ジェットミル(衝突気流による粉砕機)、ボールミル等を用いるのが好ましい。風力式分級機を備えた衝撃式粉砕機を用い、粉砕機から排出される粒子を分級して粗粒子は再度粉砕機に戻しながら、炭酸水素ナトリウムを粉砕する場合は、高い収率で目的の粒径の炭酸水素ナトリウムを得ることができるのでより好ましい。また、ジェットミルを用いる場合も、粉砕方法として微粒子化に適しており、ふるい分けによる粗粒子除去なしに、高い収率で目的の粒径の炭酸水素ナトリウムを得ることができるので好ましい。   In the case of dry pulverization, it is preferable to use an impact pulverizer (a pulverizer using high-speed rotating blades), a jet mill (a pulverizer using a collision airflow), a ball mill, or the like. When pulverizing sodium bicarbonate while classifying particles discharged from the pulverizer and returning the coarse particles to the pulverizer again using an impact pulverizer equipped with a wind classifier, the target is obtained in a high yield. It is more preferable because sodium hydrogen carbonate having a particle size can be obtained. A jet mill is also preferred because it is suitable for pulverization as a pulverization method, and sodium hydrogen carbonate having a desired particle diameter can be obtained in a high yield without removing coarse particles by sieving.

湿式粉砕の場合、媒体撹拌ミル、ボールミル等を用いるのが好ましい。特に、炭酸水素ナトリウムを実質的に溶解せずまた変質しない液体中に炭酸水素ナトリウムを分散したスラリーを、媒体撹拌ミル又はボールミルで湿式粉砕し、得られた炭酸水素ナトリウムを分離して乾燥する場合は、平均粒径の小さな炭酸水素ナトリウムを得ることができるので好ましい。炭酸水素ナトリウムを実質的に溶解しない液体としては、炭酸水素ナトリウムのアルカリ性によって変質せず、かつ粘度が低い液体が好ましい。   In the case of wet pulverization, it is preferable to use a medium stirring mill, a ball mill or the like. In particular, when a sodium hydrogen carbonate slurry is dispersed in a liquid that does not substantially dissolve or alter sodium bicarbonate, and is wet pulverized with a medium stirring mill or a ball mill, and the resulting sodium bicarbonate is separated and dried. Is preferable because sodium hydrogen carbonate having a small average particle diameter can be obtained. The liquid that does not substantially dissolve sodium hydrogen carbonate is preferably a liquid that does not deteriorate due to the alkalinity of sodium hydrogen carbonate and has a low viscosity.

このような液体としては、メタノール、エタノール、アセトン、C49OCH3等が挙げられる。炭酸水素ナトリウムを実質的に溶解しない液体は、炭酸水素ナトリウムの溶解度が3質量%以下であるものが好ましく、溶解度が1質量%以下である場合はさらに好ましい。 Examples of such a liquid include methanol, ethanol, acetone, C 4 F 9 OCH 3 and the like. The liquid that does not substantially dissolve sodium bicarbonate preferably has a sodium bicarbonate solubility of 3% by mass or less, and more preferably has a solubility of 1% by mass or less.

本発明の酸性成分除去剤は、平均粒径1〜9μmの炭酸水素ナトリウムの他に、炭酸水素カリウム、消石灰、炭酸カルシウム、ゼオライト等の他の酸性成分除去成分や活性炭などの吸着剤やシリカ、ケイ藻土等の固結防止剤等を含有してもよい。酸性成分除去剤の全質量中に、平均粒径1〜9μmの炭酸水素ナトリウムは70%以上含まれることが好ましい。   In addition to sodium bicarbonate having an average particle diameter of 1 to 9 μm, the acidic component remover of the present invention includes other acidic component removal components such as potassium bicarbonate, slaked lime, calcium carbonate, zeolite, adsorbents such as activated carbon, silica, You may contain anti-caking agents, such as diatomaceous earth. It is preferable that 70% or more of sodium hydrogen carbonate having an average particle diameter of 1 to 9 μm is contained in the total mass of the acidic component remover.

本発明の酸性成分除去剤においては、従来のものに比較して粒径の小さい炭酸水素ナトリウムを用いるため、長期間保存しておくと固結する。本発明の酸性成分除去剤は、貯槽から直接被処理ガス中に供給できるが、炭酸水素ナトリウムが固結すると粉体としての流動性が低下して貯槽からの排出が悪化したり、煙道内での分散が不良となり酸性成分との反応性が低下する等のおそれがある。そのため、酸性成分除去剤に固結防止剤を添加するのが好ましい。固結防止剤の添加により流動性が維持され、酸性成分除去剤の貯槽での貯留が可能となる。   In the acidic component removing agent of the present invention, sodium hydrogen carbonate having a smaller particle size than that of the conventional one is used, so that it is consolidated when stored for a long period of time. The acidic component removing agent of the present invention can be supplied directly from the storage tank to the gas to be treated. However, when sodium hydrogen carbonate is solidified, the fluidity as a powder is deteriorated and the discharge from the storage tank is deteriorated, or in the flue There is a risk that the dispersion of the resin becomes poor and the reactivity with the acidic component decreases. Therefore, it is preferable to add an anti-caking agent to the acidic component remover. The fluidity is maintained by the addition of the anti-caking agent, and the acidic component removing agent can be stored in the storage tank.

固結防止剤としては、ヒュームドシリカ、ホワイトカーボン等のシリカ系粉体、塩基性炭酸マグネシウム、炭酸カルシウム、ケイ藻土等が好ましい。特に、ヒュームドシリカと呼ばれる微細な無水ケイ酸が、少量の添加で効果があるので好ましい。固結防止剤の含有量としては、炭酸水素ナトリウムの粉砕程度や貯留状態により最適量は異なるが、固結防止剤を含む酸性成分除去剤全質量の0.1〜5%、特に0.3〜2%が好ましい。   As the anti-caking agent, silica-based powders such as fumed silica and white carbon, basic magnesium carbonate, calcium carbonate, diatomaceous earth and the like are preferable. In particular, fine silicic acid called fumed silica is preferable because it is effective when added in a small amount. As the content of the anti-caking agent, the optimum amount varies depending on the pulverization degree and storage state of sodium bicarbonate, but it is 0.1 to 5% of the total mass of the acidic component removing agent including the anti-caking agent, particularly 0.3. ~ 2% is preferred.

