JP2000204387A - Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus - Google Patents

Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus

Info

Publication number
JP2000204387A
JP2000204387A JP548999A JP548999A JP2000204387A JP 2000204387 A JP2000204387 A JP 2000204387A JP 548999 A JP548999 A JP 548999A JP 548999 A JP548999 A JP 548999A JP 2000204387 A JP2000204387 A JP 2000204387A
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
dynamic pressure
porous inorganic
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP548999A
Other languages
Japanese (ja)
Inventor
Tadao Iwaki
岩城  忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP548999A priority Critical patent/JP2000204387A/en
Publication of JP2000204387A publication Critical patent/JP2000204387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lubricating oil containing solid particles dispersed in high dispersibility and free from the problems of precipitation, deposition, etc., in a hydrodynamic pressure generating part of a hydrodynamic lubrication bearing without lowering the characteristics of a base oil by dispersing porous inorganic particles in a base oil. SOLUTION: The objective lubricating oil is produced by dispersing (A) porous inorganic particles in (B) a base oil. A mineral oil, a synthetic oil, etc., is used as the component B owing to the low volatility and small viscosity, surface tension and frictional coefficient and concrete examples of the oil are ester-type mineral oil, ether-type mineral oil, fluorine-based synthetic oil, etc. The component A acts as a friction decreasing agent in the lubricating oil and is preferably porous quartz bead, porous glass bead, etc. The difference between the apparent specific gravity of the component A and the specific gravity of the component B is preferably within ±20%, more preferably within ±5%, further preferably both specific gravity values are nearly equal to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固定された部材に対
し、高速で回転する部材を潤滑材料を介して保持する軸
受に用いられる潤滑油に関し、特に回転する部材を非接
触に保持する動圧軸受と、その動圧軸受を用いたスピン
ドルモータと、そのスピンドルモータを回転体の駆動原
として備えている回転装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lubricating oil used for a bearing for holding a member rotating at a high speed through a lubricating material to a fixed member, and more particularly to a dynamic pressure for holding a rotating member in a non-contact manner. The present invention relates to a bearing, a spindle motor using the dynamic pressure bearing, and a rotating device including the spindle motor as a driving source of a rotating body.

【0002】[0002]

【従来の技術】磁気ディスク装置、光ディスク装置又は
ポリゴンミラーを含むスキャナー等の回転体装置には、
磁気ディスク、光ディスク、ポリゴンミラー等の回転体
の駆動源として非接触軸受である動圧軸受を備えたスピ
ンドルモータが広く採用されている。動圧軸受は定格回
転中は非接触で回転することから、軸受に起因する回転
むらや振動がなく、しかも高速耐久性に優れるという特
徴を有する。
2. Description of the Related Art Rotating devices such as a magnetic disk device, an optical disk device, and a scanner including a polygon mirror include:
2. Description of the Related Art A spindle motor having a dynamic pressure bearing, which is a non-contact bearing, is widely used as a drive source of a rotating body such as a magnetic disk, an optical disk, and a polygon mirror. Since the dynamic pressure bearing rotates in a non-contact manner during the rated rotation, the dynamic pressure bearing does not have rotation unevenness or vibration caused by the bearing, and has excellent characteristics of high-speed durability.

