WO2012036012A1 - Production method for acidic component remover, and method for removing acidic component in gas - Google Patents

Production method for acidic component remover, and method for removing acidic component in gas Download PDF

Info

Publication number
WO2012036012A1
WO2012036012A1 PCT/JP2011/070172 JP2011070172W WO2012036012A1 WO 2012036012 A1 WO2012036012 A1 WO 2012036012A1 JP 2011070172 W JP2011070172 W JP 2011070172W WO 2012036012 A1 WO2012036012 A1 WO 2012036012A1
Authority
WO
WIPO (PCT)
Prior art keywords
acidic component
removing agent
remover
average particle
fumed silica
Prior art date
Application number
PCT/JP2011/070172
Other languages
French (fr)
Japanese (ja)
Inventor
桜井 茂
高田 英樹
松本 知子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012533947A priority Critical patent/JP5799955B2/en
Publication of WO2012036012A1 publication Critical patent/WO2012036012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/42Preventing the absorption of moisture or caking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/12Influencing the filter cake during filtration using filter aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Definitions

  • the present invention relates to a method for producing an acidic component remover that removes acidic components in a gas, and a method for removing an acidic component in a gas using the acidic component remover obtained by the production method.
  • Acidic components such as hydrogen chloride and sulfur oxides are contained in the exhaust gas generated by incineration of general waste and industrial waste.
  • a removing apparatus using an acidic component remover is known.
  • FIG. 1 is a block diagram showing an example of an apparatus for removing acidic components in exhaust gas.
  • the removal device includes a silo (storage facility) 1 for storing a powdery acidic component remover M, an exhaust gas passage 2 (flue) through which exhaust gas containing acidic components flows, and an acidic component remover for silo 1.
  • a silo storage facility
  • the discharge unit 1a of the silo 1 is provided with a powder quantitative supply device 5 such as a rotary valve or a table feeder.
  • a powder quantitative supply device 5 such as a rotary valve or a table feeder.
  • the acidic component removing agent M is dropped into the opening 3 a of the supply pipe 3.
  • An incinerator (not shown) for general waste, industrial waste, etc. is installed on the upstream side of the exhaust gas passage 2.
  • exhaust gas containing acidic components such as hydrogen chloride, nitrogen oxide, and sulfur oxide from the incinerator circulates.
  • the supply pipe 3 delivers the acidic component removing agent M supplied from the opening 3a to the downstream side by a gas flow such as an air flow circulated from the upstream side.
  • the downstream end of the supply pipe 3 is disposed in the exhaust gas flow path 2.
  • an ejector 3b for ejecting the acidic component removing agent M into the exhaust gas is attached.
  • the bag filter 4 includes a housing 41, an exhaust gas inlet 42 provided in a lower portion 41 a of the housing 41, a plurality of tubular filter cloths 43 disposed in a central portion 41 b of the housing 41, and an upper portion of the housing 41. And an exhaust port 44 provided in 41c.
  • the filter cloth 43 has a lower end closed and a hollow portion 43a inside.
  • the upper part 41c and the central part 41b of the housing 41 are partitioned by a partition plate 45, and the exhaust gas always passes through the filter cloth 43 when the exhaust gas moves from the central part 41b of the housing 41 to the upper part 41c.
  • the partition plate 45 is provided with a penetrating portion 45a, and a communicating tube 46 for connecting the hollow portion 43a of the filter cloth 43 and the upper portion 41c of the housing 41 is attached to the penetrating portion 45a.
  • the powder quantitative supply device 5 is operated to supply the acidic component removing agent M in the silo 1 to the supply pipe 3.
  • the acidic component removing agent M supplied to the supply pipe 3 is carried in the gas flow, sent to the downstream end, and ejected from the ejector 3b into the exhaust gas in the exhaust gas flow path 2.
  • a part of the ejected acidic component removing agent M reacts with the acidic component in the exhaust gas to become a reaction product.
  • the reaction product and the unreacted acidic component removing agent M are sent to the bag filter 4 together with the exhaust gas.
  • the reaction product and the unreacted acidic component removing agent M are deposited on the surface of the filter cloth 43 to form a filtration layer, and the acidic component in the exhaust gas is further removed by the filtration layer.
  • the exhaust gas from which the acidic component has been removed passes through the filter cloth 43 and is discharged from the discharge port 44 through the communication pipe 46.
  • An acidic component remover used in an apparatus for removing acidic components in exhaust gas slaked lime has been used in the past, but in recent years, for example, the following has been proposed.
  • An acidic component remover containing sodium hydrogen carbonate as a main component and having an average particle size of 50 ⁇ m or less, preferably 10 to 30 ⁇ m Patent Document 1.
  • the acidic component remover In order to efficiently remove the acidic component in the exhaust gas, it is necessary to make the average particle size of the acidic component remover as small as possible.
  • the acidic component remover having an average particle size of 30 ⁇ m or less has poor fluidity, or the adhesion between particles becomes large and tends to solidify, which may cause difficulty in stable handling. As a result, there is a possibility that the removal efficiency of the acidic component is deteriorated.
  • the acidic component remover when the fluidity of the acidic component remover deteriorates and the adhesion between particles increases, the acidic component remover itself easily aggregates. For example, as shown in FIG. Or a bridge phenomenon occurs in the silo 1 as shown in FIG. As a result, the supply of the acidic component removing agent stagnate, and there is a risk that the acidic component removal efficiency in the removal device will be significantly reduced.
  • the acidic component remover particles easily enter the gaps between the fibers constituting the filter cloth of the bag filter, which may cause the following problems.
  • the pressure loss in the filter cloth increases, the pressure difference of the exhaust gas between the inlet and the outlet of the bag filter (hereinafter referred to as differential pressure) increases, and the circulation amount of the exhaust gas decreases significantly.
  • differential pressure the pressure difference of the exhaust gas between the inlet and the outlet of the bag filter
  • the circulation amount of the exhaust gas decreases significantly.
  • the compressed air is flowed in the reverse direction of the flow of the exhaust gas, and the acid component remover particles are removed from the surface of the filter cloth and the fiber gap of the filter cloth ( Even if backwashing is performed, the pressure differential does not increase and does not recover.
  • Particles of the acidic component removing agent pass through the filter cloth and are observed as dust in the exhaust gas.
  • the filtration layer deposited on the surface of the filter cloth is easily peeled off from the filter cloth.
  • any of the problems (i) to (iv) may lead to a reduction in the removal efficiency of acidic components in the removal apparatus. Therefore, the following is proposed as an acidic component remover that suppresses the increase in pressure loss in the filter cloth of the bag filter, leakage of the acidic component remover from the filter cloth, and dropping of the filter layer deposited on the surface of the filter cloth.
  • It contains sodium hydrogen carbonate, alkaline earth metal carbonate and fumed silica, the alkaline earth metal carbonate ratio is 1 to 5% by mass, and the fumed silica ratio is 0.00.
  • An acidic component remover having an average particle diameter of 5 to 2.0% by mass and an average particle size of 3 to 20 ⁇ m Patent Document 4).
  • the tensile breaking force which is an index of the ease of dropping off the filtration layer and the ease of discharging from the silo, is much smaller in magnesium carbonate than in calcium carbonate (patent Table 3 in Literature 4. Further, hydrophilic fumed silica tends to be smaller than hydrophobic fumed silica (paragraph [0022] and Table 3 of Patent Document 4). Therefore, in an actual site, magnesium carbonate is suitably used as the alkaline earth metal carbonate, and hydrophilic fumed silica is suitably used as the fumed silica.
  • the present invention suppresses an increase in pressure loss in the filter cloth of the bag filter and leakage of the acidic component remover from the filter cloth, and is less likely to cause a discharge trouble from the silo, has excellent handleability, and Provided is a method for producing an acidic component remover that can sufficiently suppress the filtration layer deposited on the surface, and a method for removing an acidic component in a gas using the acidic component remover obtained by the production method.
  • a new acidic component remover that is compatible with both problems related to the influence on the filter cloth and problems related to the stability of supply to the exhaust gas from the silo, the adhesion force of the powder layer, the wall friction force, the hopper inclination angle, Provided paying attention to each element of outlet diameter, breaking stress, residual pressure loss, and leakage concentration.
  • the method for producing an acidic component remover of the present invention comprises a sodium bicarbonate (A) powder having an average particle diameter of 50 ⁇ m or more, a hydrophobic fumed silica (B) powder, and an average particle diameter of primary particles.
  • A sodium bicarbonate
  • B hydrophobic fumed silica
  • the resulting acidic component remover has an average particle size of 3 to 20 ⁇ m, acidic
  • the content ratio of the hydrophobic fumed silica (B) in the component remover is 0.2 to 0.5% by mass, and the content ratio of the colloidal calcium carbonate (C) in the acidic component remover is 1.5. It is characterized by being -2.5 mass%.
  • the average particle size of the sodium hydrogencarbonate (A) before pulverization is preferably 50 to 300 ⁇ m.
  • the average particle diameter of the primary particles of the hydrophobic fumed silica (B) is preferably 5 to 50 nm.
  • the BET specific surface area of the colloidal calcium carbonate (C) is preferably 30 m 2 / g or more, and the boiled linseed oil absorption amount of the colloidal calcium carbonate (C) is preferably 50 mL / 100 g or more. .
  • an acidic component remover having the average particle diameter by pulverizing with a pulverizing means equipped with a classifying means and classifying the pulverized product. More preferably, the powder exceeding the diameter is returned to the pulverizing means.
  • the pulverization is preferably performed by a pulverizing means selected from an impact pulverizer and a jet mill.
  • the present invention is also a method for removing an acidic component in a gas, wherein the acidic component removing agent obtained by the production method of the present invention is temporarily stored in a storage facility and then supplied into a gas containing an acidic component.
  • the acidic component removing agent is discharged from the storage facility and supported on the gas flow, and the gas flow carrying the acidic component removing agent is supplied into the gas containing the acidic component.
  • the acidic component removing agent obtained by the production method of the present invention and the acidic component removing method in gas using the same, an increase in pressure loss in the filter cloth of the bag filter and leakage of the acidic component removing agent from the filter cloth
  • it is difficult to cause a trouble of discharging from the silo the handleability is excellent, and the filtration layer deposited on the surface of the filter cloth can be sufficiently prevented from falling off.
  • FIG. 1 It is a block diagram which shows an example of the removal apparatus of the acidic component in waste gas. It is a figure explaining the rat hole phenomenon in the silo of the removal apparatus of FIG. It is a figure explaining the bridge phenomenon in the silo of the removal apparatus of FIG. It is a figure explaining a hopper inclination angle.
  • the method for producing an acidic component remover of the present invention comprises mixing sodium hydrogen carbonate (A) powder, hydrophobic fumed silica (B) powder, and colloidal calcium carbonate (C) powder, Manufacture by grinding. It is necessary that these three kinds of powders coexist for most of the period during which the pulverization is performed. Therefore, it is preferable to mix these three kinds of powders and supply the mixture to the pulverizer, or to supply these three kinds of powders to the pulverizer almost simultaneously to perform pulverization. In addition, in this specification, each powder before mixing is called raw material powder.
  • the method for producing the acidic component removing agent of the present invention is obtained by mixing raw material powders and supplying the mixture to a pulverizer or supplying each raw material powder to the pulverizer almost simultaneously for the following reason.
  • a method of pulverizing the acidic component removing agent so that the average particle size is 3 to 20 ⁇ m is preferable.
  • Hydrophobic fumed silica (B) which tends to agglomerate secondary by applying a strong shear stress to the powder during pulverization of the mixture, and colloidal carbonate having an average primary particle size of 50 nm or less Colloidal calcium carbonate in which the average particle size of hydrophobic fumed silica (B) and primary particles is 50 nm or less on the surface of particles of sodium hydrogen carbonate (A) which is efficiently crushed calcium (C) (C) can be uniformly applied in the state of primary and secondary particles.
  • the acidic component removing agent obtained by the method of the present invention has fine particles of hydrophobic fumed silica (B) on the surface of sodium hydrogencarbonate (A) particles pulverized to have an average particle size of about 3 to 20 ⁇ m. It is considered to be composed of particles having a structure in which particles and fine particles of colloidal calcium carbonate (C) are attached.
  • sodium bicarbonate (A) is pulverized, hydrophobic fumed silica (B) secondary particles are pulverized into primary particles and fine secondary particles, colloidal calcium carbonate (C) primary particles and fine particles Crushing into fine secondary particles, and fine particles (hydrophobic fumed silica (B) and colloidal calcium carbonate (C) primary particles and fine secondary particles on the surface of the pulverized sodium hydrogen carbonate (A) particles.
  • particles of the acidic component removing agent are generated by the adhesion of the secondary particles).
  • the acidic component removing agent in the present invention is a powder and is considered to be composed of an aggregate of such particles.
  • an impact pulverizer (a pulverizer using high-speed rotating blades), a jet mill (a pulverizer using a collision airflow), a ball mill, or the like is preferable.
  • a pulverizer equipped with a wind classifier the particles discharged from the pulverizer are classified, and the coarse particles are returned to the pulverizer again, while pulverizing the mixture of raw material powders.
  • An acidic component removing agent having a target average particle diameter can be obtained.
  • Jet mills are expensive in terms of power, but are suitable for pulverization as a pulverizing means, and can remove acidic particles with the desired average particle size in high yield without removing coarse particles by sieving. Can do.
  • Sodium bicarbonate (A) Sodium hydrogen carbonate (A) as a raw material powder is a powder composed of particles having an average particle diameter of 50 ⁇ m or more, and is usually preferably a powder composed of particles having an average particle diameter of 90 to 300 ⁇ m.
  • Sodium hydrogen carbonate powder is usually produced industrially by a crystallization method. It is difficult to industrially efficiently obtain a raw material powder having an average particle size of less than 50 ⁇ m by crystallization, and such a raw material powder having a small average particle size has poor flowability and is difficult to handle. In addition, a raw material powder having an excessively large average particle size requires large energy for pulverization.
  • the average particle size of sodium bicarbonate (A), which is the raw material powder here, is measured with a measuring device using a standard sieve (manufactured by Seishin Enterprise Co., Ltd., automatic dry sieving measuring instrument robot shifter RPS-105). It is a thing.
  • Hydrophobic fumed silica (B) used as a raw material powder is obtained by hydrophobizing the surface of fumed silica (hydrophilic fumed silica).
  • Fumed silica is a synthetic amorphous silica produced by a dry process. Specific examples include those produced by a combustion method, a self-combustion method, or a heating method.
  • Hydrophobing treatment includes silane treatment with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc., silane coupling agent treatment with vinyltrimethoxysilane, dimethylpolysiloxane treatment, methylhydrogenpolysiloxane treatment, fatty acid treatment, etc. Can be mentioned.
  • the hydrophobicity of the hydrophobic fumed silica (B) is preferably 0.8% or more and 5% or less. If the degree of hydrophobicity is less than 0.8%, the fluidization effect cannot be sufficiently obtained. When the degree of hydrophobicity exceeds 5%, the cohesiveness of the hydrophobic fumed silica (B) becomes strong on the contrary, and similarly, a sufficient effect cannot be obtained. Further, the hydrophobic fumed silica (B) can be arbitrarily selected from commercially available ones.
  • the degree of hydrophobicity of the hydrophobic fumed silica (B) is an index indicating the degree of adhesion of the hydrophobizing agent such as dimethylsilane adhering to the surface of the fumed silica.
  • the carbon content of B is measured by a combustion type carbon amount measuring device (such as SUMIGRAPH NC-80 (Sumitomo Chemical Analysis Center Co., Ltd.) or EMIA-110 (Horiba Seisakusho Co., Ltd.)). .
  • the acidic component remover it is preferable that most of the hydrophobic fumed silica (B) is uniformly dispersed on the surface of the sodium hydrogen carbonate particles in the form of primary particles. Since most of the hydrophobic fumed silica (B) is dispersed in the form of primary particles, the acidic component removing agent can be used as compared with the case where the hydrophobic fumed silica (B) is present in the form of secondary particles. The fluidity can be further moderated, and agglomeration due to aggregation can be suppressed. Therefore, the average particle diameter of the primary particles of hydrophobic fumed silica (B) used as the raw material powder is preferably 5 to 50 nm.
  • grains of hydrophobic fumed silica (B) mean the minimum unit of the structure particle judged by visual observation of a SEM (scanning electron microscope) observation image.
  • the average particle size of the primary particles of the hydrophobic fumed silica (B) is actually measured by SEM (scanning electron microscope). Specifically, the particle size of 100 primary particles is measured. , The arithmetic average of the measured values.
  • Colloidal calcium carbonate (C) generally refers to precipitated calcium carbonate (synthetic calcium carbonate) called primary colloidal calcium carbonate or colloidal calcium carbonate having a primary particle size of 0.2 ⁇ m or less. In the present invention, this colloidal calcium carbonate (C) is used as a raw material powder.
  • the average particle diameter of primary particles of colloidal calcium carbonate (C) used as the raw material powder is 50 nm or less, and more preferably 30 nm or less.
  • the primary particle of colloidal calcium carbonate (C) here refers to the minimum unit of constituent particles determined by visual observation of an SEM (scanning electron microscope) observation image.
  • the average particle diameter of primary particles of colloidal calcium carbonate (C) is actually measured by SEM (scanning electron microscope). Specifically, the particle diameter of 100 primary particles is measured and measured. The value is an arithmetic average.
  • the BET specific surface area of the colloidal calcium carbonate (C) measured by the nitrogen adsorption method is preferably 30 m 2 / g or more, and more preferably 40 m 2 / g or more.
  • the BET specific surface area is preferably 85 m 2 / g or less.
  • the amount of boiled linseed oil absorbed by the colloidal calcium carbonate (C) is preferably 50 mL / 100 g or more.
  • the amount of boiled linseed oil absorbed is preferably 100 mL / 100 g or less.
  • the boiled linseed oil absorption amount of the colloidal calcium carbonate (C) here is measured according to JIS K 5101-13.
  • the ratio (content ratio) of each component in the acidic component remover is substantially equal to the mixing ratio of each raw material powder used in the production.
  • the mixing ratio of each raw material powder and the content ratio of each component in the acidic component remover may be different.
  • sodium hydrogen carbonate (A) that is not pulverized to a predetermined size and is not taken into the acidic component remover may be generated.
  • the content ratio of each component in the acidic component remover can be calculated from the mixing ratio of each raw material powder by excluding the amount of the component that has not been incorporated into the acidic component remover.
  • the content rate of each component in an acidic component removal agent can also be determined by measuring the quantity of each component in the obtained acidic component removal agent.
  • the content of each component in the acidic component removing agent (100% by mass) is 0.2 to 0.5% by mass for hydrophobic fumed silica (B) and 1.5 to 2% for colloidal calcium carbonate (C). 5% by mass.
  • the remainder is sodium bicarbonate (A), except where there is a small amount of additive.
  • the content ratio of the hydrophobic fumed silica (B) is 0.2% by mass or more, the discharge from the silo is sufficiently improved, and if it is 0.5% by mass or less. No problems such as clogging of filter cloth occur.
  • the content ratio of the colloidal calcium carbonate (C) is less than 1.5% by mass, the rupture stress of the powder layer becomes large and a sufficient effect cannot be obtained. The effect obtained is not changed.
  • the average particle size of the acidic component remover is 3 to 20 ⁇ m, preferably 5 to 10 ⁇ m. If the average particle size of the acidic component remover is 3 ⁇ m or more, sufficient fluidity can be obtained by using hydrophobic fumed silica (B) and colloidal calcium carbonate (C) in combination. Moreover, the problem that the particle diameter is too small to pass through the filter cloth can be avoided. If the average particle diameter of the acidic component remover is 20 ⁇ m or less, the acidic component in the exhaust gas can be efficiently removed.
  • the average particle diameter of the acidic component remover is an average particle diameter on a volume basis measured using a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrack FRA9220 manufactured by Nikkiso Co., Ltd.).
  • a laser diffraction / scattering particle size distribution measuring apparatus for example, Microtrack FRA9220 manufactured by Nikkiso Co., Ltd.
  • the average particle diameter is simply referred to, it means a value measured by this method using ethanol as a medium.
  • the breaking stress of the powder layer of the acidic component remover is preferably 300 mN or less, and more preferably 250 mN or less.
  • the breaking stress of the powder layer of the acidic component removing agent is an indicator of the consolidation strength of the powder layer inside the facility for temporarily storing a powder such as a silo and the ease of collapse. That is, if the breaking stress of the powder layer is 300 mN or less, the filtration layer deposited on the surface of the filter cloth is unlikely to fall off, and the filtration layer is subjected to backwashing (backwashing) on the filter cloth.
  • the breaking stress of the powder layer is small, but if it is too small, it is difficult to form a filtration layer on the surface of the filter cloth, and the function of removing acidic components in the exhaust gas is reduced or the chemical is wasted. Preferably it is.
  • the breaking stress of the powder layer of the acidic component removing agent can be obtained by measurement by a two-part cell method using a suspended powder layer adhesion measuring device (manufactured by Hosokawa Micron Corp., Kochi Tester CT-2 type).
  • the numerical value obtained by the filter cloth residual pressure loss test method described later is preferably 150 Pa or less, more preferably 125 Pa or less, and 100 Pa or less. More preferably, If the residual pressure loss in the filter cloth is 150 Pa or less, the degree of penetration of the acid component remover particles into the gaps between the fibers constituting the filter cloth of the bag filter is small, and the bag filter can be stably operated for a long time. However, if the residual pressure loss is too small, it is difficult to form a filtration layer on the surface of the filter cloth, and the function of removing acidic components in the exhaust gas is reduced or the chemical is wasted.
  • Leakage concentration of the acidic component removal agent from the filter cloth is preferably from 15 mg / Nm 3 or less, 5 mg / Nm 3 or less is more preferable. Most preferably, there is no leakage of the acidic component remover from the filter cloth, but if the leakage concentration is 15 mg / Nm 3 or less, the burden on the living environment due to discharged dust can be suppressed to a low level.
  • Residual pressure drop in filter cloth and leakage concentration of acid component remover from filter cloth were established in 2007 in accordance with DIN (German Federal Standard established by German Standards Association) Dust Collection Performance Tester (Filter MediaTester) Further, it can be obtained by measurement with an apparatus conforming to JIS Z8909-1 (test method for dust collecting filter cloth).
  • Gas containing an acidic component that can be treated with the acidic component remover obtained by the production method of the present invention includes hydrogen chloride from incinerators such as general waste (city waste), industrial waste, and medical waste, Exhaust gas containing hydrogen fluoride, sulfur oxide (sulfur dioxide), etc .; Exhaust gas containing sulfur oxide (sulfur dioxide, sulfur trioxide, sulfuric acid), nitrogen oxides, etc. from boilers; As impurities in the manufacturing process of various products Examples thereof include a gas in which an acidic substance is mixed as a component.
  • the temperature of the gas containing the acidic component is preferably higher than the dew point of the acid (the acid dew point is a temperature at which the acidic component is liquefied in combination with moisture in the exhaust gas).
  • the acid dew point is a temperature at which the acidic component is liquefied in combination with moisture in the exhaust gas.
  • a low temperature is preferable from the viewpoint of suppressing the production of dioxins, specifically 100 to 200 ° C. is preferable.
  • 150 to 250 ° C. is preferable from the viewpoint of the efficiency of removing acidic components and the viewpoint of heat recovery efficiency for effectively using the heat of the combustion exhaust gas.
  • the acidic component remover obtained by the production method of the present invention is contained in a gas containing an acidic component.
  • a method of collecting and reacting with a bag filter or the like after supplying and dispersing in a flue gas from a silo or the like once stored, or placing an acidic component remover on the flue gas flow to form a filter cloth on the bag filter A method of reacting when exhaust gas passes through the filtered layer, or a combination thereof, is preferable. In general, an efficient combination method is generally employed.
  • a commonly used rotary valve or table feeder can be used without any problem.
  • an acidic component removing device in the exhaust gas as shown in FIG. 1 may be used.
  • the filtration layer of the acidic component removing agent is formed on the surface of the filter cloth of the bag filter, the acidic component can be efficiently removed.
  • the acidic component remover obtained by the production method of the present invention described above contains hydrophobic fumed silica (B) and colloidal calcium carbonate (C), so that the fluidity of the acidic component remover is moderate. And agglomeration due to aggregation can be suppressed. Moreover, since it contains colloidal calcium carbonate (C), solidification of particles constituting the acidic component remover can be prevented. Thus, since it has moderate fluidity
  • Patent Document 4 it was considered that magnesium carbonate was superior to calcium carbonate and hydrophilic fumed silica was superior to hydrophobic fumed silica.
  • hydrophobic fumed silica (B) It turned out that the combination with the colloidal calcium carbonate (C) whose average particle diameter of a primary particle is 50 nm or less is the most excellent. This is because the oil absorption amount of colloidal calcium carbonate (C) having an average primary particle size of 50 nm or less during mixing and pulverization operations is large, that is, the void ratio in the secondary particles is high, so that the primary particles are more This is thought to be due to being easily crushed.
  • fumed silica is spherical and slippery, and is particularly effective as a fluidizing agent for hydrophobic fumed silica (B), but sometimes it tends to be “too effective”, such as clogging the eyes of a bag filter.
  • primary particles of colloidal calcium carbonate (C) having an average primary particle diameter of 50 nm or less are irregular shapes such as cubes and spindles, and the same phenomenon is unlikely to occur. I think.
  • the degree of hydrophobicity of the hydrophobic fumed silica was measured with a combustion type carbon content measuring device (CN analyzer (SUMIGRAPH NC-80)). Specifically, helium and oxygen are passed through the combustion furnace in this order, the temperature in the combustion furnace is raised to 800 ° C., and 20 to 30 mg of a measurement sample is weighed into a quartz cell and placed in the combustion furnace. After burning in the furnace for 1 minute, the generated gas was measured with a CN analyzer to determine the carbon content in the sample, and this was used as the degree of hydrophobicity.
  • CN analyzer SUMIGRAPH NC-80
  • the vertical load (W) and shear load (W1 to W3) used in the test were determined as shown in Table 1 according to the bulk specific gravity of the test powder. Pre-consolidation was performed by applying a vertical load to the upper lid of the lower fixed type shear cell packed with the acidic component removing agent, and the mixture was sheared to a steady value while the same vertical load was applied, followed by consolidation. Thereafter, according to Table 1, the shear stress was measured while applying a shear load, plotted to obtain a fracture envelope, and the adhesive force of the acidic component remover was determined from the intercept of the fracture envelope.
  • the vertical load (W) and shear load (W1 to W4) used in the test were determined as shown in Table 2 according to the bulk specific gravity of the test powder. Pre-consolidation by applying a vertical load to the top of a shearing cell made of stainless steel SUS316 and packed with an acidic component remover, and then measuring the shear stress while applying the shear load according to Table 2, and plotting The wall destruction envelope was obtained. The wall friction angle with the stainless steel SUS316 was obtained from the inclination of the wall fracture envelope.
  • a breaking stress test was conducted using a suspended powder layer adhesion measuring device (manufactured by Hosokawa Micron Corporation, Kohitsta CT-2 type), and the breaking stress of the acidic component removing agent was determined as follows.
  • Residual pressure loss and leakage concentration were determined in the following manner using a dust collection performance test apparatus based on JIS Z8909-1 (test method for dust collection filter cloth).
  • leak concentration Furthermore, the leak concentration from the filter cloth was calculated from the amount of powder captured by an absolute filter installed at the subsequent stage of the test filter and the amount of passing gas.
  • (Raw material powder) (A1): highly reactive slaked lime (average particle diameter by laser diffraction / scattering particle size distribution analyzer: 9 ⁇ m, BET specific surface area: 45 m 2 / g).
  • C1 Basic magnesium carbonate (average particle diameter by a laser diffraction / scattering particle size distribution analyzer: 7 ⁇ m).
  • C2 Colloidal calcium carbonate (average particle diameter of primary particles: 20 nm, BET specific surface area: 49 m 2 / g, boiled linseed oil absorption: 85 mL / 100 g).
  • C3 Colloidal calcium carbonate (average particle diameter of primary particles: 80 nm, BET specific surface area: 18 m 2 / g, boiled linseed oil absorption: 25 mL / 100 g).
  • the average particle diameter of an acidic component removal agent is an average particle diameter in the volume reference
  • Adhesive force is an index of mutual adhesive force between powders of the acidic component remover, and is preferably smaller.
  • the wall friction angle is an index of the mutual adhesive force between the acidic component removing agent and the container, and is preferably smaller.
  • the hopper inclination angle is an angle ⁇ of the silo bottom face inclination required for stable discharge of the powder from the silo described in FIG. 4, and a larger one is easier to handle.
  • the outlet diameter is the diameter of the silo outlet required for stable discharge of the acidic component remover from the silo, and is preferably smaller.
  • the breaking stress reflects the ease of collapse of the powder layer during compaction, and is an indicator of the ease with which the filter layer deposited on the surface of the filter cloth can be removed and the ease of discharge from storage facilities such as silos. The smaller one is preferable. It can be seen that the acidic component removers of Examples 3 to 8 show excellent results in all evaluation items.
  • the comparative example 12 is the same composition as Example 13 in patent document 4, the value of a residual pressure loss differs. This is because, in Patent Document 4, the apparatus conforms to German standards, whereas in this specification, measurement is performed using an apparatus conforming to JIS standards.
  • the acidic component remover obtained in Example 4 was temporarily stored in a silo provided with an aeration nozzle (M-Technique, Fluidizer) as a powder fluidization measure, and discharged with a table feeder.
  • aeration nozzle M-Technique, Fluidizer
  • the acidic component removing agent was stably discharged from the silo, and hydrogen chloride was stably removed.
  • stable operation was obtained without any problems with the bug filter.
  • Acidic component remover obtained by the production method of the present invention includes hydrogen chloride, sulfur dioxide, etc. in exhaust gas from refuse incinerators, sulfur dioxide, sulfur trioxide, sulfuric acid, etc. in exhaust gas from boilers, etc .; It is useful for removing acidic components in various gases.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-208383 filed on September 16, 2010 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Provided is a production method for an acidic component remover that suppresses the increase in pressure loss in a filter cloth of bag filter and the leakage of acidic component remover from the filter cloth, is less likely to cause emission trouble from a silo, is excellent in handling property, and can sufficiently suppress the omission of the filtration layer accumulated on the surface of the filter cloth. A method for producing powders of an acidic component remover, comprising: mixing powders of sodium bicarbonate (A) having a mean particle size of 50 μm or more, powders of hydrophobic fumed silica (B), and powders of colloidal calcium carbonate (C) having a mean particle size of 50 nm or less in the primary particles; and pulverizing the resultant mixture, wherein the mean particle size of the obtained acidic component remover is 3 to 20 μm, the proportion of the hydrophobic fumed silica (B) in the acidic component remover is 0.2 to 0.5 wt%, and the proportion of the colloidal calcium carbonate (C) in the acidic component remover is 1.5 to 2.5 wt%.