ここでヒュームドシリカには、疎水化処理したものと疎水化処理されず親水性のものとがある。疎水化処理された疎水性シリカを使用すると、ガス中における酸性成分除去剤の流動性は向上するが、酸性成分の処理後に水に溶解させると若干水に浮遊するので、湿式の排ガス処理設備を有するボイラー排ガスの処理等においては親水性のヒュームドシリカの使用が好ましい。例えばボイラーでは排煙脱硫装置の吸収塔で水分の存在により疎水性シリカが水表面に凝集して膜が形成され、その膜により発泡するおそれがあるためである。   Here, the fumed silica includes a hydrophobized one and a hydrophilic one that is not hydrophobized. Hydrophobic treated hydrophobic silica improves the fluidity of the acidic component remover in the gas, but if it is dissolved in water after treatment of the acidic component, it will float slightly in water, so a wet exhaust gas treatment facility will be installed. It is preferable to use hydrophilic fumed silica in the treatment of the boiler exhaust gas. For example, in a boiler, hydrophobic silica aggregates on the surface of water due to the presence of moisture in the absorption tower of the flue gas desulfurization apparatus, so that a film may be formed and foamed by the film.

一方、乾式でガスを処理する場合は、疎水性シリカを固結防止剤として含んでも上記のような支障はない。また、排ガス処理後に水に浮遊する疎水性シリカの割合は少量なので、ごみ焼却場の排ガス処理等において疎水性シリカを含む酸性成分除去剤を使用しそのダストを水に溶解させ処理することができ、その場合は浮遊部分を濾過等により除去すればよい。   On the other hand, when the gas is treated by a dry method, the above-described troubles are not caused even if hydrophobic silica is contained as an anti-caking agent. In addition, since the proportion of hydrophobic silica floating in water after exhaust gas treatment is small, it can be treated by dissolving the dust in water using an acidic component remover containing hydrophobic silica in exhaust gas treatment of waste incinerators, etc. In that case, the floating portion may be removed by filtration or the like.

また本発明の酸性成分除去剤の固結防止対策としては、上記の方法以外に平均粒径50μm以上の炭酸水素ナトリウムを酸性成分除去剤中に添加する方法がある。この方法で得られる酸性成分除去剤は、レーザー回折散乱法により測定した体積基準の平均粒径分布において、1〜9μmの範囲及び50〜200μmの範囲の2箇所にピークを有し、かつ44μmを超える粒径の粒子の体積が全体の10〜30%である炭酸水素ナトリウムを含むことが好ましい。   Further, as a measure for preventing caking of the acidic component remover of the present invention, there is a method of adding sodium hydrogen carbonate having an average particle size of 50 μm or more to the acidic component remover in addition to the above method. The acidic component removing agent obtained by this method has peaks at two locations in the range of 1 to 9 μm and in the range of 50 to 200 μm in the volume-based average particle size distribution measured by the laser diffraction scattering method, and 44 μm It is preferable to include sodium hydrogen carbonate having a volume of particles having a particle diameter exceeding 10 to 30% of the whole.

44μmを超える粒径の粒子の含有割合をレーザー回折散乱で測定するかわりに、ふるい分けにより粒径分布を測定して比較的大粒径のものの含有割合(質量比)を測定することもできる。炭酸水素ナトリウムの結晶は多孔質や中空ではなくかつ密度が均一であるため、含有割合は体積基準であっても質量基準であっても同一とみなせる。具体的には、目開き45μmのふるいを用い、ふるい分けによる粒径分布を測定する。このとき45μmを超える粒径の炭酸水素ナトリウムが酸性成分除去剤全質量の10〜30%である炭酸水素ナトリウムを含み、かつレーザー回折散乱法により測定した体積基準の平均粒径分布において、1〜9μmの範囲及び50〜200μmの範囲の2箇所にピークを有することが好ましい。   Instead of measuring the content ratio of particles having a particle size exceeding 44 μm by laser diffraction scattering, it is also possible to measure the particle size distribution by sieving to determine the content ratio (mass ratio) of particles having a relatively large particle size. Since the sodium hydrogencarbonate crystals are not porous or hollow and have a uniform density, the content can be regarded as the same regardless of whether the content is based on volume or mass. Specifically, the particle size distribution by sieving is measured using a sieve having an opening of 45 μm. In this case, the sodium hydrogen carbonate having a particle size of more than 45 μm contains 10 to 30% of the total mass of the acidic component removing agent, and the volume-based average particle size distribution measured by the laser diffraction scattering method is 1 to It is preferable to have peaks at two locations in the range of 9 μm and 50 to 200 μm.

平均粒径50〜200μmの炭酸水素ナトリウムの含有量としては、酸性成分除去剤全質量中の10〜30%が好適である。平均粒径50〜200μmの炭酸水素ナトリウムの含有量が10%に満たない場合は、流動性向上の効果が実質的に得られない。平均粒径50〜200μmの炭酸水素ナトリウムの含有量が30%を超える場合は、酸性成分の除去効率が低下するおそれがある。   As content of sodium hydrogen carbonate with an average particle diameter of 50-200 micrometers, 10-30% in the total mass of an acidic component removal agent is suitable. When the content of sodium hydrogen carbonate having an average particle size of 50 to 200 μm is less than 10%, the effect of improving fluidity is not substantially obtained. When the content of sodium hydrogen carbonate having an average particle size of 50 to 200 μm exceeds 30%, the removal efficiency of acidic components may be reduced.

このように平均粒径の大きい炭酸水素ナトリウムを添加する場合、酸性成分除去剤自体(平均粒径1〜9μmの炭酸水素ナトリウム及び平均粒径50〜200μmの炭酸水素ナトリウム)や酸性ガスとの反応生成物が水に溶解する。このため、シリカ系粉体、塩基性炭酸マグネシウム、炭酸カルシウム、ケイ藻土等の水への溶解度の低い固結防止剤を用いた場合に比べて、酸性成分の処理後の水不溶分量を削減でき、また微粉である固結防止剤に起因する粉塵の発生も抑制できる。また、平均粒径50μm以上の炭酸水素ナトリウムは、ヒュームドシリカ等の固結防止剤と併用できる。このとき固結防止剤の含有量は、固結防止剤及び平均粒径50〜200μmの炭酸水素ナトリウムを含む酸性成分除去剤全質量の0.1〜5%が好ましい。この場合、平均粒径50〜200μmの炭酸水素ナトリウムを添加しない場合に比較して、固結防止剤の添加量を低減できる。   When sodium bicarbonate having a large average particle size is added in this manner, the reaction with the acidic component removing agent itself (sodium bicarbonate having an average particle size of 1 to 9 μm and sodium bicarbonate having an average particle size of 50 to 200 μm) or acidic gas The product dissolves in water. For this reason, the amount of water-insoluble matter after treatment of acidic components is reduced compared with the use of anti-caking agents with low solubility in water, such as silica powder, basic magnesium carbonate, calcium carbonate, diatomaceous earth, etc. It is also possible to suppress the generation of dust due to the anti-caking agent which is fine powder. Further, sodium bicarbonate having an average particle size of 50 μm or more can be used in combination with an anti-caking agent such as fumed silica. At this time, the content of the anti-caking agent is preferably 0.1 to 5% of the total mass of the acid component removing agent including the anti-caking agent and sodium hydrogen carbonate having an average particle diameter of 50 to 200 μm. In this case, the addition amount of the anti-caking agent can be reduced as compared with the case where sodium hydrogen carbonate having an average particle diameter of 50 to 200 μm is not added.