【0003】動圧軸受は大別すると空気動圧軸受と液体
動圧軸受に分けられる。空気動圧軸受は、オイル等の潤
滑剤を使用しないため、オイルの汚れなどから磁気ディ
スク等の回転体の表面を清浄なままに保つことができ、
これら磁気ディスク等を回転させる回転体装置に広く用
いられている。しかしながら、空気動圧軸受は軸受剛性
が極めて低く、軸受の隙間が数ミクロン程度となるため
に、その製作が容易ではない。また低速度の回転域では
充分な空気動圧を得ることが困難である。これに対し
て、液体動圧軸受では、軸受剛性が高く、その製作も比
較的容易であり、特に数千回転程度の低速度で充分な動
圧を得ることができる。
[0003] The dynamic pressure bearings are roughly classified into air dynamic pressure bearings and liquid dynamic pressure bearings. Since the air dynamic pressure bearing does not use lubricant such as oil, the surface of the rotating body such as a magnetic disk can be kept clean from oil contamination, etc.
It is widely used in rotating devices for rotating these magnetic disks and the like. However, the air dynamic pressure bearing has extremely low bearing stiffness and the clearance between the bearings is on the order of several microns. Also, it is difficult to obtain a sufficient air dynamic pressure in a low speed rotation range. On the other hand, the liquid dynamic pressure bearing has a high bearing rigidity and is relatively easy to manufacture. In particular, a sufficient dynamic pressure can be obtained at a low speed of about several thousand rotations.

【0004】液体動圧軸受は、軸状部材と該軸状部材が
嵌入する筒状部材とから構成される。そして軸状部材と
筒状部材との間に微小な隙間が設けられており、該隙間
には潤滑油が充填され、軸状部材又は筒状部材の隙間側
表面に液体動圧を発生させるための溝(動圧溝)が設け
られ、液体動圧発生部として形成されている。液体動圧
軸受が回転すると、潤滑油が軸状部材又は筒状部材に形
成されている溝に沿って流動し液体動圧が発生し、定格
回転状態では筒状部材と軸状部材とが非接触状態で回転
することができる。
[0004] The liquid dynamic pressure bearing comprises a shaft-like member and a cylindrical member into which the shaft-like member is fitted. A minute gap is provided between the shaft member and the cylindrical member, and the gap is filled with lubricating oil to generate liquid dynamic pressure on the gap side surface of the shaft member or the cylindrical member. (Dynamic pressure groove) is provided and formed as a liquid dynamic pressure generating portion. When the liquid dynamic pressure bearing rotates, the lubricating oil flows along a groove formed in the shaft member or the cylindrical member to generate a liquid dynamic pressure. Can rotate in contact.

【0005】[0005]

【発明が解決しようとする課題】しかしながら液体動圧
軸受は、静止状態では軸状部材と筒状部材との一部が接
触した状態にあり、両者が接触した状態で起動するた
め、軸状部材と筒状部材との間の摩擦係数が問題とな
る。軸状部材と筒状部材との間の摩擦係数が大きいと、
液体動圧軸受を組み込んだ機器の消費電力が増大した
り、軸状部材又は筒状部材に形成された動圧溝を破壊し
てしまう。液体動圧軸受の起動の際の軸状部材と筒状部
材との接触部分の摩擦係数を小さくするために、液体動
圧発生部に充填する潤滑油の改良が試みられている。
However, when the liquid dynamic pressure bearing is stationary, the shaft member and the cylindrical member are partially in contact with each other, and the liquid dynamic pressure bearing is started in a state in which both members are in contact with each other. The coefficient of friction between the cylinder and the cylindrical member becomes a problem. If the coefficient of friction between the shaft member and the cylindrical member is large,
The power consumption of the device in which the liquid dynamic pressure bearing is incorporated increases, or the dynamic pressure groove formed in the shaft member or the cylindrical member is broken. Attempts have been made to improve the lubricating oil filled in the liquid dynamic pressure generating portion in order to reduce the friction coefficient at the contact portion between the shaft member and the cylindrical member when the liquid dynamic pressure bearing is started.

【0006】従来より液体動圧軸受用潤滑油としては、
基油に酸化防止剤、粘度調整剤等の添加剤が添加されて
構成されている。基油としては、エステル系鉱物油、エ
ーテル系鉱物油、フッ化物系合成油などが用いられてい
る。潤滑油の摩擦係数を低減させる手段として、基油に
ガラスビーズやアモルファスカーボン等の固体粒子を添
加する方法が研究されている。
Conventional lubricating oils for liquid dynamic bearings include:
An additive such as an antioxidant and a viscosity modifier is added to a base oil. As the base oil, ester-based mineral oil, ether-based mineral oil, fluoride-based synthetic oil, and the like are used. As a means for reducing the friction coefficient of lubricating oil, a method of adding solid particles such as glass beads and amorphous carbon to a base oil has been studied.