Description

酸性成分除去剤の製造方法および気体中の酸性成分除去方法Method for producing acidic component remover and method for removing acidic component in gas
 本発明は、気体中の酸性成分を除去する酸性成分除去剤の製造方法および該製造方法で得られた酸性成分除去剤を用いた気体中の酸性成分除去方法に関する。 The present invention relates to a method for producing an acidic component remover that removes acidic components in a gas, and a method for removing an acidic component in a gas using the acidic component remover obtained by the production method.
 一般廃棄物、産業廃棄物等の焼却処理に伴って発生する排ガス中には、塩化水素、硫黄酸化物等の酸性成分が含まれている。酸性成分を除去する装置としては、酸性成分除去剤を用いた除去装置が知られている。 排 ガ ス Acidic components such as hydrogen chloride and sulfur oxides are contained in the exhaust gas generated by incineration of general waste and industrial waste. As an apparatus for removing an acidic component, a removing apparatus using an acidic component remover is known.
 図1は、排ガス中の酸性成分の除去装置の一例を示す構成図である。除去装置は、粉体状の酸性成分除去剤Mを貯留するサイロ(貯留設備)1と、酸性成分を含んだ排ガスが流通する排ガス流路2(煙道)と、酸性成分除去剤をサイロ1から排ガス中に供給する供給管3と、排ガス流路2の下流側に配置されたバグフィルタ4とから概略構成される。 FIG. 1 is a block diagram showing an example of an apparatus for removing acidic components in exhaust gas. The removal device includes a silo (storage facility) 1 for storing a powdery acidic component remover M, an exhaust gas passage 2 (flue) through which exhaust gas containing acidic components flows, and an acidic component remover for silo 1. Is constituted roughly by a supply pipe 3 for supplying the exhaust gas into the exhaust gas and a bag filter 4 arranged on the downstream side of the exhaust gas passage 2.
 サイロ1の排出部1aには、ロータリーバルブ、テーブルフィーダ等の粉体定量供給装置5が備えられている。粉体定量供給装置5を作動させることによって、酸性成分除去剤Mを供給管3の開口部3aに落下させる。
 排ガス流路2の上流側には、一般廃棄物、産業廃棄物等の焼却炉(図示略)が設置されている。排ガス流路2には、焼却炉からの塩化水素、窒素酸化物、硫黄酸化物等の酸性成分を含んだ排ガスが流通している。
 供給管3は、上流側から流通させた空気流等の気体流によって、開口部3aから供給された酸性成分除去剤Mを下流側に送出するものである。供給管3の下流側末端は、排ガス流路2内に配置されている。供給管3の下流側末端には、酸性成分除去剤Mを排ガス中に噴出させる噴出器3bが取り付けられている。
The discharge unit 1a of the silo 1 is provided with a powder quantitative supply device 5 such as a rotary valve or a table feeder. By operating the powder quantitative supply device 5, the acidic component removing agent M is dropped into the opening 3 a of the supply pipe 3.
An incinerator (not shown) for general waste, industrial waste, etc. is installed on the upstream side of the exhaust gas passage 2. In the exhaust gas flow path 2, exhaust gas containing acidic components such as hydrogen chloride, nitrogen oxide, and sulfur oxide from the incinerator circulates.
The supply pipe 3 delivers the acidic component removing agent M supplied from the opening 3a to the downstream side by a gas flow such as an air flow circulated from the upstream side. The downstream end of the supply pipe 3 is disposed in the exhaust gas flow path 2. At the downstream end of the supply pipe 3, an ejector 3b for ejecting the acidic component removing agent M into the exhaust gas is attached.
 バグフィルタ4は、ハウジング41と、ハウジング41の下部41aに設けられた排ガス用の導入口42と、ハウジング41の中央部41bに配置された複数の筒状の濾布43と、ハウジング41の上部41cに設けられた排気口44とから概略構成される。
 濾布43は、下端が閉じられて内部が中空部43aとされている。
 ハウジング41の上部41cと中央部41bとが仕切り板45によって仕切られており、ハウジング41の中央部41bから上部41cに排ガスが移動する際に排ガスが濾布43を必ず通過するように構成されている。
 仕切り板45には、貫通部45aが設けられ、該貫通部45aには、濾布43の中空部43aとハウジング41の上部41cとを連通させる連通管46が取り付けられている。
The bag filter 4 includes a housing 41, an exhaust gas inlet 42 provided in a lower portion 41 a of the housing 41, a plurality of tubular filter cloths 43 disposed in a central portion 41 b of the housing 41, and an upper portion of the housing 41. And an exhaust port 44 provided in 41c.
The filter cloth 43 has a lower end closed and a hollow portion 43a inside.
The upper part 41c and the central part 41b of the housing 41 are partitioned by a partition plate 45, and the exhaust gas always passes through the filter cloth 43 when the exhaust gas moves from the central part 41b of the housing 41 to the upper part 41c. Yes.
The partition plate 45 is provided with a penetrating portion 45a, and a communicating tube 46 for connecting the hollow portion 43a of the filter cloth 43 and the upper portion 41c of the housing 41 is attached to the penetrating portion 45a.
 つぎに、排ガス中の酸性成分の除去装置の動作について説明する。
 粉体定量供給装置5を作動させて、サイロ1中の酸性成分除去剤Mを供給管3に供給する。供給管3に供給された酸性成分除去剤Mは、気体流に担持されて下流末端に送られ、噴出器3bから排ガス流路2の排ガス中に噴出される。
 噴出された酸性成分除去剤Mは、一部が排ガス中の酸性成分と反応して反応生成物となる。そして、反応生成物と未反応の酸性成分除去剤Mとが、排ガスとともにバグフィルタ4に送られる。
 バグフィルタ4においては、反応生成物と未反応の酸性成分除去剤Mとが濾布43の表面に堆積して濾過層を形成し、該濾過層によって排ガス中の酸性成分がさらに除去される。
 酸性成分が除去された排ガスは、濾布43を通過し、連通管46を介して排出口44から排出される。
Next, the operation of the apparatus for removing acidic components in the exhaust gas will be described.
The powder quantitative supply device 5 is operated to supply the acidic component removing agent M in the silo 1 to the supply pipe 3. The acidic component removing agent M supplied to the supply pipe 3 is carried in the gas flow, sent to the downstream end, and ejected from the ejector 3b into the exhaust gas in the exhaust gas flow path 2.
A part of the ejected acidic component removing agent M reacts with the acidic component in the exhaust gas to become a reaction product. Then, the reaction product and the unreacted acidic component removing agent M are sent to the bag filter 4 together with the exhaust gas.
In the bag filter 4, the reaction product and the unreacted acidic component removing agent M are deposited on the surface of the filter cloth 43 to form a filtration layer, and the acidic component in the exhaust gas is further removed by the filtration layer.
The exhaust gas from which the acidic component has been removed passes through the filter cloth 43 and is discharged from the discharge port 44 through the communication pipe 46.
 排ガス中の酸性成分の除去装置において用いられる酸性成分除去剤としては、従前は消石灰が用いられてきたが、近年はたとえば、下記のものが提案されている。
 (1)炭酸水素ナトリウムを主成分とし、平均粒子径が50μm以下、好ましくは10~30μmの酸性成分除去剤(特許文献1)。
As an acidic component remover used in an apparatus for removing acidic components in exhaust gas, slaked lime has been used in the past, but in recent years, for example, the following has been proposed.
(1) An acidic component remover containing sodium hydrogen carbonate as a main component and having an average particle size of 50 μm or less, preferably 10 to 30 μm (Patent Document 1).
 排ガス中の酸性成分を効率よく除去するためには、酸性成分除去剤の平均粒子径をできるだけ小さくする必要がある。しかし、平均粒子径が30μm以下の酸性成分除去剤は、流動性が悪かったり、粒子同士の付着性が大きくなって固結しやすくなったりするため、安定した取り扱いに困難を伴うおそれがあり、その結果、酸性成分の除去効率が悪化するおそれがある。 In order to efficiently remove the acidic component in the exhaust gas, it is necessary to make the average particle size of the acidic component remover as small as possible. However, the acidic component remover having an average particle size of 30 μm or less has poor fluidity, or the adhesion between particles becomes large and tends to solidify, which may cause difficulty in stable handling. As a result, there is a possibility that the removal efficiency of the acidic component is deteriorated.
 すなわち、酸性成分除去剤の流動性が悪化するとともに粒子同士の付着性が大きくなると、酸性成分除去剤自体が凝集しやすくなり、たとえば、図2に示すように、サイロ1中においてラットホール現象が発生したり、図3に示すように、サイロ1中においてブリッジ現象が発生したりする。その結果、酸性成分除去剤の供給が滞り、除去装置における酸性成分の除去効率が大幅に低下するおそれがある。 That is, when the fluidity of the acidic component remover deteriorates and the adhesion between particles increases, the acidic component remover itself easily aggregates. For example, as shown in FIG. Or a bridge phenomenon occurs in the silo 1 as shown in FIG. As a result, the supply of the acidic component removing agent stagnate, and there is a risk that the acidic component removal efficiency in the removal device will be significantly reduced.
 流動性が改善された酸性成分除去剤としては、下記のものが提案されている。
 (2)炭酸水素ナトリウムに固結防止剤としてヒュームドシリカを添加した酸性成分除去剤(特許文献2)。
 (3)炭酸水素ナトリウムに塊状化禁止剤としての炭酸マグネシウムを含むマグネシウム化合物を添加した酸性成分除去剤(特許文献3)。
The following are proposed as acidic component removers with improved fluidity.
(2) An acidic component removing agent obtained by adding fumed silica as an anti-caking agent to sodium hydrogen carbonate (Patent Document 2).
(3) An acidic component remover obtained by adding a magnesium compound containing magnesium carbonate as an agglomeration inhibitor to sodium hydrogen carbonate (Patent Document 3).
 しかし、酸性成分除去剤の流動性が極端に向上すると、バグフィルタの濾布を構成する繊維の隙間に酸性成分除去剤の粒子が侵入しやすくなり、下記の問題が発生するおそれがある。
 (i)濾布における圧力損失が上昇し、バグフィルタの入口と出口との排ガスの圧力差(以下、差圧と記す。)が増大して、排ガスの流通量が大幅に低下する。
 (ii)濾布の差圧を復旧させようと、排ガスの流れの逆方向から圧縮空気を逆に流して濾布の表面および濾布の繊維の隙間の酸性成分除去剤の粒子の払い落し(逆洗)を実施しても差圧が増したまま復旧しない。
 (iii)酸性成分除去剤の粒子が濾布を通過し、排ガス中の煤塵として観測される。
 (iv)濾布の表面に堆積した濾過層が、濾布から過度に剥がれ落ちやすくなる。
However, when the fluidity of the acidic component remover is extremely improved, the acidic component remover particles easily enter the gaps between the fibers constituting the filter cloth of the bag filter, which may cause the following problems.
(I) The pressure loss in the filter cloth increases, the pressure difference of the exhaust gas between the inlet and the outlet of the bag filter (hereinafter referred to as differential pressure) increases, and the circulation amount of the exhaust gas decreases significantly.
(Ii) In order to restore the differential pressure of the filter cloth, the compressed air is flowed in the reverse direction of the flow of the exhaust gas, and the acid component remover particles are removed from the surface of the filter cloth and the fiber gap of the filter cloth ( Even if backwashing is performed, the pressure differential does not increase and does not recover.
(Iii) Particles of the acidic component removing agent pass through the filter cloth and are observed as dust in the exhaust gas.
(Iv) The filtration layer deposited on the surface of the filter cloth is easily peeled off from the filter cloth.
 (i)~(iv)の問題のいずれも、除去装置における酸性成分の除去効率の低下につながるおそれがある。
 そこで、バグフィルタの濾布における圧力損失の上昇、濾布からの酸性成分除去剤の漏れ、および濾布の表面に堆積した濾過層の脱落を抑制する酸性成分除去剤として、下記のものが提案されている。
 (4)炭酸水素ナトリウムと、アルカリ土類金属の炭酸塩と、ヒュームドシリカとを含み、アルカリ土類金属の炭酸塩の割合が1~5質量%であり、ヒュームドシリカの割合が0.5~2.0質量%であり、平均粒子径が3~20μmである酸性成分除去剤(特許文献4)。
Any of the problems (i) to (iv) may lead to a reduction in the removal efficiency of acidic components in the removal apparatus.
Therefore, the following is proposed as an acidic component remover that suppresses the increase in pressure loss in the filter cloth of the bag filter, leakage of the acidic component remover from the filter cloth, and dropping of the filter layer deposited on the surface of the filter cloth. Has been.
(4) It contains sodium hydrogen carbonate, alkaline earth metal carbonate and fumed silica, the alkaline earth metal carbonate ratio is 1 to 5% by mass, and the fumed silica ratio is 0.00. An acidic component remover having an average particle diameter of 5 to 2.0% by mass and an average particle size of 3 to 20 μm (Patent Document 4).
特表平09-050765号公報JP 09-050765 Gazette 特開2000-218128号公報JP 2000-218128 A 特表2002-500553号公報Special table 2002-500553 gazette 特開2008-068251号公報JP 2008-068251 A
 (4)の酸性成分除去剤においては、濾過層の脱落のしやすさやサイロからの排出のしやすさの指標となる引っ張り破断力が、炭酸カルシウムよりも炭酸マグネシウムの方がはるかに小さい(特許文献4の表3)。また、疎水性ヒュームドシリカよりも親水性ヒュームドシリカの方が小さくなる傾向にある(特許文献4の段落[0022]および表3)。
 そのため、実際の現場では、アルカリ土類金属の炭酸塩としては、炭酸マグネシウムが好適に用いられ、ヒュームドシリカとしては、親水性ヒュームドシリカが好適に用いられている。しかし、炭酸水素ナトリウムに炭酸マグネシウムおよび親水性ヒュームドシリカを添加した酸性成分除去剤であっても、酸性成分除去剤を一旦貯留させるサイロから排ガスへの供給が不安定となったり、濾過層の脱落を充分に抑制することはできず、さらなる改善が求められている。
In the acidic component removing agent (4), the tensile breaking force, which is an index of the ease of dropping off the filtration layer and the ease of discharging from the silo, is much smaller in magnesium carbonate than in calcium carbonate (patent Table 3 in Literature 4. Further, hydrophilic fumed silica tends to be smaller than hydrophobic fumed silica (paragraph [0022] and Table 3 of Patent Document 4).
Therefore, in an actual site, magnesium carbonate is suitably used as the alkaline earth metal carbonate, and hydrophilic fumed silica is suitably used as the fumed silica. However, even in the case of an acidic component remover obtained by adding magnesium carbonate and hydrophilic fumed silica to sodium hydrogen carbonate, the supply from the silo that temporarily stores the acidic component remover to the exhaust gas becomes unstable, The drop-off cannot be sufficiently suppressed, and further improvement is demanded.