本発明の酸性成分除去剤により処理しうる酸性成分を含む気体としては、ポリ塩化ビニル等の産業廃棄物、都市ゴミ、医療廃棄物等の焼却炉等からの塩化水素やフッ化水素を含む排気ガス、硫黄酸化物や窒素酸化物を含有する燃焼ガス、各種製品の製造工程において不純物として酸性成分が混入しているガス等が例示される。   The gas containing an acidic component that can be treated by the acidic component removing agent of the present invention includes exhaust gas containing hydrogen chloride or hydrogen fluoride from incinerators such as industrial waste such as polyvinyl chloride, municipal waste, and medical waste. Examples include gases, combustion gases containing sulfur oxides and nitrogen oxides, and gases in which acidic components are mixed as impurities in the manufacturing process of various products.

本発明の酸性成分除去剤を用いて気体中の酸性成分を除去する方法としては、酸性成分を含む気体中に本発明の酸性成分除去剤を分散し、バグフィルターなどで捕集する方法が好ましい。この方法ではバグフィルター表面に酸性成分除去剤の濾過層が形成されるので、効率的に酸性成分を除去できる。酸性成分を含む気体の温度は、酸露点より高いことが好ましいが、ダイオキシンの生成抑制の観点からは低い温度が好ましく、具体的には100〜200℃が好ましい。   As a method for removing an acidic component in a gas using the acidic component remover of the present invention, a method in which the acidic component remover of the present invention is dispersed in a gas containing an acidic component and collected by a bag filter or the like is preferable. . In this method, since the filtration layer of the acidic component removing agent is formed on the bag filter surface, the acidic component can be efficiently removed. Although the temperature of the gas containing an acidic component is preferably higher than the acid dew point, a low temperature is preferable from the viewpoint of suppression of dioxin production, and specifically, 100 to 200 ° C is preferable.

[例1]
平均粒径92μmの炭酸水素ナトリウム(旭硝子株式会社製、以下の各例においてすべて同じ)を、風力式分級機を備えた衝撃式粉砕機(ホソカワミクロン株式会社製、商品名:ACMパルベライザーACM10A型)を用い、粉砕機から排出される炭酸水素ナトリウムを分級し、粗粒子は再度粉砕機に戻しながら粉砕することにより、平均粒径9μmの炭酸水素ナトリウムを得た。この粉砕機によると、150kgの炭酸水素ナトリウムを1時間で前記の平均粒径にまで粉砕でき、ふるい分けによる粗粒子除去は行わなかった。
[Example 1]
Sodium hydrogen carbonate having an average particle size of 92 μm (made by Asahi Glass Co., Ltd., all the same in the following examples), an impact type pulverizer equipped with a wind classifier (made by Hosokawa Micron Co., Ltd., trade name: ACM Pulverizer ACM10A type) The sodium bicarbonate discharged from the pulverizer was classified, and the coarse particles were pulverized while returning to the pulverizer again to obtain sodium bicarbonate having an average particle size of 9 μm. According to this pulverizer, 150 kg of sodium hydrogen carbonate could be pulverized to the above average particle diameter in 1 hour, and coarse particle removal by sieving was not performed.

[例2(比較例)]
平均粒径92μmの炭酸水素ナトリウムを、高速度で回転する円盤に取り付けられたピンと、固定された円盤に取り付けられたピンとの衝撃と反発により粉砕する高速回転型ピンミル(株式会社奈良機械製作所製、商品名:自由粉砕機M−5型)にて500kgを1時間で微粉砕した後、目開き180μmのふるいにて粗粒子を除去し、平均粒径38μmの炭酸水素ナトリウムを得た。収率は83%であった。粗粒子は粉砕機に戻して再粉砕することもできるが、例1の粉砕機に比較すると工程は複雑となる。しかもふるいを使用して工業的に大量に分級するのは、実質的には45μm程度が下限であり、9μm以下の粒径の炭酸水素ナトリウムを得ることは困難である。
[Example 2 (comparative example)]
High-speed rotating pin mill (made by Nara Machinery Co., Ltd.) that grinds sodium bicarbonate with an average particle size of 92 μm by impact and repulsion between the pin attached to the disk rotating at high speed and the pin attached to the fixed disk (Product name: Free crusher M-5 type) 500 kg was finely pulverized in 1 hour, and then coarse particles were removed with a sieve having an aperture of 180 μm to obtain sodium hydrogen carbonate having an average particle size of 38 μm. The yield was 83%. The coarse particles can be returned to the pulverizer and pulverized again, but the process is more complicated than the pulverizer of Example 1. Moreover, the industrially large-scale classification using a sieve has a practically lower limit of about 45 μm, and it is difficult to obtain sodium bicarbonate having a particle size of 9 μm or less.

[例3(比較例)]
平均粒径92μmの炭酸水素ナトリウムを、高速度で回転するハンマーにより粉砕する高速回転型ハンマーミル(不二パウダル株式会社製、商品名:アトマイザーC−20型)にて1000kgを1時間で微粉砕した後、目開き100μmのふるいにて粗粒子を除去し、平均粒径28μmの炭酸水素ナトリウムを得た。収率は8%であった。
[Example 3 (comparative example)]
1000 kg of sodium bicarbonate with an average particle size of 92 μm is finely pulverized in 1 hour using a high-speed rotary hammer mill (trade name: Atomizer C-20, manufactured by Fuji Paudal Co., Ltd.). Then, coarse particles were removed with a sieve having an opening of 100 μm to obtain sodium hydrogen carbonate having an average particle size of 28 μm. The yield was 8%.

[例4]
平均粒径92μmの炭酸水素ナトリウムを、ジェットミル(株式会社セイシン企業製、商品名:シングルトラックジェットミルSTJ−200型)にて6kgを1時間で微粉砕して、平均粒径4μmの炭酸水素ナトリウムを得た。ふるい分けによる粗粒子除去が不要であり、ほぼ全量を製品とすることができた。
[Example 4]
Sodium bicarbonate having an average particle diameter of 92 μm is finely pulverized in 6 hours in a jet mill (trade name: Single Track Jet Mill STJ-200, manufactured by Seishin Enterprise Co., Ltd.), and hydrogen carbonate having an average particle diameter of 4 μm. Sodium was obtained. The removal of coarse particles by sieving was unnecessary, and almost the entire amount could be made into a product.