【0007】しかしながら、基油に固体粒子を添加して
摩擦係数を低減させる場合、固体粒子と基油の比重が大
きく異なることや、固体粒子の基油に対する分散性が悪
いため、固体粒子の分散後、時間が経過すると固体粒子
が基油と分離し易く、軸受隙間の特定の場所に固体粒子
が沈降・付着してしまい、長期間摩擦係数の低減を図る
ことができないという問題があった。潤滑油における固
体粒子の分散性を改良する為に、分散剤を使用すること
が考えられるが、分散剤の添加は基油の特性を低下させ
てしまうため実用的ではない。
However, when solid particles are added to the base oil to reduce the coefficient of friction, the specific gravity of the solid particles differs greatly from the base oil, and the dispersibility of the solid particles in the base oil is poor. Thereafter, as time elapses, the solid particles are easily separated from the base oil, and the solid particles settle and adhere to a specific location in the bearing gap, so that the friction coefficient cannot be reduced for a long time. In order to improve the dispersibility of the solid particles in the lubricating oil, it is conceivable to use a dispersant, but the addition of the dispersant is not practical because the properties of the base oil are reduced.

【0008】本発明は上述の従来技術の欠点を解決する
もので、基油の特性を低下させることなく固体粒子の分
散性が良好であり、液体動圧軸受の液体動圧発生部にお
ける沈降・付着等の不具合のない、摩擦係数の小さな潤
滑油を提供することを目的とする。
The present invention solves the above-mentioned drawbacks of the prior art, in which the dispersibility of the solid particles is good without deteriorating the characteristics of the base oil, and the sedimentation in the liquid dynamic pressure generating portion of the liquid dynamic pressure bearing is reduced. It is an object of the present invention to provide a lubricating oil having a small coefficient of friction and having no problems such as adhesion.

【0009】また本発明は、上記の潤滑油を安定的に製
造可能な潤滑油の製造方法を提供することを目的とす
る。
Another object of the present invention is to provide a method for producing a lubricating oil capable of stably producing the above-mentioned lubricating oil.

【0010】また本発明は回転起動時或いは低速回転時
に接触摩擦による動圧発生溝の摩耗、損傷を防止し、動
圧軸受の長寿命化を図ることを目的とする。
Another object of the present invention is to prevent the dynamic pressure generating groove from being worn or damaged due to contact friction at the time of starting rotation or rotating at a low speed, thereby extending the life of the dynamic pressure bearing.

【0011】また本発明は、消費電流が小さく、耐用寿
命を向上した動圧軸受を備えてなるスピンドルモータを
提供することを目的とする。
Another object of the present invention is to provide a spindle motor having a dynamic pressure bearing which consumes less current and has an improved service life.

【0012】本発明のいま一つの目的は、上記スピンド
ルモータを磁気ティスク等の回転体の駆動源とした回転
体装置を提供することにある。
Another object of the present invention is to provide a rotating body device using the spindle motor as a drive source of a rotating body such as a magnetic disk.

【0013】[0013]