 本発明は、バグフィルタの濾布における圧力損失の上昇および濾布からの酸性成分除去剤の漏れを抑制し、また、サイロからの排出トラブルが発生しにくく、取り扱い性に優れるとともに、濾布の表面に堆積した濾過層の脱落を充分に抑制できる酸性成分除去剤の製造方法および該製造方法で得られた酸性成分除去剤を用いた気体中の酸性成分除去方法を提供する。すなわち、濾布に与える影響に関する課題と、サイロからの排ガスへの供給の安定性に関する課題の双方の両立する新しい酸性成分除去剤を、粉体層の付着力、壁面摩擦力、ホッパー傾斜角、出口径、破断応力、残留圧損、洩れ濃度の各要素に着目して提供する。 The present invention suppresses an increase in pressure loss in the filter cloth of the bag filter and leakage of the acidic component remover from the filter cloth, and is less likely to cause a discharge trouble from the silo, has excellent handleability, and Provided is a method for producing an acidic component remover that can sufficiently suppress the filtration layer deposited on the surface, and a method for removing an acidic component in a gas using the acidic component remover obtained by the production method. That is, a new acidic component remover that is compatible with both problems related to the influence on the filter cloth and problems related to the stability of supply to the exhaust gas from the silo, the adhesion force of the powder layer, the wall friction force, the hopper inclination angle, Provided paying attention to each element of outlet diameter, breaking stress, residual pressure loss, and leakage concentration.
 本発明の酸性成分除去剤の製造方法は、平均粒子径が50μm以上の炭酸水素ナトリウム(A)の粉体と、疎水性ヒュームドシリカ(B)の粉体と、1次粒子の平均粒子径が50nm以下の膠質炭酸カルシウム(C)の粉体とを混合し粉砕して酸性成分除去剤の粉体を製造する方法であり、得られる酸性成分除去剤の平均粒子径を3~20μm、酸性成分除去剤中の前記疎水性ヒュームドシリカ(B)の含有割合を0.2~0.5質量%、および、酸性成分除去剤中の前記膠質炭酸カルシウム(C)の含有割合を1.5~2.5質量%、とすることを特徴とする。 The method for producing an acidic component remover of the present invention comprises a sodium bicarbonate (A) powder having an average particle diameter of 50 μm or more, a hydrophobic fumed silica (B) powder, and an average particle diameter of primary particles. Is a method of producing a powder of acidic component remover by mixing and pulverizing powder of colloidal calcium carbonate (C) having a particle size of 50 nm or less. The resulting acidic component remover has an average particle size of 3 to 20 μm, acidic The content ratio of the hydrophobic fumed silica (B) in the component remover is 0.2 to 0.5% by mass, and the content ratio of the colloidal calcium carbonate (C) in the acidic component remover is 1.5. It is characterized by being -2.5 mass%.
 粉砕前の前記炭酸水素ナトリウム(A)の平均粒子径は50~300μmであることが好ましい。また、前記疎水性ヒュームドシリカ(B)の1次粒子の平均粒子径は5~50nmであることが好ましい。さらに、前記膠質炭酸カルシウム(C)のBET比表面積は30m/g以上であることが好ましく、また、前記膠質炭酸カルシウム(C)の煮亜麻仁油吸油量は50mL/100g以上であることが好ましい。 The average particle size of the sodium hydrogencarbonate (A) before pulverization is preferably 50 to 300 μm. The average particle diameter of the primary particles of the hydrophobic fumed silica (B) is preferably 5 to 50 nm. Further, the BET specific surface area of the colloidal calcium carbonate (C) is preferably 30 m 2 / g or more, and the boiled linseed oil absorption amount of the colloidal calcium carbonate (C) is preferably 50 mL / 100 g or more. .
 また、分級手段を備えた粉砕手段で粉砕するとともに粉砕物を分級して前記平均粒径の酸性成分除去剤を得ることが好ましく、その場合前記分級手段により分級された粉砕物のうち前記平均粒径を越える粉体を前記粉砕手段に戻すことがより好ましい。
 また、粉砕は、衝撃式粉砕機およびジェットミルから選ばれた粉砕手段により粉砕することが好ましい。
In addition, it is preferable to obtain an acidic component remover having the average particle diameter by pulverizing with a pulverizing means equipped with a classifying means and classifying the pulverized product. More preferably, the powder exceeding the diameter is returned to the pulverizing means.
The pulverization is preferably performed by a pulverizing means selected from an impact pulverizer and a jet mill.
 本発明は、また、前記本発明の製造方法で得られた酸性成分除去剤を、貯留設備に一旦貯留した後に、酸性成分を含む気体中に供給する、気体中の酸性成分除去方法である。その場合、酸性成分除去剤を貯留設備から排出させて気体流に担持させ、酸性成分除去剤を担持した気体流を酸性成分を含む気体中に供給することが好ましい。 The present invention is also a method for removing an acidic component in a gas, wherein the acidic component removing agent obtained by the production method of the present invention is temporarily stored in a storage facility and then supplied into a gas containing an acidic component. In that case, it is preferable that the acidic component removing agent is discharged from the storage facility and supported on the gas flow, and the gas flow carrying the acidic component removing agent is supplied into the gas containing the acidic component.
 本発明の製造方法で得られた酸性成分除去剤およびこれを用いた気体中の酸性成分除去方法によれば、バグフィルタの濾布における圧力損失の上昇および濾布からの酸性成分除去剤の漏れを抑制し、また、サイロからの排出トラブルが発生しにくく、取り扱い性に優れるとともに、濾布の表面に堆積した濾過層の脱落を充分に抑制できる。 According to the acidic component removing agent obtained by the production method of the present invention and the acidic component removing method in gas using the same, an increase in pressure loss in the filter cloth of the bag filter and leakage of the acidic component removing agent from the filter cloth In addition, it is difficult to cause a trouble of discharging from the silo, the handleability is excellent, and the filtration layer deposited on the surface of the filter cloth can be sufficiently prevented from falling off.
排ガス中の酸性成分の除去装置の一例を示す構成図である。It is a block diagram which shows an example of the removal apparatus of the acidic component in waste gas. 図1の除去装置のサイロにおけるラットホール現象を説明する図である。It is a figure explaining the rat hole phenomenon in the silo of the removal apparatus of FIG. 図1の除去装置のサイロにおけるブリッジ現象を説明する図である。It is a figure explaining the bridge phenomenon in the silo of the removal apparatus of FIG. ホッパー傾斜角を説明する図である。It is a figure explaining a hopper inclination angle.
<酸性成分除去剤の製造方法>
 本発明の酸性成分除去剤の製造方法は、炭酸水素ナトリウム(A)の粉体と、疎水性ヒュームドシリカ(B)の粉体と、膠質炭酸カルシウム(C)の粉体とを混合し、粉砕して製造する。粉砕を行う期間の大部分においてこれら3種の粉体が共存していることが必要である。したがって、これら3種の粉体を混合してその混合物を粉砕機に供給するかまたはこれら3種の粉体をほぼ同時に粉砕機に供給して、粉砕を行うことが好ましい。なお、本明細書において混合前の各粉体を原料粉体という。
<Method for producing acidic component remover>
The method for producing an acidic component remover of the present invention comprises mixing sodium hydrogen carbonate (A) powder, hydrophobic fumed silica (B) powder, and colloidal calcium carbonate (C) powder, Manufacture by grinding. It is necessary that these three kinds of powders coexist for most of the period during which the pulverization is performed. Therefore, it is preferable to mix these three kinds of powders and supply the mixture to the pulverizer, or to supply these three kinds of powders to the pulverizer almost simultaneously to perform pulverization. In addition, in this specification, each powder before mixing is called raw material powder.
 本発明の酸性成分除去剤の製造方法としては、次の理由から、原料粉体を混合してその混合物を粉砕機に供給するかまたは各原料粉体をほぼ同時に粉砕機に供給し、得られる酸性成分除去剤の平均粒子径が3~20μmになるように粉砕する方法が好ましい。
 (i)混合物の粉砕の際に、粉体に強いせん断応力を加えることで、二次凝集しがちな疎水性ヒュームドシリカ(B)と1次粒子の平均粒子径が50nm以下である膠質炭酸カルシウム(C)を効率的に解砕し、粉砕された炭酸水素ナトリウム(A)の粒子の表面に疎水性ヒュームドシリカ(B)と1次粒子の平均粒子径が50nm以下である膠質炭酸カルシウム(C)を1~2次粒子の状態で均一にまぶすことができる。
 (ii)粉砕された炭酸水素ナトリウム(A)の粒子は、粒子径が小さいと粒子同士の付着力が大きくなるため、固結したり、粉体の流動性が悪くなり、扱いにくくなる。また、疎水性ヒュームドシリカ(B)は凝集性が強いため、炭酸水素ナトリウム(A)を3~20μmに粉砕した後にその炭酸水素ナトリウム(A)に疎水性ヒュームドシリカ(B)を均一に混合させるには困難が伴う。
The method for producing the acidic component removing agent of the present invention is obtained by mixing raw material powders and supplying the mixture to a pulverizer or supplying each raw material powder to the pulverizer almost simultaneously for the following reason. A method of pulverizing the acidic component removing agent so that the average particle size is 3 to 20 μm is preferable.
(I) Hydrophobic fumed silica (B), which tends to agglomerate secondary by applying a strong shear stress to the powder during pulverization of the mixture, and colloidal carbonate having an average primary particle size of 50 nm or less Colloidal calcium carbonate in which the average particle size of hydrophobic fumed silica (B) and primary particles is 50 nm or less on the surface of particles of sodium hydrogen carbonate (A) which is efficiently crushed calcium (C) (C) can be uniformly applied in the state of primary and secondary particles.
(Ii) When the particle size of the pulverized sodium hydrogencarbonate (A) is small, the adhesion between the particles increases, so that the particles are solidified and the fluidity of the powder is deteriorated, which makes it difficult to handle. In addition, since hydrophobic fumed silica (B) has strong cohesiveness, sodium bicarbonate (A) is pulverized to 3 to 20 μm, and then hydrophobic fumed silica (B) is uniformly dispersed in the sodium bicarbonate (A). Mixing is difficult.
 本発明の方法で得られた酸性成分除去剤は、約3~20μmの平均粒子径となるように粉砕された炭酸水素ナトリウム(A)の粒子の表面に疎水性ヒュームドシリカ(B)の微細粒子と膠質炭酸カルシウム(C)の微細粒子とが付着した構造を有する粒子からなると考えられる。粉砕においては、炭酸水素ナトリウム(A)の粉砕、疎水性ヒュームドシリカ(B)の二次粒子の一次粒子や微細な二次粒子への解砕、膠質炭酸カルシウム(C)の一次粒子や微細な二次粒子への解砕、並びに、粉砕された炭酸水素ナトリウム(A)粒子の表面への微細粒子(疎水性ヒュームドシリカ(B)および膠質炭酸カルシウム(C)の一次粒子や微細な二次粒子)の付着、等が生じることにより、酸性成分除去剤の粒子が生成すると考えられる。本発明における酸性成分除去剤は粉体であり、このような粒子の集合物からなると考えられる。 The acidic component removing agent obtained by the method of the present invention has fine particles of hydrophobic fumed silica (B) on the surface of sodium hydrogencarbonate (A) particles pulverized to have an average particle size of about 3 to 20 μm. It is considered to be composed of particles having a structure in which particles and fine particles of colloidal calcium carbonate (C) are attached. In pulverization, sodium bicarbonate (A) is pulverized, hydrophobic fumed silica (B) secondary particles are pulverized into primary particles and fine secondary particles, colloidal calcium carbonate (C) primary particles and fine particles Crushing into fine secondary particles, and fine particles (hydrophobic fumed silica (B) and colloidal calcium carbonate (C) primary particles and fine secondary particles on the surface of the pulverized sodium hydrogen carbonate (A) particles. It is considered that particles of the acidic component removing agent are generated by the adhesion of the secondary particles). The acidic component removing agent in the present invention is a powder and is considered to be composed of an aggregate of such particles.
 粉砕手段としては、衝撃式粉砕機(高速回転する羽根等による粉砕機)、ジェットミル(衝突気流による粉砕機)、ボールミル等が好ましい。風力式分級機を備えた衝撃式粉砕機を用いると、粉砕機から排出される粒子を分級して粗粒子は再度粉砕機に戻しながら、原料粉末の混合物を粉砕することによって、高い収率で目的の平均粒子径の酸性成分除去剤を得ることができる。また、より細かい粉砕粒子を得たい場合は、ジェットミルを用いることが好ましい。ジェットミルは、動力に要する費用が高くなるが、粉砕手段としては微粒子化に適しており、篩い分けによる粗粒子除去なしに、高い収率で目的の平均粒子径の酸性成分除去剤を得ることができる。 As the pulverizing means, an impact pulverizer (a pulverizer using high-speed rotating blades), a jet mill (a pulverizer using a collision airflow), a ball mill, or the like is preferable. By using an impact pulverizer equipped with a wind classifier, the particles discharged from the pulverizer are classified, and the coarse particles are returned to the pulverizer again, while pulverizing the mixture of raw material powders. An acidic component removing agent having a target average particle diameter can be obtained. Further, when it is desired to obtain finer pulverized particles, it is preferable to use a jet mill. Jet mills are expensive in terms of power, but are suitable for pulverization as a pulverizing means, and can remove acidic particles with the desired average particle size in high yield without removing coarse particles by sieving. Can do.
(炭酸水素ナトリウム(A))
 原料粉体としての炭酸水素ナトリウム(A)は、平均粒子径が50μm以上の粒子からなる粉体であり、通常、平均粒子径が90~300μmの粒子からなる粉体であることが好ましい。炭酸水素ナトリウムの粉体は工業的には通常晶析法で製造される。平均粒子径が50μm未満の原料粉体を晶析法により工業的に効率よく得ることは困難を伴い、かつそのような平均粒子径が小さい原料粉体は流れ性が悪く取扱いにくい。また、平均粒子径が大きすぎる原料粉体では粉砕に大きなエネルギーを要する。
 なお、ここでいう原料粉体である炭酸水素ナトリウム(A)の平均粒子径は、標準篩を用いた測定器(株式会社セイシン企業社製、自動乾式ふるい分け測定器ロボットシフターRPS-105)によって測定したものである。
(Sodium bicarbonate (A))
Sodium hydrogen carbonate (A) as a raw material powder is a powder composed of particles having an average particle diameter of 50 μm or more, and is usually preferably a powder composed of particles having an average particle diameter of 90 to 300 μm. Sodium hydrogen carbonate powder is usually produced industrially by a crystallization method. It is difficult to industrially efficiently obtain a raw material powder having an average particle size of less than 50 μm by crystallization, and such a raw material powder having a small average particle size has poor flowability and is difficult to handle. In addition, a raw material powder having an excessively large average particle size requires large energy for pulverization.
The average particle size of sodium bicarbonate (A), which is the raw material powder here, is measured with a measuring device using a standard sieve (manufactured by Seishin Enterprise Co., Ltd., automatic dry sieving measuring instrument robot shifter RPS-105). It is a thing.
(疎水性ヒュームドシリカ(B))
 原料粉体として使用する疎水性ヒュームドシリカ(B)は、ヒュームドシリカ(親水性ヒュームドシリカ)の表面に疎水化処理を施したものである。
 ヒュームドシリカとは、合成非晶質シリカのうち、乾式法により製造されるものである。具体的には燃焼法、自己燃焼法、加熱法により製造されるものが挙げられる。
(Hydrophobic fumed silica (B))
Hydrophobic fumed silica (B) used as a raw material powder is obtained by hydrophobizing the surface of fumed silica (hydrophilic fumed silica).
Fumed silica is a synthetic amorphous silica produced by a dry process. Specific examples include those produced by a combustion method, a self-combustion method, or a heating method.