[例5]
平均粒径92μmの炭酸水素ナトリウムを、アルミナ製ボールミルを使用して湿式粉砕した。使用したボールミルは、内容積866cm3の卓上式ボールミルで、ボールは10〜15mmφのアルミナ製のものを430cm3、質量で782g入れて使用した。その中に前記炭酸水素ナトリウム60gとエタノール200gを入れ、100rpmにて24時間運転し炭酸水素ナトリウムの微粉スラリーを得た。得られた炭酸水素ナトリウムスラリーを、ステンレス鋼製のバットに薄く入れて、40℃の防爆型の乾燥器で5時間静置乾燥して、平均粒径が8μmの炭酸水素ナトリウムを得た。
[Example 5]
Sodium hydrogen carbonate having an average particle diameter of 92 μm was wet-ground using an alumina ball mill. The ball mill used was a table-type ball mill having an internal volume of 866 cm 3 , and the balls used were made of alumina having a diameter of 10 to 15 mmφ of 430 cm 3 and a mass of 782 g. The sodium hydrogen carbonate 60g and ethanol 200g were put in it, and it operated at 100 rpm for 24 hours, and obtained the sodium hydrogen carbonate fine powder slurry. The obtained sodium hydrogen carbonate slurry was thinly placed in a stainless steel vat and left to dry in a 40 ° C. explosion-proof dryer for 5 hours to obtain sodium hydrogen carbonate having an average particle size of 8 μm.

[例6]
平均粒径92μmの炭酸水素ナトリウム180gを、600gのC49OCH3中に分散した後、媒体撹拌ミルの1種であるビーズミルを使用して湿式粉砕することにより炭酸水素ナトリウムの微粉スラリーを得た。使用したビーズミルは内容積1400cm3であり、材質はジルコニア製であった。ビーズは平均径0.65mmφのジルコニア製のものを1120cm3入れて使用した。運転条件は、回転数を2500rpmとし、20分間粉砕した。この炭酸水素ナトリウムスラリーを、ステンレス鋼製のバットに薄く入れて、40℃の乾燥器で5時間静置乾燥して平均粒径1.5μmの炭酸水素ナトリウムを得た。
[Example 6]
After dispersing 180 g of sodium hydrogen carbonate having an average particle size of 92 μm in 600 g of C 4 F 9 OCH 3 , a fine powder slurry of sodium hydrogen carbonate is obtained by wet grinding using a bead mill which is a kind of medium stirring mill. Obtained. The bead mill used had an internal volume of 1400 cm 3 and was made of zirconia. As beads, 1120 cm 3 of zirconia having an average diameter of 0.65 mmφ was used. The operating conditions were a rotational speed of 2500 rpm and pulverization for 20 minutes. The sodium hydrogen carbonate slurry was thinly placed in a stainless steel vat and left to stand in a dryer at 40 ° C. for 5 hours to obtain sodium hydrogen carbonate having an average particle size of 1.5 μm.

[例7(比較例)]
ビーズを平均径0.3mmφのジルコニアビーズに変更し、粉砕時間を30分とした以外は例6と同様にして炭酸水素ナトリウムスラリーを得て、例6と同様に乾燥して平均粒径0.5μmの炭酸水素ナトリウムを得た。
[Example 7 (comparative example)]
A sodium hydrogen carbonate slurry was obtained in the same manner as in Example 6 except that the beads were changed to zirconia beads having an average diameter of 0.3 mmφ and the pulverization time was 30 minutes. 5 μm sodium hydrogen carbonate was obtained.

[細孔分布の測定]
例1により得られた平均粒径9μmの炭酸水素ナトリウムの粉体層としての細孔分布を、水銀圧入式細孔径測定装置(株式会社島津製作所製、商品名マイクロメリティックポアサイザ9310)を使用して測定した。その結果を、細孔直径0.01μm未満、0.01〜0.1μm、0.1〜1μm、1〜10μm、10μm超に対応する細孔容積として、表1に示す。さらに、この炭酸水素ナトリウムについて、窒素吸着法によっても細孔分布を測定した。窒素吸着法による測定は、窒素ガス吸着量測定式細孔分布測定装置(日本ベル株式会社製、商品名ベルソープ28)を使用して測定した。その結果を同様に表1に示す。
[Measurement of pore distribution]
Using a mercury intrusion type pore diameter measuring device (trade name: Micromeritic Pore Sizer 9310, manufactured by Shimadzu Corporation) for the pore distribution as a powder layer of sodium hydrogen carbonate having an average particle diameter of 9 μm obtained in Example 1 And measured. The results are shown in Table 1 as pore volumes corresponding to pore diameters of less than 0.01 μm, 0.01 to 0.1 μm, 0.1 to 1 μm, 1 to 10 μm, and more than 10 μm. Further, the pore distribution of this sodium hydrogen carbonate was also measured by a nitrogen adsorption method. The measurement by the nitrogen adsorption method was performed using a nitrogen gas adsorption amount measurement type pore distribution measuring device (trade name Bell Soap 28, manufactured by Nippon Bell Co., Ltd.). The results are also shown in Table 1.

表1において、水銀法細孔容積とは水銀圧入法により測定した細孔容積であり、窒素法細孔容積とは窒素吸着法により測定した細孔容積である。窒素法細孔容積においては細孔直径1μm以上の部分は測定できないので、表1では「−」で表した。この表記は以下の表2においても同じである。   In Table 1, the mercury method pore volume is the pore volume measured by the mercury intrusion method, and the nitrogen method pore volume is the pore volume measured by the nitrogen adsorption method. In the nitrogen method pore volume, since a portion having a pore diameter of 1 μm or more cannot be measured, it is represented by “−” in Table 1. This notation is the same in Table 2 below.

Figure 2006239689
Figure 2006239689

表1からこの炭酸水素ナトリウムは、水銀法細孔容積において細孔直径1〜10μmの部分に大部分の細孔を有することがわかる。細孔直径が0.1μm未満には実質的に細孔を有しない点は、水銀法細孔容積及び窒素法細孔容積の両方から確認できる。   It can be seen from Table 1 that this sodium hydrogen carbonate has most of the pores in the portion having a pore diameter of 1 to 10 μm in the mercury method pore volume. It can be confirmed from both the mercury method pore volume and the nitrogen method pore volume that the pore diameter is less than 0.1 μm.

この炭酸水素ナトリウムを、200℃の恒温乾燥器内に1時間静置し焼成したところ、平均粒径9μmの炭酸ナトリウムが得られた。この炭酸ナトリウムについて、上述の炭酸水素ナトリウムと同様にして測定した細孔分布を表2に示す。   When this sodium bicarbonate was left to stand in a constant temperature dryer at 200 ° C. for 1 hour and baked, sodium carbonate having an average particle size of 9 μm was obtained. Table 2 shows the pore distribution of this sodium carbonate measured in the same manner as the above-mentioned sodium bicarbonate.