【課題を解決するための手段】本発明は、(1)基油に
多孔性無機粒子を分散してなることを特徴とする潤滑
油、(2)多孔性無機粒子が、多孔性石英ビーズ又は多
孔性ガラスビーズである上記(1)記載の潤滑油、
(3)多孔性無機粒子の含有量が、軸受隙間における面
密度が400個/mm2 以下である上記(1)又は
(2)記載の潤滑油、(4)多孔性無機粒子の気孔率
が、該多孔性無機粒子の比重が基油の比重の±20%以
内となるように形成されている上記(1)〜(3)のい
ずれか1に記載の潤滑油、(5)超音波分散装置を用い
て基油中に多孔性無機粒子を分散させた後、減圧処理を
行うことを特徴とする潤滑油の製造方法、(6)回転部
材と固定部材とが組み合わされた軸受であって、前記回
転部材と前記固定部材との間の隙間に上記(1)〜
(4)のいずれか1に記載された潤滑油が充填されてい
ることを特徴とする動圧軸受、(7)上記(6)に記載
された動圧軸受で軸受が構成されていることを特徴とす
るスピンドルモータ、(8)上記(7)に記載されたス
ピンドルモータを回転体の駆動源として備えていること
を特徴とする回転体装置、である。
The present invention provides (1) a lubricating oil characterized by dispersing porous inorganic particles in a base oil, and (2) a porous silica particle comprising porous quartz beads or The lubricating oil according to the above (1), which is a porous glass bead;
(3) The lubricating oil according to the above (1) or (2), wherein the content of the porous inorganic particles is such that the areal density in the bearing gap is 400 particles / mm 2 or less, and (4) the porosity of the porous inorganic particles is The lubricating oil according to any one of the above (1) to (3), wherein the specific gravity of the porous inorganic particles is within ± 20% of the specific gravity of the base oil; (5) ultrasonic dispersion (6) A method for producing a lubricating oil comprising dispersing porous inorganic particles in a base oil using a device and then performing a decompression treatment, (6) a bearing in which a rotating member and a fixed member are combined. The gap between the rotating member and the fixed member is provided in the above (1) to (4).
(4) A dynamic pressure bearing characterized by being filled with the lubricating oil described in any one of (4) and (7) a dynamic pressure bearing described in (6) above. (8) A rotating body device including the spindle motor described in (7) above as a drive source for the rotating body.

【0014】[0014]

【発明の実施の形態】本発明の潤滑油の基油は、蒸発し
にくく、粘度、表面張力、摩擦係数が小さいことから、
鉱物油あるいは合成油等が用いられ、具体的にはエステ
ル系鉱物油、エーテル系鉱物油、フッ素系合成油等が挙
げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The base oil of the lubricating oil of the present invention is difficult to evaporate and has low viscosity, surface tension, and low coefficient of friction.
Mineral oil or synthetic oil is used, and specific examples include ester-based mineral oil, ether-based mineral oil, and fluorine-based synthetic oil.

【0015】本発明の潤滑油に添加される多孔性無機粒
子は、潤滑油中で摩擦低減剤として機能するものであ
り、多孔性石英ビーズ又は多孔性ガラスビーズを用いる
のが好ましい。多孔性無機粒子は外形が球状又は、非球
状であって、内部に連続状又は非連続状の気孔を有す
る。多孔性無機粒子は、内部が詰まっていて多孔性では
ない無機粒子と比較して、表面積が大きく基油に対する
親油性が良いため、潤滑油中の分散性が良好であり、長
期間基油中で沈降分離しない。
The porous inorganic particles added to the lubricating oil of the present invention function as a friction reducing agent in the lubricating oil, and it is preferable to use porous quartz beads or porous glass beads. The porous inorganic particles have a spherical or non-spherical outer shape and have continuous or discontinuous pores inside. Porous inorganic particles have a large surface area and good lipophilicity to the base oil as compared with non-porous inorganic particles whose inside is clogged, so that the dispersibility in the lubricating oil is good and the Does not settle out.

【0016】多孔性無機粒子の空隙の量として表される
気孔率は、以下の〔数1〕式から算出することができ
る。
The porosity, expressed as the amount of voids in the porous inorganic particles, can be calculated from the following [Equation 1].

【数1】気孔率(%)=(W1−W2)/W1×100 W1(g/cm3 ):多孔質無機粒子を非多孔質と仮定
した場合の単位体積あたりの重量であり、粒子を構成す
る材料自体が持つ比重。W2(g/cm3 ):多孔質無
機粒子の見掛け比重であり、実際に測定して求めた単位
体積あたりの重量である。
Porosity (%) = (W1−W2) / W1 × 100 W1 (g / cm 3 ): a weight per unit volume when the porous inorganic particles are assumed to be non-porous. Specific gravity of the constituent material itself. W2 (g / cm 3 ): Apparent specific gravity of the porous inorganic particles, which is a weight per unit volume actually measured and obtained.