 疎水化処理としては、ジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン等によるシラン処理、ビニルトリメトキシシラン等によるシランカップリング剤処理、ジメチルポリシロキサン処理、メチルハイドロジェンポリシロキサン処理、脂肪酸処理等が挙げられる。 Hydrophobing treatment includes silane treatment with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc., silane coupling agent treatment with vinyltrimethoxysilane, dimethylpolysiloxane treatment, methylhydrogenpolysiloxane treatment, fatty acid treatment, etc. Can be mentioned.
 疎水性ヒュームドシリカ(B)の疎水化度は、0.8%以上5%以下が好ましい。疎水化度が0.8%より少ないと、流動化の効果が充分には得られない。疎水化度が5%超では、疎水性ヒュームドシリカ(B)の凝集性が却って強くなり、同様に、充分な効果が得られない。また、疎水性ヒュームドシリカ(B)は、市販のものから任意に選び得る。
 疎水性ヒュームドシリカ(B)の疎水化度とは、ヒュームドシリカの表面に付着しているジメチルシラン等の疎水化処理剤の付着量の程度を示す指標であり、疎水性ヒュームドシリカ(B)の炭素含有率で表す。疎水性ヒュームドシリカ(B)の炭素含有率は、燃焼式の炭素量測定装置(SUMIGRAPH NC-80(株式会社住化分析センター)やEMIA-110(株式会社堀場製作所)など)によって測定される。
The hydrophobicity of the hydrophobic fumed silica (B) is preferably 0.8% or more and 5% or less. If the degree of hydrophobicity is less than 0.8%, the fluidization effect cannot be sufficiently obtained. When the degree of hydrophobicity exceeds 5%, the cohesiveness of the hydrophobic fumed silica (B) becomes strong on the contrary, and similarly, a sufficient effect cannot be obtained. Further, the hydrophobic fumed silica (B) can be arbitrarily selected from commercially available ones.
The degree of hydrophobicity of the hydrophobic fumed silica (B) is an index indicating the degree of adhesion of the hydrophobizing agent such as dimethylsilane adhering to the surface of the fumed silica. It is represented by the carbon content of B). The carbon content of the hydrophobic fumed silica (B) is measured by a combustion type carbon amount measuring device (such as SUMIGRAPH NC-80 (Sumitomo Chemical Analysis Center Co., Ltd.) or EMIA-110 (Horiba Seisakusho Co., Ltd.)). .
 酸性成分除去剤においては、疎水性ヒュームドシリカ(B)は、その多くが1次粒子の状態で炭酸水素ナトリウムの粒子の表面に均一に分散されていることが好ましい。疎水性ヒュームドシリカ(B)の多くが1次粒子の状態で分散していることで、疎水性ヒュームドシリカ(B)が2次粒子の状態で存在する場合に比べて、酸性成分除去剤の流動性をさらに適度なものとすることができ、凝集による塊状化を抑制できる。そのため、原料粉体として使用する疎水性ヒュームドシリカ(B)の1次粒子の平均粒子径は、5~50nmが好ましい。疎水性ヒュームドシリカ(B)の1次粒子の平均粒子径が5nm未満では、凝集性が強く、酸性成分除去剤中への分散が難しい。疎水性ヒュームドシリカ(B)の1次粒子の平均粒子径が50nmを超えると、所定の効果が得られない。ここでいう疎水性ヒュームドシリカ(B)の1次粒子とは、SEM(走査型電子顕微鏡)観察像の目視により判断される構成粒子の最小単位をいう。また、疎水性ヒュームドシリカ(B)の1次粒子の平均粒子径は、SEM(走査型電子顕微鏡)よって実測したものであり、具体的には100個の一次粒子についてその粒子径を計測し、計測値を算術平均したものである。 In the acidic component remover, it is preferable that most of the hydrophobic fumed silica (B) is uniformly dispersed on the surface of the sodium hydrogen carbonate particles in the form of primary particles. Since most of the hydrophobic fumed silica (B) is dispersed in the form of primary particles, the acidic component removing agent can be used as compared with the case where the hydrophobic fumed silica (B) is present in the form of secondary particles. The fluidity can be further moderated, and agglomeration due to aggregation can be suppressed. Therefore, the average particle diameter of the primary particles of hydrophobic fumed silica (B) used as the raw material powder is preferably 5 to 50 nm. When the average particle diameter of the primary particles of the hydrophobic fumed silica (B) is less than 5 nm, the cohesiveness is strong and it is difficult to disperse in the acidic component removing agent. When the average particle diameter of the primary particles of the hydrophobic fumed silica (B) exceeds 50 nm, a predetermined effect cannot be obtained. The primary particle | grains of hydrophobic fumed silica (B) here mean the minimum unit of the structure particle judged by visual observation of a SEM (scanning electron microscope) observation image. The average particle size of the primary particles of the hydrophobic fumed silica (B) is actually measured by SEM (scanning electron microscope). Specifically, the particle size of 100 primary particles is measured. , The arithmetic average of the measured values.
(膠質炭酸カルシウム(C))
 膠質炭酸カルシウム(C)とは、通常、1次粒子径が0.2μm以下の、いわゆるコロイダル炭酸カルシウムまたはコロイド炭酸カルシウムと呼ばれる沈降炭酸カルシウム(合成炭酸カルシウム)を指す。本発明においては、この膠質炭酸カルシウム(C)を原料粉体として使用する。
(Collate calcium carbonate (C))
Colloidal calcium carbonate (C) generally refers to precipitated calcium carbonate (synthetic calcium carbonate) called primary colloidal calcium carbonate or colloidal calcium carbonate having a primary particle size of 0.2 μm or less. In the present invention, this colloidal calcium carbonate (C) is used as a raw material powder.
 原料粉体として使用する膠質炭酸カルシウム(C)の1次粒子の平均粒子径は、50nm以下であり、30nm以下がより好ましい。ここでいう膠質炭酸カルシウム(C)の1次粒子とは、SEM(走査型電子顕微鏡)観察像の目視により判断される構成粒子の最小単位をいう。また、膠質炭酸カルシウム(C)の1次粒子の平均粒子径は、SEM(走査型電子顕微鏡)よって実測したものであり、具体的には100個の一次粒子についてその粒子径を計測し、計測値を算術平均したものである。 The average particle diameter of primary particles of colloidal calcium carbonate (C) used as the raw material powder is 50 nm or less, and more preferably 30 nm or less. The primary particle of colloidal calcium carbonate (C) here refers to the minimum unit of constituent particles determined by visual observation of an SEM (scanning electron microscope) observation image. The average particle diameter of primary particles of colloidal calcium carbonate (C) is actually measured by SEM (scanning electron microscope). Specifically, the particle diameter of 100 primary particles is measured and measured. The value is an arithmetic average.
 窒素吸着法での測定による膠質炭酸カルシウム(C)のBET比表面積は、30m/g以上が好ましく、40m/g以上がより好ましい。また、BET比表面積は85m/g以下が好ましい。
 膠質炭酸カルシウム(C)の煮亜麻仁油吸油量は、50mL/100g以上が好ましい。また煮亜麻仁油吸油量は100mL/100g以下が好ましい。ここでいう膠質炭酸カルシウム(C)の煮亜麻仁油吸油量は、JIS K 5101-13によって測定したものである。
The BET specific surface area of the colloidal calcium carbonate (C) measured by the nitrogen adsorption method is preferably 30 m 2 / g or more, and more preferably 40 m 2 / g or more. The BET specific surface area is preferably 85 m 2 / g or less.
The amount of boiled linseed oil absorbed by the colloidal calcium carbonate (C) is preferably 50 mL / 100 g or more. The amount of boiled linseed oil absorbed is preferably 100 mL / 100 g or less. The boiled linseed oil absorption amount of the colloidal calcium carbonate (C) here is measured according to JIS K 5101-13.
(割合)
 酸性成分除去剤中の各成分の割合(含有割合)は製造に使用した各原料粉体の混合割合にほぼ等しい。ただし、酸性成分除去剤の製造において酸性成分除去剤に取り込まれなかった成分がある場合には各原料粉体の混合割合と酸性成分除去剤中の各成分の含有割合は異なる場合がある。たとえば、所定の大きさにまで粉砕されずに酸性成分除去剤に取り込まれなかった炭酸水素ナトリウム(A)が生じる場合がある。酸性成分除去剤中の各成分の含有割合は、そのような酸性成分除去剤に取り込まれなかった成分の量を除くことにより、各原料粉体の混合割合から計算することができる。また、得られた酸性成分除去剤中の各成分の量を測定することにより、酸性成分除去剤中の各成分の含有割合を決めることもできる。
 酸性成分除去剤(100質量%)中の各成分の含有割合は、疎水性ヒュームドシリカ(B)が0.2~0.5質量%、膠質炭酸カルシウム(C)が1.5~2.5質量%である。少量の添加物がある場合を除き、残余は炭酸水素ナトリウム(A)である。本発明で見出した組み合わせにおいて、疎水性ヒュームドシリカ(B)の含有割合が0.2質量%以上であれば、サイロからの排出性が充分に向上し、0.5質量%以下であれば、濾布目詰まり等の問題も起こらない。膠質炭酸カルシウム(C)の含有割合が1.5質量%未満では、粉体層の破断応力が大きくなり充分な効果を得られない一方、2.5質量%を超える場合それ以上添加しても得られる効果は変わらない。
(Percentage)
The ratio (content ratio) of each component in the acidic component remover is substantially equal to the mixing ratio of each raw material powder used in the production. However, when there are components that have not been incorporated into the acidic component remover in the production of the acidic component remover, the mixing ratio of each raw material powder and the content ratio of each component in the acidic component remover may be different. For example, sodium hydrogen carbonate (A) that is not pulverized to a predetermined size and is not taken into the acidic component remover may be generated. The content ratio of each component in the acidic component remover can be calculated from the mixing ratio of each raw material powder by excluding the amount of the component that has not been incorporated into the acidic component remover. Moreover, the content rate of each component in an acidic component removal agent can also be determined by measuring the quantity of each component in the obtained acidic component removal agent.
The content of each component in the acidic component removing agent (100% by mass) is 0.2 to 0.5% by mass for hydrophobic fumed silica (B) and 1.5 to 2% for colloidal calcium carbonate (C). 5% by mass. The remainder is sodium bicarbonate (A), except where there is a small amount of additive. In the combination found in the present invention, if the content ratio of the hydrophobic fumed silica (B) is 0.2% by mass or more, the discharge from the silo is sufficiently improved, and if it is 0.5% by mass or less. No problems such as clogging of filter cloth occur. When the content ratio of the colloidal calcium carbonate (C) is less than 1.5% by mass, the rupture stress of the powder layer becomes large and a sufficient effect cannot be obtained. The effect obtained is not changed.
(酸性成分除去剤の平均粒子径)
 酸性成分除去剤の平均粒子径は、3~20μmであり、5~10μmが好ましい。酸性成分除去剤の平均粒子径が3μm以上であれば、疎水性ヒュームドシリカ(B)および膠質炭酸カルシウム(C)を併用することにより、充分な流動性が得られる。また、粒径が小さすぎて濾布を通過してしまう問題も回避できる。酸性成分除去剤の平均粒子径が20μm以下であれば、排ガス中の酸性成分を効率よく除去できる。
(Average particle size of acidic component remover)
The average particle size of the acidic component remover is 3 to 20 μm, preferably 5 to 10 μm. If the average particle size of the acidic component remover is 3 μm or more, sufficient fluidity can be obtained by using hydrophobic fumed silica (B) and colloidal calcium carbonate (C) in combination. Moreover, the problem that the particle diameter is too small to pass through the filter cloth can be avoided. If the average particle diameter of the acidic component remover is 20 μm or less, the acidic component in the exhaust gas can be efficiently removed.
 酸性成分除去剤の平均粒子径は、レーザ回折散乱式粒度分布測定装置(たとえば、日機装社製、マイクロトラックFRA9220)を用いて測定した体積基準における平均粒子径である。以下、単に平均粒子径という場合、エタノールを媒体として該方法にて測定した値をいうものとする。 The average particle diameter of the acidic component remover is an average particle diameter on a volume basis measured using a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrack FRA9220 manufactured by Nikkiso Co., Ltd.). Hereinafter, when the average particle diameter is simply referred to, it means a value measured by this method using ethanol as a medium.
(酸性成分除去剤の特性)
 酸性成分除去剤の粉体層の破断応力は、300mN以下が好ましく、250mN以下がより好ましい。酸性成分除去剤の粉体層の破断応力は、サイロ等の粉体を一旦貯留させる設備内部における粉体層の固結強度、崩れ易さの指標となる。すなわち、粉体層の破断応力が300mN以下であれば、濾布の表面に堆積した濾過層の脱落が生じにくく、また、濾布に対して逆流洗浄(逆洗)を施す際に、濾過層を濾布から容易に取り除くことができ、かつサイロでのラットホールやブリッジ形成の現象が発生しにくくなり、酸性成分除去剤を安定して供給することができる。粉体層の破断応力は小さい方が好ましいが、小さ過ぎると濾布の表面に濾過層を形成しにくくなり排ガス中の酸性成分を除去する機能が低下したり薬剤が無駄になるため、50mN以上であること好ましい。
 酸性成分除去剤の粉体層の破断応力は、吊り下げ式粉体層付着力測定装置(ホソカワミクロン社製、コヒテスタCT-2型)を用い、二分割セル法による計測によって求めることができる。
(Characteristics of acidic component remover)
The breaking stress of the powder layer of the acidic component remover is preferably 300 mN or less, and more preferably 250 mN or less. The breaking stress of the powder layer of the acidic component removing agent is an indicator of the consolidation strength of the powder layer inside the facility for temporarily storing a powder such as a silo and the ease of collapse. That is, if the breaking stress of the powder layer is 300 mN or less, the filtration layer deposited on the surface of the filter cloth is unlikely to fall off, and the filtration layer is subjected to backwashing (backwashing) on the filter cloth. Can be easily removed from the filter cloth, and the phenomenon of rat hole and bridge formation in the silo is less likely to occur, and the acidic component remover can be stably supplied. It is preferable that the breaking stress of the powder layer is small, but if it is too small, it is difficult to form a filtration layer on the surface of the filter cloth, and the function of removing acidic components in the exhaust gas is reduced or the chemical is wasted. Preferably it is.
The breaking stress of the powder layer of the acidic component removing agent can be obtained by measurement by a two-part cell method using a suspended powder layer adhesion measuring device (manufactured by Hosokawa Micron Corp., Kochi Tester CT-2 type).
 酸性成分除去剤を用いた際の濾布における残留圧損は、後述する濾布残留圧損試験の方法によって得られる数値が、150Pa以下となることが好ましく、125Pa以下となることがより好ましく、100Pa以下となることがさらに好ましい。濾布における残留圧損が150Pa以下であれば、バグフィルタの濾布を構成する繊維の隙間に酸性成分除去剤の粒子の侵入の度合が小さく、バグフィルタの長期の安定した運転が可能となる。ただし、残留圧損が小さ過ぎると、濾布表面での濾過層が形成されにくくなり排ガス中の酸性成分を除去する機能が低下したり薬剤が無駄になるため、50Pa以上であることが好ましい。 As for the residual pressure loss in the filter cloth when using the acidic component remover, the numerical value obtained by the filter cloth residual pressure loss test method described later is preferably 150 Pa or less, more preferably 125 Pa or less, and 100 Pa or less. More preferably, If the residual pressure loss in the filter cloth is 150 Pa or less, the degree of penetration of the acid component remover particles into the gaps between the fibers constituting the filter cloth of the bag filter is small, and the bag filter can be stably operated for a long time. However, if the residual pressure loss is too small, it is difficult to form a filtration layer on the surface of the filter cloth, and the function of removing acidic components in the exhaust gas is reduced or the chemical is wasted.