Figure 2006239689
Figure 2006239689

表2から炭酸ナトリウムの細孔も、大部分が細孔直径1〜10μmの範囲にあることがわかる。炭酸ナトリウムでは細孔直径0.1〜1μmの細孔は若干存在するが、細孔直径が0.1μm未満には実質的に細孔を有しない点は、水銀法細孔容積及び窒素法細孔容積の両方から確認できる。   Table 2 shows that most of the pores of sodium carbonate are in the range of pore diameters of 1 to 10 μm. In sodium carbonate, there are some pores having a pore diameter of 0.1 to 1 μm. However, when the pore diameter is less than 0.1 μm, there is substantially no pore. It can be confirmed from both pore volumes.

また、この炭酸水素ナトリウムと炭酸ナトリウムについて、粒子形状を電子顕微鏡により観察したところ、炭酸水素ナトリウムは滑らかな粒子表面であったが、炭酸ナトリウムの表面には内径が1μmから数μmまで程度の凹部が見られた。   Further, when the particle shape of the sodium hydrogen carbonate and sodium carbonate was observed with an electron microscope, the sodium hydrogen carbonate had a smooth particle surface, but the sodium carbonate surface had a concave portion with an inner diameter of about 1 μm to several μm. It was observed.

次に、例2〜7で得られた炭酸水素ナトリウムについて、例1と同様に細孔分布を測定した。そのうち、水銀圧入法による細孔直径が0.1〜1μmの細孔容積を細孔容積Aとし、水銀圧入法による細孔直径が1〜10μmの細孔容積を細孔容積Bとし、細孔容積A及び細孔容積Bについてのみ表3に示す。表3においては、例1のものを含め炭酸水素ナトリウムの平均粒径の小さい順に並べ換えてある。また、例2〜7で得られた炭酸水素ナトリウムは、細孔直径が0.1μm未満には実質的に細孔を有しないことが、水銀法細孔容積及び窒素法細孔容積の両方から確認できた。   Next, the pore distribution of the sodium hydrogen carbonate obtained in Examples 2 to 7 was measured in the same manner as in Example 1. Among them, the pore volume having a pore diameter of 0.1 to 1 μm by the mercury intrusion method is defined as a pore volume A, and the pore volume having a pore diameter of 1 to 10 μm by the mercury intrusion method is defined as a pore volume B. Only the volume A and the pore volume B are shown in Table 3. In Table 3, the sodium bicarbonate is rearranged in order from the smallest average particle size including that of Example 1. Further, the sodium bicarbonate obtained in Examples 2 to 7 has substantially no pores with a pore diameter of less than 0.1 μm from both the mercury method pore volume and the nitrogen method pore volume. It could be confirmed.

Figure 2006239689
Figure 2006239689

次に、例2〜7で得られた炭酸水素ナトリウムについて、例1と同様に200℃の恒温乾燥器内で放置し、得られた炭酸ナトリウムについて例1と同様に細孔分布を測定した。そのうち、細孔容積A及び細孔容積Bについてのみ表4に示す。表4においては、例1の炭酸水素ナトリウムから得られた炭酸ナトリウムの数値を含め平均粒径の小さい順に並べ換えてある。また、これらの炭酸ナトリウムは、細孔直径が0.1μm未満には実質的に細孔を有しない点が、水銀法細孔容積及び窒素法細孔容積の両方から確認できた。   Next, the sodium hydrogencarbonate obtained in Examples 2 to 7 was left in a constant temperature dryer at 200 ° C. in the same manner as in Example 1, and the pore distribution of the obtained sodium carbonate was measured in the same manner as in Example 1. Of these, only pore volume A and pore volume B are shown in Table 4. In Table 4, the values are sorted in ascending order of the average particle size including the values of sodium carbonate obtained from the sodium hydrogen carbonate of Example 1. Further, it was confirmed from both the mercury method pore volume and the nitrogen method pore volume that these sodium carbonates have substantially no pores when the pore diameter is less than 0.1 μm.

Figure 2006239689
Figure 2006239689

[酸性成分の除去試験]
例1〜7で得られた、粉砕後の炭酸水素ナトリウムについて、酸性成分の吸収性能を以下のように評価した。縦に保持したフッ素樹脂製パイプ(内径50mm、長さ100mm)に炭酸水素ナトリウム30gを充填し、両端をガラス濾布で封じた。このパイプの下部から上部に向かって、ガラス濾布を通して200℃に加熱された空気を流し、濾布に入る手前で濃度600体積ppmとなるように気体状の塩化水素を注入した。
[Removal test of acidic components]
About the sodium hydrogencarbonate obtained in Examples 1-7, the absorption performance of the acidic component was evaluated as follows. A fluororesin pipe (inner diameter 50 mm, length 100 mm) held vertically was filled with 30 g of sodium hydrogen carbonate, and both ends were sealed with glass filter cloth. From the bottom to the top of this pipe, air heated to 200 ° C. was passed through a glass filter cloth, and gaseous hydrogen chloride was injected so as to have a concentration of 600 ppm by volume before entering the filter cloth.

流した塩化水素の総量は、試料の炭酸水素ナトリウムが全量炭酸ナトリウムとなったときの、その炭酸ナトリウムに対する塩化水素の理論反応量の2倍とした。空気の流速は炭酸水素ナトリウム充填層の断面積に対して1m/sとした。パイプから取り出した炭酸ナトリウムを、1モル/リットルの塩酸で中和滴定して未反応量を求めることにより、塩化水素の吸収率を求めた。その結果を表5に示す。なお、表5においては、炭酸水素ナトリウムの平均粒径の小さい順に並べ換えてある。   The total amount of hydrogen chloride flowed was twice the theoretical reaction amount of hydrogen chloride to sodium carbonate when the total amount of sodium bicarbonate in the sample was sodium carbonate. The air flow rate was 1 m / s with respect to the cross-sectional area of the sodium hydrogen carbonate packed bed. Sodium carbonate taken out from the pipe was neutralized and titrated with 1 mol / liter hydrochloric acid to determine the unreacted amount, thereby determining the absorption rate of hydrogen chloride. The results are shown in Table 5. In Table 5, the sodium bicarbonate is rearranged in order of increasing average particle size.