【0017】多孔性無機粒子は気孔率を変化させること
で、該粒子の比重を任意に設定し基油との比重の差を小
さくすることができる。多孔性無機粒子の好ましい見掛
け比重は、潤滑油に使用される基油の比重に対して、基
油の比重との差が±20%以内、更に好ましくは±5%
以内、また更に好ましくは基油の比重と略同じとなるよ
うにするのが、多孔性無機粒子の沈降防止の点から望ま
しい。
By changing the porosity of the porous inorganic particles, the specific gravity of the particles can be arbitrarily set to reduce the difference in specific gravity with the base oil. The preferred apparent specific gravity of the porous inorganic particles is such that the difference from the specific gravity of the base oil is within ± 20%, more preferably ± 5%, of the specific gravity of the base oil used for the lubricating oil.
It is desirable to make the specific gravity within the range, more preferably the same as the specific gravity of the base oil, from the viewpoint of preventing sedimentation of the porous inorganic particles.

【0018】気孔率について比重が0.81の基油と多
孔性無機粒子として比重2.5のガラスを原料とする多
孔質ガラスビーズを使用する場合を例に説明する。基油
との比重の差がプラスマイナス(±)20%以内という
ことは、ガラスビーズの見掛け比重(W2)は、0.8
1±20%=0.648〜0.972であればよい。そ
してガラスビーズの気孔がないと仮定した場合の比重
は、ガラス自体の比重2.5(W1)である。従って、
基油との比重の差が±20%以内の多孔性ガラスビーズ
の気孔率は上記〔数1〕式より74.08〜61.6%
の範囲となる。
The porosity of the base oil having a specific gravity of 0.81 and porous glass beads made of glass having a specific gravity of 2.5 as the porous inorganic particles will be described as an example. The difference in specific gravity with the base oil within ± 20% means that the apparent specific gravity (W2) of the glass beads is 0.8%.
It is sufficient that 1 ± 20% = 0.648 to 0.972. The specific gravity assuming that there are no pores in the glass beads is 2.5 (W1) specific gravity of the glass itself. Therefore,
The porosity of the porous glass beads having a specific gravity difference from the base oil within ± 20% is from 74.08 to 61.6% according to the above [Equation 1].
Range.

【0019】このように、多孔性無機粒子を用いること
で、気孔率を変化させて見掛け比重を変えることができ
るため、該粒子が添加される基油との比重差を小さくす
ることが可能であり、比重が異なる種々の基油に応じて
無機粒子の沈降防止を効果的に行うことができる。
As described above, since the apparent specific gravity can be changed by changing the porosity by using the porous inorganic particles, the difference in specific gravity from the base oil to which the particles are added can be reduced. In addition, it is possible to effectively prevent sedimentation of inorganic particles according to various base oils having different specific gravities.

【0020】多孔性無機粒子の大きさは、平均粒径が
0.1〜5μmが好ましく、更に好ましくは0.5〜3
μmである。一般に液体動圧軸受の動圧発生部となる潤
滑油が充填される隙間(軸受隙間)は3μm以上あるた
め、多孔性無機粒子の平均粒径が3μm以下であれば、
軸受隙間に該粒子が入り込み摩擦係数低減効果を充分発
揮できる。また、多孔性無機粒子は、平均粒径0.5μ
m以上のものが実際に製造可能であり入手が容易であり
実用的である。尚、0.5μm未満の多孔性無機粒子で
も潤滑油の摩擦係数低減効果は充分得られる。
The size of the porous inorganic particles is preferably from 0.1 to 5 μm, more preferably from 0.5 to 3 μm.
μm. Generally, the gap (bearing gap) filled with the lubricating oil serving as the dynamic pressure generating portion of the liquid dynamic pressure bearing is 3 μm or more, so that if the average particle diameter of the porous inorganic particles is 3 μm or less,
The particles enter the bearing gap and can sufficiently exert the effect of reducing the friction coefficient. The porous inorganic particles have an average particle size of 0.5 μm.
m or more can be actually manufactured, easily obtained, and practical. The effect of reducing the friction coefficient of the lubricating oil can be sufficiently obtained even with porous inorganic particles having a particle diameter of less than 0.5 μm.