 濾布からの酸性成分除去剤の漏れ濃度は、15mg/Nm以下が好ましく、5mg/Nm以下がさらに好ましい。濾布からの酸性成分除去剤の漏れが無いことが最も好ましいが、漏れ濃度が15mg/Nm以下であれば、排出される煤塵による生活環境への負荷を低い水準に抑制できる。 Leakage concentration of the acidic component removal agent from the filter cloth is preferably from 15 mg / Nm 3 or less, 5 mg / Nm 3 or less is more preferable. Most preferably, there is no leakage of the acidic component remover from the filter cloth, but if the leakage concentration is 15 mg / Nm 3 or less, the burden on the living environment due to discharged dust can be suppressed to a low level.
 濾布における残留圧損および濾布からの酸性成分除去剤の漏れ濃度は、DIN(ドイツ規格協会の制定したドイツ連邦規格)に準拠した集塵性能試験装置(Filter MediaTester)や、2007年に制定されたJIS Z8909-1(集塵用濾布の試験方法)に準拠した装置による計測によって求めることができる。 Residual pressure drop in filter cloth and leakage concentration of acid component remover from filter cloth were established in 2007 in accordance with DIN (German Federal Standard established by German Standards Association) Dust Collection Performance Tester (Filter MediaTester) Further, it can be obtained by measurement with an apparatus conforming to JIS Z8909-1 (test method for dust collecting filter cloth).
(気体中の酸性成分除去方法)
 本発明の製造方法で得られた酸性成分除去剤により処理し得る酸性成分を含む気体としては、一般廃棄物(都市ゴミ)、産業廃棄物、医療廃棄物等の焼却炉等からの塩化水素、フッ化水素、硫黄酸化物(二酸化硫黄)等を含む排ガス;ボイラ等からの硫黄酸化物(二酸化硫黄、三酸化硫黄、硫酸)、窒素酸化物等を含む排ガス;各種製品の製造工程において不純物として酸性を示す物質が成分として混入しているガス等が挙げられる。
(Method for removing acidic components in gas)
Gas containing an acidic component that can be treated with the acidic component remover obtained by the production method of the present invention includes hydrogen chloride from incinerators such as general waste (city waste), industrial waste, and medical waste, Exhaust gas containing hydrogen fluoride, sulfur oxide (sulfur dioxide), etc .; Exhaust gas containing sulfur oxide (sulfur dioxide, sulfur trioxide, sulfuric acid), nitrogen oxides, etc. from boilers; As impurities in the manufacturing process of various products Examples thereof include a gas in which an acidic substance is mixed as a component.
 酸性成分を含む気体の温度は、酸の露点(酸の露点とは、酸性成分が、排ガス中の水分と結びついて液化する温度である。)より高いことが好ましい。ゴミの焼却炉の排ガス処理の場合、ダイオキシンの生成抑制の点からは低い温度が好ましく、具体的には100~200℃が好ましい。また、酸性成分除去の効率の観点と燃焼排ガスの熱を有効に利用するための熱回収効率の観点では150~250℃が好ましい。 The temperature of the gas containing the acidic component is preferably higher than the dew point of the acid (the acid dew point is a temperature at which the acidic component is liquefied in combination with moisture in the exhaust gas). In the case of waste gas treatment in a garbage incinerator, a low temperature is preferable from the viewpoint of suppressing the production of dioxins, specifically 100 to 200 ° C. is preferable. Moreover, 150 to 250 ° C. is preferable from the viewpoint of the efficiency of removing acidic components and the viewpoint of heat recovery efficiency for effectively using the heat of the combustion exhaust gas.
 本発明の製造方法で得られた酸性成分除去剤を用いて気体中の酸性成分を除去する方法としては、酸性成分を含む気体中に、本発明の製造方法で得られた酸性成分除去剤を一旦貯留させたサイロ等から排ガス中に供給し分散させて反応させた後、バグフィルタ等によって捕集する方法または、酸性成分除去剤を排ガス流にのせてバグフィルタの濾布表面担持させ、形成された濾過層を排ガスが通過する際に反応させる方法、またはこれらの併用が好ましい。通常一般には、効率のよい併用の手法が採用されている。 As a method of removing an acidic component in a gas using the acidic component remover obtained by the production method of the present invention, the acidic component remover obtained by the production method of the present invention is contained in a gas containing an acidic component. A method of collecting and reacting with a bag filter or the like after supplying and dispersing in a flue gas from a silo or the like once stored, or placing an acidic component remover on the flue gas flow to form a filter cloth on the bag filter A method of reacting when exhaust gas passes through the filtered layer, or a combination thereof, is preferable. In general, an efficient combination method is generally employed.
 サイロ等の酸性成分除去剤の貯留設備からの酸性成分除去剤の排出方法では、通常一般に使用される、ロータリーバルブやテーブルフィーダー等を問題なく使用できる。 In the method of discharging the acidic component remover from the storage facility for the acidic component remover such as silo, a commonly used rotary valve or table feeder can be used without any problem.
 気体中への酸性成分除去剤の分散手段としては、たとえば、図1に示すような、排ガス中の酸性成分の除去装置を用いればよい。該装置においては、バグフィルタの濾布の表面に酸性成分除去剤の濾過層が形成されるため、効率的に酸性成分を除去できる。 As the means for dispersing the acidic component removing agent in the gas, for example, an acidic component removing device in the exhaust gas as shown in FIG. 1 may be used. In this apparatus, since the filtration layer of the acidic component removing agent is formed on the surface of the filter cloth of the bag filter, the acidic component can be efficiently removed.
(作用効果)
 以上説明した本発明の製造方法で得られた酸性成分除去剤にあっては、疎水性ヒュームドシリカ(B)と膠質炭酸カルシウム(C)を含むため、酸性成分除去剤の流動性を適度なものとすることができ、凝集による塊状化を抑制できる。また、膠質炭酸カルシウム(C)を含むため、酸性成分除去剤を構成する粒子同士の固結を防止することができる。このように適度な流動性と固結防止能を兼ね備えているため、濾布における圧力損失の上昇を抑制するとともに濾布の表面に堆積した濾過層の過度の脱落を抑制できる。また、サイロからの排出トラブルを未然に抑制でき、排ガスへの供給不良や、排ガスに対する分散不良による排ガス中の酸性成分と酸性成分除去剤との反応性の低下を抑制できる。
(Function and effect)
The acidic component remover obtained by the production method of the present invention described above contains hydrophobic fumed silica (B) and colloidal calcium carbonate (C), so that the fluidity of the acidic component remover is moderate. And agglomeration due to aggregation can be suppressed. Moreover, since it contains colloidal calcium carbonate (C), solidification of particles constituting the acidic component remover can be prevented. Thus, since it has moderate fluidity | liquidity and anti-caking ability, the rise of the pressure loss in a filter cloth can be suppressed, and the excessive fall of the filtration layer deposited on the surface of the filter cloth can be suppressed. In addition, it is possible to suppress a discharge trouble from the silo, and it is possible to suppress a decrease in reactivity between the acidic component in the exhaust gas and the acidic component remover due to poor supply to the exhaust gas or poor dispersion with respect to the exhaust gas.
 特に、本発明の製造方法で得られた酸性成分除去剤にあっては、疎水性ヒュームドシリカ(B)と膠質炭酸カルシウム(C)とを組み合わせているため、従来の酸性成分除去剤(炭酸水素ナトリウムに炭酸マグネシウムおよび親水性ヒュームドシリカを添加した酸性成分除去剤、特許文献4)に比べ、付着力、壁面摩擦角、ホッパー傾斜角、出口径の評価すべてにおいて優れ、濾布における圧力損失の上昇を抑制するとともに、濾布の表面に堆積した濾過層の脱落を充分に抑制でき、また、サイロからの排出トラブルを未然に抑制できる。
 特許文献4においては、炭酸カルシウムよりは炭酸マグネシウム、疎水性ヒュームドシリカよりは親水性ヒュームドシリカが優れていると考えられていたが、本発明においては、疎水性ヒュームドシリカ(B)と1次粒子の平均粒子径が50nm以下である膠質炭酸カルシウム(C)との組み合わせが最も優れていることが判明した。
 これは、混合、粉砕の操作時に1次粒子の平均粒子径が50nm以下である膠質炭酸カルシウム(C)の吸油量が大きい、すなわち2次粒子内の空隙率が高いため、より1次粒子に解砕されやすいことによると考えられる。また、ヒュームドシリカは球形で滑りがよく、特に疎水性ヒュームドシリカ(B)の流動化剤としての効果が高いが、バグフィルターの目を詰まらせるなど、時に「効きすぎ」の傾向がみられるが、1次粒子の平均粒子径が50nm以下である膠質炭酸カルシウム(C)の1次粒子は、立方体や紡錘状等、異形であり、同様の現象は起きにくいため、最適な効果が得られた、と考えている。
In particular, in the acidic component removing agent obtained by the production method of the present invention, since hydrophobic fumed silica (B) and colloidal calcium carbonate (C) are combined, a conventional acidic component removing agent (carbonic acid) Compared to acidic component remover with magnesium carbonate and hydrophilic fumed silica added to sodium hydride, Patent Document 4), it is superior in all of the evaluation of adhesive force, wall friction angle, hopper inclination angle, outlet diameter, pressure loss in filter cloth , The dropout of the filtration layer deposited on the surface of the filter cloth can be sufficiently suppressed, and the discharge trouble from the silo can be suppressed in advance.
In Patent Document 4, it was considered that magnesium carbonate was superior to calcium carbonate and hydrophilic fumed silica was superior to hydrophobic fumed silica. However, in the present invention, hydrophobic fumed silica (B) and It turned out that the combination with the colloidal calcium carbonate (C) whose average particle diameter of a primary particle is 50 nm or less is the most excellent.
This is because the oil absorption amount of colloidal calcium carbonate (C) having an average primary particle size of 50 nm or less during mixing and pulverization operations is large, that is, the void ratio in the secondary particles is high, so that the primary particles are more This is thought to be due to being easily crushed. In addition, fumed silica is spherical and slippery, and is particularly effective as a fluidizing agent for hydrophobic fumed silica (B), but sometimes it tends to be “too effective”, such as clogging the eyes of a bag filter. However, primary particles of colloidal calcium carbonate (C) having an average primary particle diameter of 50 nm or less are irregular shapes such as cubes and spindles, and the same phenomenon is unlikely to occur. I think.
 以下に実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Examples are shown below, but the present invention is not limited to these examples.
(疎水性ヒュームドシリカの疎水化度)
 疎水性ヒュームドシリカの疎水化度は、燃焼式の炭素量測定装置(CNアナライザー(SUMIGRAPH NC-80))により測定した。具体的には、ヘリウム、酸素の順にガスを燃焼炉内に通流させ、燃焼炉内を800℃に昇温した後、石英セルに測定試料を20~30mg秤量して燃焼炉内へ入れ、炉内で1分間燃焼させた後、発生したガスをCNアナライザーにより測定し、試料中の炭素含有率を求め、それを疎水化度とした。
(Hydrophobic degree of hydrophobic fumed silica)
The degree of hydrophobicity of the hydrophobic fumed silica was measured with a combustion type carbon content measuring device (CN analyzer (SUMIGRAPH NC-80)). Specifically, helium and oxygen are passed through the combustion furnace in this order, the temperature in the combustion furnace is raised to 800 ° C., and 20 to 30 mg of a measurement sample is weighed into a quartz cell and placed in the combustion furnace. After burning in the furnace for 1 minute, the generated gas was measured with a CN analyzer to determine the carbon content in the sample, and this was used as the degree of hydrophobicity.
<せん断試験>
 リング状のせん断セル(ジェニケ・セル、内直径:64mm、ステンレス鋼SUS316製)を用いたせん断試験を実施し、酸性成分除去剤の付着力、壁面摩擦角、ホッパー傾斜角、出口径を下記のようにして求めた。
<Shear test>
A shear test using a ring-shaped shear cell (Genique cell, inner diameter: 64 mm, made of stainless steel SUS316) was performed, and the adhesion force, wall friction angle, hopper inclination angle, and outlet diameter of the acidic component remover were as follows. I asked for it.
(付着力)
 試験に用いる垂直荷重(W)およびせん断荷重(W1~W3)は、試験粉体のかさ比重にしたがい、表1のように決定した。酸性成分除去剤を詰めた下部固定型せん断セル上蓋に垂直荷重かけて予圧密を行い、同じ垂直荷重を加えたまま定常値になるまでせん断し、圧密を行った。この後、表1にしたがい、せん断荷重をかけながらせん断応力を測定し、プロットして破壊包絡線を得て、この破壊包絡線の切片から、酸性成分除去剤の付着力を求めた。
(Adhesive force)
The vertical load (W) and shear load (W1 to W3) used in the test were determined as shown in Table 1 according to the bulk specific gravity of the test powder. Pre-consolidation was performed by applying a vertical load to the upper lid of the lower fixed type shear cell packed with the acidic component removing agent, and the mixture was sheared to a steady value while the same vertical load was applied, followed by consolidation. Thereafter, according to Table 1, the shear stress was measured while applying a shear load, plotted to obtain a fracture envelope, and the adhesive force of the acidic component remover was determined from the intercept of the fracture envelope.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(壁面摩擦角)
 試験に用いる垂直荷重(W)およびせん断荷重(W1~W4)は、試験粉体のかさ比重にしたがい、表2のように決定した。酸性成分除去剤を詰めた底部材質がステンレス鋼SUS316となっているせん断セル上蓋に垂直荷重かけて予圧密を行い、この後、表2にしたがい、せん断荷重をかけながらせん断応力を測定し、プロットして壁破壊包絡線を得た。この壁破壊包絡線の傾きから、ステンレス鋼SUS316との壁面摩擦角を得た。
(Wall friction angle)
The vertical load (W) and shear load (W1 to W4) used in the test were determined as shown in Table 2 according to the bulk specific gravity of the test powder. Pre-consolidation by applying a vertical load to the top of a shearing cell made of stainless steel SUS316 and packed with an acidic component remover, and then measuring the shear stress while applying the shear load according to Table 2, and plotting The wall destruction envelope was obtained. The wall friction angle with the stainless steel SUS316 was obtained from the inclination of the wall fracture envelope.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(ホッパー傾斜角)
 測定値から算出された壁面摩擦角を用い、ff等高線より酸性成分除去剤のホッパー傾斜角を得た。
(Hopper inclination angle)
Using the wall friction angle calculated from the measured value, the hopper inclination angle of the acidic component removing agent was obtained from the ff contour.