Figure 2006239689
Figure 2006239689

例1の酸性成分除去剤では、91%という高い除去率(塩化水素の吸収率)が達成されたのに対し、例2及び例3では、低い除去率(塩化水素の吸収率)しか得られなかった。例2及び例3においては、例1に比べて、細孔直径0.1〜1.0μmの細孔が残り、細孔直径1〜10μmの細孔容積の発達が不十分なために塩化水素ガスの拡散律速となり、塩化水素の吸収率が低かったと推定される。実際、例2及び例3の粒子では、電子顕微鏡による観察で、粒子表面がスポンジ状に0.1〜1.0μmの穴が空いていることが確認できた。また、例7で塩化水素の吸収率が低い原因は、酸性成分除去剤が微粉のために凝集しやすく、パイプに充填時に充填構造の不均一が発生し、炭酸水素ナトリウムの充填層内で塩化水素が偏流したためと推測される。   The acidic component remover of Example 1 achieved a high removal rate (hydrogen chloride absorption rate) of 91%, while Example 2 and Example 3 achieved only a low removal rate (hydrogen chloride absorption rate). There wasn't. In Example 2 and Example 3, as compared with Example 1, pores with a pore diameter of 0.1 to 1.0 μm remained, and the development of pore volume with a pore diameter of 1 to 10 μm was insufficient. It is presumed that the absorption rate of hydrogen chloride was low due to gas diffusion control. In fact, in the particles of Examples 2 and 3, it was confirmed by observation with an electron microscope that the surface of the particles was sponge-like and 0.1 to 1.0 μm holes were formed. In addition, in Example 7, the reason why the absorption rate of hydrogen chloride is low is that the acidic component remover tends to agglomerate due to fine powder, and the filling structure becomes uneven when filling the pipe, and the chlorination occurs in the packed bed of sodium bicarbonate. It is presumed that hydrogen drifted.

[例8]
例1の微粉砕した炭酸水素ナトリウムに、固結防止剤として平均粒径0.01μmの疎水性のヒュームドシリカ(株式会社トクヤマ製、商品名レオロシールMT−10)を混合物の全量中に1.0質量%になるよう添加して混合した。評価方法として、二分割セルを使用する吊り下げ式粉体層付着力測定器(ホソカワミクロン株式会社製、商品名コヒテスタ)を使用して評価した。
[Example 8]
Hydrophobic fumed silica having an average particle size of 0.01 μm (trade name Leolosil MT-10, manufactured by Tokuyama Corporation) as an anti-caking agent was added to the finely pulverized sodium hydrogen carbonate of Example 1 in the total amount of the mixture. It added and mixed so that it might become 0 mass%. As an evaluation method, the evaluation was performed by using a suspended powder layer adhesion measuring device (trade name: Kohitaster, manufactured by Hosokawa Micron Corporation) using a two-divided cell.

すなわち、試料を、2つの円筒(内径50mm、高さ20mm)を底面で重ねてなる二分割セルに充填し、予圧密荷重8.8×103Paで加圧し、粉体層を圧縮した。このセルの片方を毎分2mmで円筒の軸に垂直な方向に引張り、円筒の底面部で粉体層に剪断応力を与え、粉体層の破断時の引張り力を測定した。固結防止剤を添加したものは0.9×102Paであり、一方、固結防止剤を添加しない炭酸水素ナトリウムは4.3×102Paであった。同様にして固結防止剤の添加量を変更して測定した破断時の引張り力を単位Paで表6に示す。 That is, the sample was filled in a two-divided cell in which two cylinders (inner diameter: 50 mm, height: 20 mm) were stacked on the bottom, and pressurized with a pre-consolidation load of 8.8 × 10 3 Pa to compress the powder layer. One side of this cell was pulled at a rate of 2 mm per minute in a direction perpendicular to the axis of the cylinder, a shear stress was applied to the powder layer at the bottom of the cylinder, and the tensile force at the time of breaking the powder layer was measured. What added the anti-caking agent was 0.9 × 10 2 Pa, while sodium hydrogen carbonate to which no anti-caking agent was added was 4.3 × 10 2 Pa. Similarly, the tensile force at break measured by changing the addition amount of the anti-caking agent is shown in Table 6 in unit Pa.

また、これらの炭酸水素ナトリウム500kgをフレキシブルコンテナに充填し、60日後の状況を確認したところ、ヒュームドシリカを1%添加した炭酸水素ナトリウムには固結が見られなかった。一方、ヒュームドシリカを添加しなかった炭酸水素ナトリウムにはこぶし大に固結した部分が散見された。   Moreover, when 500 kg of these sodium hydrogen carbonates were filled in a flexible container and the situation after 60 days was confirmed, no caking was observed in the sodium hydrogen carbonate to which 1% of fumed silica was added. On the other hand, the sodium hydrogen carbonate to which fumed silica was not added was found to have a large amount of fists.

固結防止剤として平均粒径11.8μmのホワイトカーボン(株式会社トクヤマ製、商品名トクシールGU−N)及び平均粒径9.6μmの塩基性炭酸マグネシウム(旭硝子株式会社製)を用い、同様に粉体層の破断時の引張り力を測定した結果も表6に示す。ヒュームドシリカの添加が最も効果的であることがわかる。   As the anti-caking agent, white carbon having an average particle size of 11.8 μm (trade name Tokushiru GU-N, manufactured by Tokuyama Corporation) and basic magnesium carbonate (manufactured by Asahi Glass Co., Ltd.) having an average particle size of 9.6 μm were used in the same manner. Table 6 also shows the results of measuring the tensile force when the powder layer breaks. It can be seen that the addition of fumed silica is most effective.

Figure 2006239689
Figure 2006239689

[例9(実施例)]
例5の平均粒径8μmの炭酸水素ナトリウムと平均粒径92μmの炭酸水素ナトリウムとを表7に示す割合で混合した。この混合物は、レーザー回折散乱法により測定した体積基準の平均粒径分布において、8μmのあたりと92μmのあたりにピークを有していた。例8と同様にして粉体層破断時の引張り力を測定した。結果を表7に示す。なお、炭酸水素ナトリウム粒子全質量中の、目開き45μmのふるいを通過しない粒子の含有率は、以下のように測定した。
[Example 9 (Example)]
Sodium hydrogen carbonate having an average particle diameter of 8 μm and sodium hydrogen carbonate having an average particle diameter of 92 μm in Example 5 were mixed at a ratio shown in Table 7. This mixture had peaks around 8 μm and 92 μm in the volume-based average particle size distribution measured by the laser diffraction scattering method. In the same manner as in Example 8, the tensile force when the powder layer was broken was measured. The results are shown in Table 7. In addition, the content rate of the particle | grains which do not pass the sieve of 45 micrometers of openings in the total mass of sodium hydrogencarbonate particle | grains was measured as follows.

すなわち、内直径200mmのふるいであって、目開きがそれぞれ250μm、150μm、105μm、75μm及び45μmである5種類のふるいをこの順に上から積み重ね、ロータップ振とう機で15分振とうし、粒径分布(質量基準)を測定した。そして、目開き45μmのふるいを通過しなかった粒子の含有率を算出し、表7に示した。   That is, five types of sieves having an inner diameter of 200 mm and apertures of 250 μm, 150 μm, 105 μm, 75 μm and 45 μm are stacked in this order from above, and shaken for 15 minutes with a low-tap shaker. Distribution (mass basis) was measured. And the content rate of the particle | grains which did not pass the sieve of 45 micrometers of openings was computed, and it showed in Table 7.