【0021】前記の軸受隙間とは、軸受が回転している
場合の実際の隙間の大きさである。液体動圧軸受が実際
に回転している場合、回転部分は偏芯した状態で回転す
る為、回転軸の中心が設計した回転中心に対していくら
かずれている。そのため、実際に回転している場合の、
最も狭い軸受隙間は設計値よりも小さくなる。また、軸
受隙間(設計値)は、軸受の大きさによっても異なる。
軸状部材と該軸状部材が嵌入する筒状部材とからなる軸
受の場合、最も小型の軸受の軸状部材の直径は3mm程
度であり、軸受隙間(設計値)は7.5μm程度であ
る。実際の軸受隙間はこの設計値7.5μmよりも小さ
くなるが、最も狭いところでも3μm以上の隙間は確保
される。
The above-mentioned bearing clearance is the size of the actual clearance when the bearing is rotating. When the liquid dynamic pressure bearing is actually rotating, the rotating part rotates in an eccentric state, so that the center of the rotating shaft is slightly displaced from the designed rotation center. Therefore, when actually rotating,
The narrowest bearing clearance is smaller than the design value. Further, the bearing gap (design value) differs depending on the size of the bearing.
In the case of a bearing composed of a shaft member and a cylindrical member into which the shaft member is fitted, the diameter of the shaft member of the smallest bearing is about 3 mm, and the bearing clearance (design value) is about 7.5 μm. . Although the actual bearing gap is smaller than the designed value of 7.5 μm, a gap of 3 μm or more is secured even at the narrowest point.

【0022】多孔性無機粒子の添加量は、軸受隙間(設
計値)に充填した場合に隙間の一方から他方に投影した
場合の単位面積あたりの粒子数である面密度が、400
個/mm2 以下となるようにするのが好ましく、更に好
ましくは、100〜400個/mm2 の範囲である。面
密度が400個/mm2 を超えると、充分な動圧発生が
得られない虞れがある。また、面密度が100個未満で
は、摩擦係数低減効果が不十分となる虞れがある。
The amount of the porous inorganic particles to be added is such that when the filler is filled in the bearing gap (design value), the area density, which is the number of particles per unit area when projected from one side of the gap to the other, is 400%.
The number is preferably set to be not more than the number of pieces / mm 2, and more preferably in the range of 100 to 400 pieces / mm 2 . If the areal density exceeds 400 / mm 2 , sufficient dynamic pressure may not be generated. If the areal density is less than 100, the effect of reducing the coefficient of friction may be insufficient.

【0023】本発明の潤滑油は、少なくとも基油に上記
多孔性無機粒子を分散したものであればよいが、その他
の添加剤を必要に応じ添加することができる。添加剤と
しては例えば、酸化防止剤、粘度調整剤等が挙げられ
る。
The lubricating oil of the present invention may be at least one in which the above porous inorganic particles are dispersed in a base oil, and other additives can be added as needed. Examples of the additive include an antioxidant and a viscosity modifier.