(出口径)
 付着力試験の際の垂直荷重をレベル1とし、表3のレベル2~4についても同様の試験を行い、それぞれの破壊包絡線を得た。これらのプロットから各々のレベルの最大主応力と、非拘束破壊応力を読み取り、粉体の流動関数として直線FFを求めた。このFFと、壁面摩擦角とホッパー傾斜角による直線ffとの交点からfc(非拘束破壊応力)を求めた。さらに次式より出口径を得た。
 (出口径[cm])=fc×(出口関数)÷(使用粉体のかさ密度)
 ここでいう出口関数は、ホッパー傾斜角とホッパーの形状によって決定される関数を指す。
(Outlet diameter)
The vertical load in the adhesion test was set to level 1, and the same test was performed for levels 2 to 4 in Table 3 to obtain respective fracture envelopes. From these plots, the maximum principal stress and unconstrained fracture stress at each level were read, and a straight line FF was obtained as a flow function of the powder. Fc (unrestrained fracture stress) was obtained from the intersection of this FF and the straight line ff by the wall surface friction angle and the hopper inclination angle. Furthermore, the exit diameter was obtained from the following equation.
(Outlet diameter [cm]) = fc × (exit function) ÷ (bulk density of used powder)
The exit function here refers to a function determined by the hopper inclination angle and the shape of the hopper.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<破断応力試験>
 吊り下げ式粉体層付着力測定装置(ホソカワミクロン社製、コヒテスタCT-2型)を用いた破断応力試験を実施し、酸性成分除去剤の破断応力を下記のようにして求めた。
<Breaking stress test>
A breaking stress test was conducted using a suspended powder layer adhesion measuring device (manufactured by Hosokawa Micron Corporation, Kohitsta CT-2 type), and the breaking stress of the acidic component removing agent was determined as follows.
(破断応力)
 試料の約20gを、2つの円筒(内径:50mm、高さ:20mm)を底面で重ねてなる二分割セルに充填し、予圧密荷重:480Pa、温度:20℃、相対湿度:50%の環境下で2時間加圧し、粉体層を圧縮した。該セルの片方を1mm/分の速度で円筒の軸に直交する方向に引張り、円筒の底面部で粉体層にせん断応力を与え、粉体層の破断時の破断応力を測定した。
(Breaking stress)
About 20 g of the sample is filled into a two-part cell in which two cylinders (inner diameter: 50 mm, height: 20 mm) are stacked on the bottom, and the pre-consolidation load: 480 Pa, temperature: 20 ° C., relative humidity: 50%. Under pressure for 2 hours, the powder layer was compressed. One of the cells was pulled at a rate of 1 mm / min in a direction perpendicular to the axis of the cylinder, a shear stress was applied to the powder layer at the bottom of the cylinder, and the breaking stress at the time of breaking the powder layer was measured.
<濾布残留圧損試験>
 JIS Z8909-1(集塵用濾布の試験方法)に準拠した集塵性能試験装置を用い、残留圧損、漏れ濃度を下記のようにして求めた。
<Filter cloth residual pressure drop test>
Residual pressure loss and leakage concentration were determined in the following manner using a dust collection performance test apparatus based on JIS Z8909-1 (test method for dust collection filter cloth).
(残留圧損)
 テストフィルタとして、ガラス繊維二重織濾布(ユニチカ社製、WB992KR)を用い、濾過面積:0.0139m、濾過速度:2.0m/分、ダスト濃度:5.0g/m、パルス圧力:0.5MPa、パルスによるフィルタークリーニングの実行圧(=逆洗時のフィルターの差圧):1,000Pa、パルス作動時間:50ms、の条件にて集塵払い落としを15回行う運転を継続の後、運転を停止して、ダストの供給を停止し、10回のパルスジェットを実施し、その後に測定した圧力損失を残留圧損として採用した。
(Residual pressure loss)
A glass fiber double woven filter cloth (manufactured by Unitika Ltd., WB992KR) is used as a test filter, filtration area: 0.0139 m 2 , filtration speed: 2.0 m / min, dust concentration: 5.0 g / m 3 , pulse pressure : 0.5 MPa, filter cleaning execution pressure by pulse (= differential pressure of the filter during backwashing): 1,000 Pa, pulse operation time: 50 ms The operation was stopped, the dust supply was stopped, 10 pulse jets were performed, and the pressure loss measured thereafter was adopted as the residual pressure loss.
(漏れ濃度)
 さらに、濾布からの漏れ濃度は、テストフィルタの後段に設置したアブソリュートフィルタで捕捉した粉体量と、通過ガス量とから算出した。
(Leakage concentration)
Furthermore, the leak concentration from the filter cloth was calculated from the amount of powder captured by an absolute filter installed at the subsequent stage of the test filter and the amount of passing gas.
(原料粉体)
 (A1):高反応性消石灰(レーザ回折散乱式粒度分布測定装置による平均粒径:9μm、BET比表面積:45m/g)。
 (A2):炭酸水素ナトリウム(標準篩を用いた篩分け方による平均粒子径:95μm)。
 (B1):疎水性ヒュームドシリカ(SEMでの実測による1次粒子の平均粒子径:20nm、疎水化度:1%)。
 (B2):親水性ヒュームドシリカ(SEMでの実測による1次粒子の平均粒子径:20nm、疎水化度:0%)。
 (C1):塩基性炭酸マグネシウム(レーザ回折散乱式粒度分布測定装置による平均粒子径:7μm)。
 (C2):膠質炭酸カルシウム(1次粒子の平均粒子径:20nm、BET比表面積:49m/g、煮亜麻仁油吸油量:85mL/100g)。
 (C3):膠質炭酸カルシウム(1次粒子の平均粒子径:80nm、BET比表面積:18m/g、煮亜麻仁油吸油量:25mL/100g)。
(Raw material powder)
(A1): highly reactive slaked lime (average particle diameter by laser diffraction / scattering particle size distribution analyzer: 9 μm, BET specific surface area: 45 m 2 / g).
(A2): Sodium hydrogen carbonate (average particle diameter by a sieving method using a standard sieve: 95 μm).
(B1): Hydrophobic fumed silica (average particle diameter of primary particles measured by SEM: 20 nm, degree of hydrophobicity: 1%).
(B2): Hydrophilic fumed silica (average particle diameter of primary particles measured by SEM: 20 nm, degree of hydrophobicity: 0%).
(C1): Basic magnesium carbonate (average particle diameter by a laser diffraction / scattering particle size distribution analyzer: 7 μm).
(C2): Colloidal calcium carbonate (average particle diameter of primary particles: 20 nm, BET specific surface area: 49 m 2 / g, boiled linseed oil absorption: 85 mL / 100 g).
(C3): Colloidal calcium carbonate (average particle diameter of primary particles: 80 nm, BET specific surface area: 18 m 2 / g, boiled linseed oil absorption: 25 mL / 100 g).
比較例1~5、実施例1、2
(酸性成分除去剤の製造)
 酸性成分除去剤中の固結防止剤の割合が表4に示す割合となるように、炭酸水素ナトリウムの原料粉末と表4に示す固結防止剤の原料粉体とを混合した後、風力式分級機を備えた衝撃式粉砕機(ホソカワミクロン社製、ACMパルベライザーACM―10A型)を用い、粉砕機から排出される粉末を分級し、粗粒子は再度粉砕機に戻しながら粉砕することによって、平均粒子径:9μmの酸性成分除去剤を得て、高反応性消石灰と比較した。
 なお、酸性成分除去剤の平均粒子径は、レーザ回折散乱式粒度分布測定装置(日機装社製、マイクロトラックFRA9220)を用いて測定した体積基準における平均粒子径である。後述の比較例6~12、実施例3~8においても同じである。
Comparative Examples 1-5, Examples 1 and 2
(Production of acidic component remover)
After mixing the raw material powder of sodium bicarbonate and the raw material powder of the anti-caking agent shown in Table 4 so that the proportion of the anti-caking agent in the acidic component removing agent becomes the ratio shown in Table 4, the wind power type Using an impact pulverizer equipped with a classifier (Hosokawa Micron, ACM Pulverizer ACM-10A type), the powder discharged from the pulverizer is classified, and coarse particles are pulverized while returning to the pulverizer to obtain an average. An acidic component remover with a particle size of 9 μm was obtained and compared with highly reactive slaked lime.
In addition, the average particle diameter of an acidic component removal agent is an average particle diameter in the volume reference | standard measured using the laser diffraction scattering type particle size distribution measuring apparatus (The Nikkiso Co., Ltd. make, Microtrac FRA9220). The same applies to Comparative Examples 6 to 12 and Examples 3 to 8 described later.
(せん断試験)
 得られた酸性成分除去剤について前述のせん断試験を実施し、付着力、壁面摩擦角、ホッパー傾斜角、出口径を求めた。結果を表4に示す。表中の評価はそれぞれ、◎:優、○:良、△:可、×:不可であることを示す。
(Shear test)
The obtained acidic component remover was subjected to the shear test described above, and the adhesion force, wall friction angle, hopper inclination angle, and outlet diameter were determined. The results are shown in Table 4. The evaluations in the table indicate that ◎: excellent, ○: good, Δ: acceptable, and x: not possible.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 付着力は、酸性成分除去剤の粉体同士の相互付着力の指標であり、小さい方が好ましい。
 壁面摩擦角は、酸性成分除去剤と容器との相互付着力の指標であり、小さい方が好ましい。
 ホッパー傾斜角は、図4に説明される粉体のサイロからの安定した排出に必要とされるサイロ底面傾きの角度αであり、大きい方がより取扱やすい。
 出口径は、酸性成分除去剤のサイロからの安定した排出に必要とされるサイロ出口の口径であり、小さい方が好ましい。
 これまでは、従前より用いられてきた消石灰以上に、サイロ内の流動性が優れた酸性成分除去剤はなかなか得られなかったが、実施例1と、特に実施例2の酸性成分除去剤が、すべての評価項目において優れた結果を示していることがわかる。
Adhesive force is an index of mutual adhesive force between powders of the acidic component remover, and is preferably smaller.
The wall friction angle is an index of the mutual adhesive force between the acidic component removing agent and the container, and is preferably smaller.
The hopper inclination angle is an angle α of the silo bottom face inclination required for stable discharge of the powder from the silo described in FIG. 4, and a larger one is easier to handle.
The outlet diameter is the diameter of the silo outlet required for stable discharge of the acidic component remover from the silo, and is preferably smaller.
So far, more than the slaked lime that has been used so far, it has been difficult to obtain an acidic component remover with excellent fluidity in the silo, but the acidic component remover of Example 1 and in particular of Example 2, It can be seen that all the evaluation items show excellent results.
比較例6~12、実施例3~8
(酸性成分除去剤の製造)
 酸性成分除去剤中の固結防止剤の割合が表5に示す割合となるように、炭酸水素ナトリウムの原料粉体と表5に示す固結防止剤の原料粉体とを混合した後、風力式分級機を備えた衝撃式粉砕機(ホソカワミクロン社製、ACMパルベライザーACM―10A型)を用い、粉砕機から排出される粉末を分級し、粗粒子は再度粉砕機に戻しながら粉砕することによって、平均粒子径:9μmの酸性成分除去剤を得た。
Comparative Examples 6-12, Examples 3-8
(Production of acidic component remover)
After mixing the sodium hydrogen carbonate raw material powder and the anti-caking agent raw material powder shown in Table 5 so that the proportion of the anti-caking agent in the acidic component remover becomes the ratio shown in Table 5, wind power By using an impact pulverizer equipped with a type classifier (Hosokawa Micron, ACM Pulverizer ACM-10A type), the powder discharged from the pulverizer is classified, and coarse particles are pulverized while returning to the pulverizer again. An acidic component remover having an average particle size of 9 μm was obtained.
(破断応力試験、濾布残留圧損試験)
 得られた酸性成分除去剤について前述の破断応力試験、濾布残留圧損試験を実施し、破断応力、残留圧損、漏れ濃度を求めた。結果を表5に示す。
(Breaking stress test, filter cloth residual pressure loss test)
The above-mentioned acidic component removing agent was subjected to the above-described breaking stress test and filter cloth residual pressure loss test, and the breaking stress, residual pressure loss, and leakage concentration were determined. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 破断応力は、圧密時の粉体層の崩れやすさを反映するため、濾布の表面に堆積した濾過層の脱落しやすさおよびサイロなど貯留設備からの排出のしやすさを示す指標であり、小さい方が好ましい。
 実施例3~8の酸性成分除去剤が、すべての評価項目において優れた結果を示していることがわかる。
 なお、比較例12は特許文献4における実施例13と同じ配合であるが、残留圧損の値が違う。これは特許文献4においてはドイツ規格に準じた装置であったのに対し、本明細書においてはJIS規格に準じた装置で測定を行ったためである。
The breaking stress reflects the ease of collapse of the powder layer during compaction, and is an indicator of the ease with which the filter layer deposited on the surface of the filter cloth can be removed and the ease of discharge from storage facilities such as silos. The smaller one is preferable.
It can be seen that the acidic component removers of Examples 3 to 8 show excellent results in all evaluation items.
In addition, although the comparative example 12 is the same composition as Example 13 in patent document 4, the value of a residual pressure loss differs. This is because, in Patent Document 4, the apparatus conforms to German standards, whereas in this specification, measurement is performed using an apparatus conforming to JIS standards.
(貯留設備からの供給と酸性成分の除去)
 実施例4で得た酸性成分除去剤を、粉体流動化策としてのエアレーションノズル(エム・テクニック社製、フルイダイザー)を設置したサイロに一旦貯留し、テーブルフィーダーにて排出し、図1に示されるフローを流れる塩化水素を含む排ガス中へ供給を実施したところ、酸性成分除去剤は安定してサイロから排出され、塩化水素は安定して除去された。また、バグフィルタでの問題は一切発生せず安定した運転が得られた。
(Supply from storage facilities and removal of acidic components)
The acidic component remover obtained in Example 4 was temporarily stored in a silo provided with an aeration nozzle (M-Technique, Fluidizer) as a powder fluidization measure, and discharged with a table feeder. When supply was carried out into the exhaust gas containing hydrogen chloride flowing through the flow shown, the acidic component removing agent was stably discharged from the silo, and hydrogen chloride was stably removed. In addition, stable operation was obtained without any problems with the bug filter.
 本発明の製造方法で得られた酸性成分除去剤は、ゴミの焼却炉等からの排ガス中の塩化水素、二酸化硫黄等、ボイラ等からの排ガス中の二酸化硫黄、三酸化硫黄、硫酸等;その他、各種気体中の酸性成分の除去に有用である。
 なお、2010年9月16日に出願された日本特許出願2010-208383号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Acidic component remover obtained by the production method of the present invention includes hydrogen chloride, sulfur dioxide, etc. in exhaust gas from refuse incinerators, sulfur dioxide, sulfur trioxide, sulfuric acid, etc. in exhaust gas from boilers, etc .; It is useful for removing acidic components in various gases.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-208383 filed on September 16, 2010 are cited herein as disclosure of the specification of the present invention. Incorporated.
 1 サイロ(貯留設備)
 2 排ガス流路
 3 供給管
 4 バグフィルタ
 43 濾布
1 silo (storage equipment)
2 Exhaust gas flow path 3 Supply pipe 4 Bag filter 43 Filter cloth