Figure 2006239689
Figure 2006239689

Claims (14)

レーザー回折散乱法により測定した体積基準の平均粒径が1〜9μmであって、粉体層の水銀圧入法による細孔分布において、細孔直径1〜10μmの範囲の細孔容積が0.4cm/g以上である炭酸水素ナトリウムを含む酸性成分除去剤。 The volume-based average particle diameter measured by the laser diffraction scattering method is 1 to 9 μm, and the pore volume in the pore diameter range of 1 to 10 μm is 0.4 cm in the pore distribution by the mercury intrusion method of the powder layer. The acidic component removal agent containing the sodium hydrogencarbonate which is 3 / g or more. 炭酸水素ナトリウムは、炭酸水素ナトリウムを200℃で1時間焼成したときに得られる炭酸ナトリウムの粉体層の水銀圧入法による細孔分布において、細孔直径1〜10μmの範囲の細孔容積が0.4cm/g以上である請求項1に記載の酸性成分除去剤。 Sodium bicarbonate has a pore volume in the range of 1 to 10 μm in pore diameter in the pore distribution by the mercury intrusion method of the sodium carbonate powder layer obtained when sodium bicarbonate is baked at 200 ° C. for 1 hour. The acidic component remover according to claim 1, which is at least 4 cm 3 / g. レーザー回折散乱法により測定した体積基準の平均粒径分布において、1〜9μmの範囲及び50〜200μmの範囲の2箇所にピークを有し、かつふるい分けによる分析において目開き45μmのふるいを通過しない粒子の質量が全体の10〜30%である炭酸水素ナトリウムを含む酸性成分除去剤。   In the volume-based average particle size distribution measured by the laser diffraction scattering method, particles having peaks at two positions of 1 to 9 μm and 50 to 200 μm and not passing through a sieve having an opening of 45 μm in the analysis by sieving. The acidic component removal agent containing sodium hydrogencarbonate whose mass is 10-30% of the whole. 固結防止剤を含有する請求項1、2又は3に記載の酸性成分除去剤。   The acidic component removing agent according to claim 1, 2 or 3, comprising an anti-caking agent. 固結防止剤がシリカである請求項4に記載の酸性成分除去剤。   The acidic component removing agent according to claim 4, wherein the anti-caking agent is silica. 固結防止剤が疎水性シリカである請求項5に記載の酸性成分除去剤。   The acidic component removing agent according to claim 5, wherein the anti-caking agent is hydrophobic silica. 固結防止剤が親水性シリカである請求項5に記載の酸性成分除去剤。   The acidic component removing agent according to claim 5, wherein the anti-caking agent is hydrophilic silica. 除去される酸性成分が、塩化水素である請求項1、2、3、4、5、6又は7に記載の酸性成分除去剤。   The acidic component remover according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the acidic component to be removed is hydrogen chloride. 請求項1又は2に記載の酸性成分除去剤の製造方法であって、風力式分級機を備えた衝撃式粉砕機を用い、粉砕機から排出される粒子を分級して粗粒子は再度粉砕機に戻しながら、炭酸水素ナトリウムを粉砕することを特徴とする酸性成分除去剤の製造方法。   The method for producing an acidic component remover according to claim 1 or 2, wherein an impact pulverizer equipped with a wind classifier is used to classify particles discharged from the pulverizer, and coarse particles are again pulverized. The manufacturing method of the acidic component removal agent characterized by grind | pulverizing sodium hydrogen carbonate, returning to step. 請求項1又は2に記載の酸性成分除去剤の製造方法であって、ジェットミルを用いて炭酸水素ナトリウムを粉砕することを特徴とする酸性成分除去剤の製造方法。   The method for producing an acidic component remover according to claim 1 or 2, wherein sodium bicarbonate is pulverized using a jet mill. 請求項1又は2に記載の酸性成分除去剤の製造方法であって、炭酸水素ナトリウムを実質的に溶解しない液体中に炭酸水素ナトリウムを分散させてスラリーとなし、該スラリーを媒体撹拌ミル又はボールミルで湿式粉砕し、得られた炭酸水素ナトリウムを分離して乾燥することを特徴とする酸性成分除去剤の製造方法。   The method for producing an acidic component removing agent according to claim 1 or 2, wherein sodium bicarbonate is dispersed in a liquid that does not substantially dissolve sodium bicarbonate to form a slurry, and the slurry is a medium agitating mill or a ball mill. A method for producing an acidic component remover, characterized in that wet pulverization is carried out and the obtained sodium hydrogen carbonate is separated and dried. 請求項1、2、3、4、5、6、7又は8に記載の酸性成分除去剤を、処理すべき気体中に分散し、バグフィルターで捕集することを特徴とする気体中の酸性成分除去方法。   The acidic component removing agent according to claim 1, 2, 3, 4, 5, 6, 7 or 8 is dispersed in a gas to be treated and collected by a bag filter. Component removal method. 請求項6に記載の酸性成分除去剤を処理すべき気体中に添加することを特徴とするゴミ焼却場の排ガスの酸性成分除去方法。   An acidic component removing agent according to claim 6, wherein the acidic component removing agent according to claim 6 is added to a gas to be treated. 請求項7に記載の酸性成分除去剤を処理すべき気体中に添加することを特徴とするボイラーの排ガスの酸性成分除去方法。

A method for removing acidic components from exhaust gas from a boiler, wherein the acidic component removing agent according to claim 7 is added to a gas to be treated.

JP2006112258A 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method Expired - Lifetime JP4259539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112258A JP4259539B2 (en) 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33583998 1998-11-26
JP2006112258A JP4259539B2 (en) 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33581499A Division JP3840858B2 (en) 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method

Publications (2)

Publication Number Publication Date
JP2006239689A true JP2006239689A (en) 2006-09-14
JP4259539B2 JP4259539B2 (en) 2009-04-30

Family

ID=26575276

Family Applications (2)

Application Number Title Priority Date Filing Date
JP33581499A Expired - Lifetime JP3840858B2 (en) 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method
JP2006112258A Expired - Lifetime JP4259539B2 (en) 1998-11-26 2006-04-14 Acid component removal agent and acid component removal method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP33581499A Expired - Lifetime JP3840858B2 (en) 1998-11-26 1999-11-26 Acid component removal agent and acid component removal method

Country Status (1)