Claims (10)

  1.  平均粒子径が50μm以上の炭酸水素ナトリウム(A)の粉体と、疎水性ヒュームドシリカ(B)の粉体と、1次粒子の平均粒子径が50nm以下の膠質炭酸カルシウム(C)の粉体とを混合し粉砕して酸性成分除去剤の粉体を製造する方法であり、得られる酸性成分除去剤の平均粒子径を3~20μm、酸性成分除去剤中の前記疎水性ヒュームドシリカ(B)の含有割合を0.2~0.5質量%、および、酸性成分除去剤中の前記膠質炭酸カルシウム(C)の含有割合を1.5~2.5質量%、とすることを特徴とする酸性成分除去剤の製造方法。 Sodium bicarbonate (A) powder having an average particle size of 50 μm or more, hydrophobic fumed silica (B) powder, and colloidal calcium carbonate (C) powder having an average primary particle size of 50 nm or less The powder is produced by mixing and pulverizing the body, and the average particle size of the obtained acidic component remover is 3 to 20 μm, and the hydrophobic fumed silica in the acidic component remover ( The content ratio of B) is 0.2 to 0.5 mass%, and the content ratio of the colloidal calcium carbonate (C) in the acidic component removing agent is 1.5 to 2.5 mass%. A method for producing an acidic component remover.
  2.  粉砕前の前記炭酸水素ナトリウム(A)の平均粒子径が50~300μmである、請求項1に記載の酸性成分除去剤の製造方法。 The method for producing an acidic component removing agent according to claim 1, wherein the average particle size of the sodium hydrogencarbonate (A) before pulverization is 50 to 300 µm.
  3.  前記疎水性ヒュームドシリカ(B)の1次粒子の平均粒子径が5~50nmである、請求項1または2に記載の酸性成分除去剤の製造方法。 The method for producing an acidic component removing agent according to claim 1 or 2, wherein an average particle size of primary particles of the hydrophobic fumed silica (B) is 5 to 50 nm.
  4.  前記膠質炭酸カルシウム(C)のBET比表面積が30m/g以上である、請求項1~3のいずれかに記載の酸性成分除去剤の製造方法。 The method for producing an acidic component removing agent according to any one of claims 1 to 3, wherein the colloidal calcium carbonate (C) has a BET specific surface area of 30 m 2 / g or more.
  5.  前記膠質炭酸カルシウム(C)の煮亜麻仁油吸油量が50mL/100g以上である、請求項1~4のいずれかに記載の酸性成分除去剤の製造方法。 The method for producing an acidic component remover according to any one of claims 1 to 4, wherein the amount of boiled linseed oil absorbed by the colloidal calcium carbonate (C) is 50 mL / 100 g or more.
  6.  分級手段を備えた粉砕手段で粉砕するとともに粉砕物を分級して前記平均粒径の酸性成分除去剤を得る、請求項1~6のいずれかに記載の酸性成分除去剤の製造方法。 The method for producing an acidic component removing agent according to any one of claims 1 to 6, wherein the acidic component removing agent having the average particle diameter is obtained by pulverizing with a pulverizing unit including a classifying unit and classifying the pulverized product.
  7.  前記分級手段により分級された粉砕物のうち前記平均粒径を越える粉体を前記粉砕手段に戻す、請求項6に記載の酸性成分除去剤の製造方法。 The method for producing an acidic component removing agent according to claim 6, wherein, in the pulverized product classified by the classifying means, the powder exceeding the average particle diameter is returned to the pulverizing means.
  8.  衝撃式粉砕機およびジェットミルから選ばれた粉砕手段により粉砕する、請求項1~7のいずれかに記載の酸性成分除去剤の製造方法。 The method for producing an acidic component remover according to any one of claims 1 to 7, wherein pulverization is performed by a pulverizing means selected from an impact pulverizer and a jet mill.
  9.  請求項1~8のいずれかに記載の製造方法で得られた酸性成分除去剤を、貯留設備に一旦貯留した後に、酸性成分を含む気体中に供給する、気体中の酸性成分除去方法。 A method for removing an acidic component in a gas, wherein the acidic component removing agent obtained by the production method according to any one of claims 1 to 8 is temporarily stored in a storage facility and then supplied into a gas containing an acidic component.
  10.  酸性成分除去剤を貯留設備から排出させて気体流に担持させ、酸性成分除去剤を担持した気体流を酸性成分を含む気体中に供給する、請求項9に記載の酸性成分除去方法。 The acidic component removing method according to claim 9, wherein the acidic component removing agent is discharged from the storage facility and supported in a gas flow, and the gas flow carrying the acidic component removing agent is supplied into a gas containing the acidic component.
PCT/JP2011/070172 2010-09-16 2011-09-05 Production method for acidic component remover, and method for removing acidic component in gas WO2012036012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533947A JP5799955B2 (en) 2010-09-16 2011-09-05 Method for producing acidic component remover and method for removing acidic component in gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-208383 2010-09-16
JP2010208383 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036012A1 true WO2012036012A1 (en) 2012-03-22

Family

ID=45831479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070172 WO2012036012A1 (en) 2010-09-16 2011-09-05 Production method for acidic component remover, and method for removing acidic component in gas

Country Status (3)

Country Link
JP (1) JP5799955B2 (en)
TW (1) TW201217269A (en)
WO (1) WO2012036012A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150274A (en) * 2015-02-16 2016-08-22 公立大学法人大阪府立大学 Exhaust gas treatment method and exhaust gas treatment apparatus
EP3027292A4 (en) * 2013-10-04 2016-10-12 Marsulex Environmental Tech Circulating dry scrubber system and method
JP2017094266A (en) * 2015-11-24 2017-06-01 栗田工業株式会社 Acidic gas treatment agent and acidic gas treatment method
WO2018012434A1 (en) * 2016-07-12 2018-01-18 旭硝子株式会社 Acid component-removing agent, method for producing same and acid component-removing method
CN111001291A (en) * 2019-12-19 2020-04-14 哈尔滨蔚蓝环保设备制造有限公司 Out-of-furnace sodium-based dry desulfurization device and method
CN111888925A (en) * 2020-08-03 2020-11-06 北京予知环保科技有限公司 Dry desulfurization assembly, desulfurization dust removal unit, integrated equipment and system
CN112495156A (en) * 2020-09-30 2021-03-16 山东大学 Process and system for reducing emission of sulfur trioxide and hydrogen chloride
CN114452791A (en) * 2021-12-29 2022-05-10 深圳华明环保科技有限公司 Deacidification method of gas containing sulfur dioxide
CN115445686A (en) * 2022-09-01 2022-12-09 青岛康禾园绿色食品有限公司 Meat nutrient composition check out test set

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043186B1 (en) * 2019-05-15 2019-11-12 한국화학연구원 Bead for removing inorganic acid and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218128A (en) * 1998-11-26 2000-08-08 Asahi Glass Co Ltd Acid component removing agent, its production, and acid component removing method
JP2002515890A (en) * 1996-10-28 2002-05-28 ザ、プロクター、エンド、ギャンブル、カンパニー Composition for reducing body odor and excess moisture
JP2005028294A (en) * 2003-07-04 2005-02-03 Kurita Water Ind Ltd Flue gas treatment method
JP2006289365A (en) * 2006-05-08 2006-10-26 Mitsui Eng & Shipbuild Co Ltd Sodium type desalting agent and waste treatment apparatus
JP2008068251A (en) * 2006-08-18 2008-03-27 Asahi Glass Co Ltd Acidic component removing agent and its producing method
JP2009018262A (en) * 2007-07-12 2009-01-29 Asahi Glass Co Ltd Acidic component removing agent and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840632B2 (en) * 2000-05-08 2006-11-01 三井造船株式会社 Sodium-based desalting agent and waste treatment equipment
JP5045224B2 (en) * 2006-08-18 2012-10-10 旭硝子株式会社 Acid component removing agent and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515890A (en) * 1996-10-28 2002-05-28 ザ、プロクター、エンド、ギャンブル、カンパニー Composition for reducing body odor and excess moisture
JP2000218128A (en) * 1998-11-26 2000-08-08 Asahi Glass Co Ltd Acid component removing agent, its production, and acid component removing method
JP2005028294A (en) * 2003-07-04 2005-02-03 Kurita Water Ind Ltd Flue gas treatment method
JP2006289365A (en) * 2006-05-08 2006-10-26 Mitsui Eng & Shipbuild Co Ltd Sodium type desalting agent and waste treatment apparatus
JP2008068251A (en) * 2006-08-18 2008-03-27 Asahi Glass Co Ltd Acidic component removing agent and its producing method
JP2009018262A (en) * 2007-07-12 2009-01-29 Asahi Glass Co Ltd Acidic component removing agent and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3027292A4 (en) * 2013-10-04 2016-10-12 Marsulex Environmental Tech Circulating dry scrubber system and method
JP2016150274A (en) * 2015-02-16 2016-08-22 公立大学法人大阪府立大学 Exhaust gas treatment method and exhaust gas treatment apparatus
JP2017094266A (en) * 2015-11-24 2017-06-01 栗田工業株式会社 Acidic gas treatment agent and acidic gas treatment method
WO2018012434A1 (en) * 2016-07-12 2018-01-18 旭硝子株式会社 Acid component-removing agent, method for producing same and acid component-removing method
CN111001291A (en) * 2019-12-19 2020-04-14 哈尔滨蔚蓝环保设备制造有限公司 Out-of-furnace sodium-based dry desulfurization device and method
CN111888925A (en) * 2020-08-03 2020-11-06 北京予知环保科技有限公司 Dry desulfurization assembly, desulfurization dust removal unit, integrated equipment and system
CN112495156A (en) * 2020-09-30 2021-03-16 山东大学 Process and system for reducing emission of sulfur trioxide and hydrogen chloride
CN114452791A (en) * 2021-12-29 2022-05-10 深圳华明环保科技有限公司 Deacidification method of gas containing sulfur dioxide
CN115445686A (en) * 2022-09-01 2022-12-09 青岛康禾园绿色食品有限公司 Meat nutrient composition check out test set

Also Published As

Publication number Publication date
TW201217269A (en) 2012-05-01
JPWO2012036012A1 (en) 2014-02-03
JP5799955B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5799955B2 (en) Method for producing acidic component remover and method for removing acidic component in gas
JP4259539B2 (en) Acid component removal agent and acid component removal method
JP5045226B2 (en) Acid component removing agent and method for producing the same
JP2011177711A (en) Method of treating gas
KR102397117B1 (en) Method for preparing highly porous fine powder slaked lime composition and product obtained therefrom
JP5400390B2 (en) Grinding method
JP5045225B2 (en) Acid component removing agent and method for producing the same
JP2006021204A (en) Exhaust gas treating agent and method and apparatus for treating exhaust gas by using the same
JP5045224B2 (en) Acid component removing agent and method for producing the same
JP4735600B2 (en) Acid component removing agent and method for producing the same
JP6927215B2 (en) Acid component remover, its manufacturing method and acid component removal method
JP2009018262A (en) Acidic component removing agent and method of manufacturing the same
JP3745765B2 (en) Exhaust gas treatment agent and exhaust gas treatment apparatus using the same
JP4194001B2 (en) Acid gas treatment agent and waste gas treatment method using the same
JP2003010633A (en) Gas treatment method
JP4918741B2 (en) Gas processing method
JP4462885B2 (en) High specific surface area slaked lime and method for producing the same
JP4157683B2 (en) Method for producing highly reactive slaked lime
JP4401639B2 (en) Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment apparatus
EP4299510A1 (en) Metal oxide powder, and method for producing same
JP4617934B2 (en) Reduction method of dioxins in fly ash of garbage incineration equipment
JP2001340727A (en) Method for treating gas
JPH05339002A (en) Powdery alkali metal azide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825018

Country of ref document: EP

Kind code of ref document: A1