Country Link
JP (2) JP3840858B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068251A (en) * 2006-08-18 2008-03-27 Asahi Glass Co Ltd Acidic component removing agent and its producing method
JP2009018262A (en) * 2007-07-12 2009-01-29 Asahi Glass Co Ltd Acidic component removing agent and method of manufacturing the same
JP2017094266A (en) * 2015-11-24 2017-06-01 栗田工業株式会社 Acidic gas treatment agent and acidic gas treatment method
KR20170117032A (en) 2015-02-16 2017-10-20 고리츠다이가쿠호징 오사카후리츠다이가쿠 Exhaust gas treatment method and exhaust gas treatment device
WO2018012434A1 (en) * 2016-07-12 2018-01-18 旭硝子株式会社 Acid component-removing agent, method for producing same and acid component-removing method
WO2018142651A1 (en) * 2017-02-01 2018-08-09 栗田工業株式会社 Acid gas treatment agent
CN111530207A (en) * 2020-05-08 2020-08-14 黄龙标 Viscous gas-liquid opposite-flushing type high-temperature flue gas discharge device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948075B2 (en) * 1997-10-01 2007-07-25 旭硝子株式会社 Acid component removal agent and acid component removal method
JP3840632B2 (en) * 2000-05-08 2006-11-01 三井造船株式会社 Sodium-based desalting agent and waste treatment equipment
JP2002263441A (en) * 2001-03-12 2002-09-17 Mitsubishi Heavy Ind Ltd Blue smoke generation preventive equipment
JP2002282650A (en) * 2001-03-26 2002-10-02 Mitsui Eng & Shipbuild Co Ltd Waste combustion exhaust gas treatment apparatus and waste treatment system
JP4841065B2 (en) * 2001-06-21 2011-12-21 三菱重工メカトロシステムズ株式会社 Smoke removal device for SO3
JP2003010633A (en) * 2001-07-04 2003-01-14 Asahi Glass Co Ltd Gas treatment method
JP2004082103A (en) * 2002-08-27 2004-03-18 Asahi Glass Co Ltd Method of treating gas containing so2
BE1015841A3 (en) * 2003-12-24 2005-10-04 Lhoist Rech & Dev Sa POWDER COMPOSITION BASED COMPOUND CALCO-magnesium.
EP1937391A1 (en) * 2005-09-15 2008-07-02 Solvay Chemicals, Inc. Sulfur trioxide removal from a flue gas stream
JP2006289365A (en) * 2006-05-08 2006-10-26 Mitsui Eng & Shipbuild Co Ltd Sodium type desalting agent and waste treatment apparatus
JP5279991B2 (en) * 2006-07-10 2013-09-04 株式会社タクマ Exhaust gas treatment method and exhaust gas treatment apparatus
JP5045224B2 (en) * 2006-08-18 2012-10-10 旭硝子株式会社 Acid component removing agent and method for producing the same
JP5691211B2 (en) * 2010-03-25 2015-04-01 栗田工業株式会社 Combustion exhaust gas treatment method
JP5799955B2 (en) * 2010-09-16 2015-10-28 旭硝子株式会社 Method for producing acidic component remover and method for removing acidic component in gas
JP5652293B2 (en) * 2011-03-29 2015-01-14 栗田工業株式会社 Method for processing heavy metal-containing solids
JP5749991B2 (en) * 2011-06-28 2015-07-15 出光興産株式会社 Method for producing inorganic metal salt
JP5880481B2 (en) 2013-04-22 2016-03-09 栗田工業株式会社 Acid gas stabilization method and flue gas treatment facility
CN110114143B (en) * 2016-12-22 2023-02-17 三井化学株式会社 Porous molded article and catalyst for dimerization of alpha-olefin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068251A (en) * 2006-08-18 2008-03-27 Asahi Glass Co Ltd Acidic component removing agent and its producing method
JP2009018262A (en) * 2007-07-12 2009-01-29 Asahi Glass Co Ltd Acidic component removing agent and method of manufacturing the same
KR20170117032A (en) 2015-02-16 2017-10-20 고리츠다이가쿠호징 오사카후리츠다이가쿠 Exhaust gas treatment method and exhaust gas treatment device
JP2017094266A (en) * 2015-11-24 2017-06-01 栗田工業株式会社 Acidic gas treatment agent and acidic gas treatment method
WO2017090303A1 (en) * 2015-11-24 2017-06-01 栗田工業株式会社 Acidic-gas treatment agent and acidic-gas treatment method
TWI682808B (en) * 2015-11-24 2020-01-21 日商栗田工業股份有限公司 Acid gas treatment agent and acid gas treatment method
WO2018012434A1 (en) * 2016-07-12 2018-01-18 旭硝子株式会社 Acid component-removing agent, method for producing same and acid component-removing method
WO2018142651A1 (en) * 2017-02-01 2018-08-09 栗田工業株式会社 Acid gas treatment agent
JP2018122248A (en) * 2017-02-01 2018-08-09 栗田工業株式会社 Acidic gas treatment agent
KR20190057151A (en) 2017-02-01 2019-05-27 쿠리타 고교 가부시키가이샤 Acid gas treatment agent
CN111530207A (en) * 2020-05-08 2020-08-14 黄龙标 Viscous gas-liquid opposite-flushing type high-temperature flue gas discharge device

Also Published As

Publication number Publication date
JP4259539B2 (en) 2009-04-30
JP2000218128A (en) 2000-08-08
JP3840858B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP4259539B2 (en) Acid component removal agent and acid component removal method
JP3948075B2 (en) Acid component removal agent and acid component removal method
JP3840632B2 (en) Sodium-based desalting agent and waste treatment equipment
JP5799955B2 (en) Method for producing acidic component remover and method for removing acidic component in gas
US6352653B1 (en) Acid component-removing agent, method for producing it and method for removing acid components
JP2822351B2 (en) Agent for dry purification of exhaust gas
JP2000218128A5 (en)
JP5400390B2 (en) Grinding method
JP5045226B2 (en) Acid component removing agent and method for producing the same
JP2006021204A (en) Exhaust gas treating agent and method and apparatus for treating exhaust gas by using the same
JP5045225B2 (en) Acid component removing agent and method for producing the same
JP2006289365A (en) Sodium type desalting agent and waste treatment apparatus
EP1155730B1 (en) Method for treating a gas containing SO3 using Na2CO3
JP2004082103A (en) Method of treating gas containing so2
JP5045224B2 (en) Acid component removing agent and method for producing the same
JP3745765B2 (en) Exhaust gas treatment agent and exhaust gas treatment apparatus using the same
JP4051734B2 (en) Treatment agent for exhaust gas containing dioxins and acidic substances
JP4918741B2 (en) Gas processing method
JP4735600B2 (en) Acid component removing agent and method for producing the same
JP2009018262A (en) Acidic component removing agent and method of manufacturing the same
JP2002282650A (en) Waste combustion exhaust gas treatment apparatus and waste treatment system
WO2018012434A1 (en) Acid component-removing agent, method for producing same and acid component-removing method
TW572769B (en) Method for treating gas containing boric acid ingredient
JP2006082083A (en) Agent and method for removing acid component in gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4259539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term