【0024】本発明の潤滑油の製造方法は、超音波分散
装置を用いて基油に多孔性無機粒子を超音波分散し、そ
の後減圧処理を行うものである。超音波分散装置を用い
た超音波分散は、分散剤を使用せずに基油中に多孔性無
機粒子を分散させることが可能である。減圧処理は、前
記の超音波分散した多孔無機粒子を含む基油を、真空度
10-3torr〜10torr程度で減圧することが好
ましい。また、減圧時間は、上記真空度に応じて異なる
が、多孔性無機粒子の空隙の内部の空気が充分脱泡され
ていればよい。尚、多孔性無機粒子に表面に連通する空
隙と、表面に連通しない空隙とが存在する場合、表面に
連通する空隙に存在する空気を脱泡すればよい。
In the method for producing a lubricating oil according to the present invention, the porous inorganic particles are ultrasonically dispersed in the base oil using an ultrasonic dispersing device, and then subjected to a pressure reduction treatment. Ultrasonic dispersion using an ultrasonic dispersion apparatus can disperse porous inorganic particles in base oil without using a dispersant. In the decompression treatment, it is preferable to decompress the base oil containing the ultrasonically dispersed porous inorganic particles at a degree of vacuum of about 10 −3 torr to 10 torr. The decompression time varies depending on the degree of vacuum, but it is sufficient that the air inside the voids of the porous inorganic particles is sufficiently defoamed. In the case where the porous inorganic particles have voids communicating with the surface and voids not communicating with the surface, air present in the voids communicating with the surface may be removed.

【0025】多孔性無機粒子を分散させた後、減圧処理
を行うことで、該多孔質無機粒子の内部の空隙に充填さ
れていた空気の部分が基油に置換され、多孔質無機粒子
の比重が設計値に近くなって、分散状態が安定して、長
期にわたり良好な分散状態を維持できる。多孔性無機粒
子を超音波分散により基油に分散させた後、減圧処理を
行わないと粒子内部の表面に連通する空隙に残っている
空気によって、多孔性無機粒子の比重が設計した値より
も小さくなってしまい、超音波分散した直後は均一に分
散していても、潤滑油を静置しておいて時間が経過する
と多孔質無機粒子が浮上してきて分離しやすい。
After the porous inorganic particles are dispersed, a reduced pressure treatment is performed to replace the air portion filled in the voids inside the porous inorganic particles with the base oil, and the specific gravity of the porous inorganic particles is reduced. Is close to the design value, the dispersion state is stable, and a good dispersion state can be maintained for a long time. After the porous inorganic particles are dispersed in the base oil by ultrasonic dispersion, the specific gravity of the porous inorganic particles is lower than a designed value due to air remaining in the voids communicating with the surface of the inside of the particles unless decompression treatment is performed. Even if the particles are uniformly dispersed immediately after the ultrasonic dispersion, the porous inorganic particles are likely to float and separate when the lubricating oil is allowed to stand for a long time.

【0026】図1は本発明の一実施例のスピンドルモー
タを説明するための図である。本実施例のスピンドルモ
ータ1は、当該スピンドルモータ1自体を固定するため
の中心が切りかかれた円盤状の固定台10と、回転する
軸部23からなり、フランジ部21を高さ方向のほぼ中
間に有した略円柱形状の金属製軸状部材20と、前記固
定台10に固定され前記軸状部材を嵌めこむための嵌入
部31が設けられた筒状部材30と、ローターの一部を
なし前記軸状部材に固定された閉塞部材を有している。
前記筒状部材30の外周部にはステータコイル70が形
成され、ロータの一部を構成し、前記閉塞部材の外縁を
折り曲げた内円周部分に形成されたローター磁石60と
当該ステータコイル70が近接して対峙する。
FIG. 1 is a diagram for explaining a spindle motor according to one embodiment of the present invention. The spindle motor 1 of the present embodiment includes a disk-shaped fixed base 10 for fixing the spindle motor 1 itself and a rotating shaft part 23, and a flange part 21 which is substantially intermediate in the height direction. And a cylindrical member 30 fixed to the fixing base 10 and provided with a fitting portion 31 for fitting the shaft member, and a part of the rotor. And a closing member fixed to the shaft member.
A stator coil 70 is formed on the outer peripheral portion of the tubular member 30 and forms a part of the rotor. The rotor magnet 60 and the stator coil 70 are formed on an inner circumferential portion obtained by bending an outer edge of the closing member. Confront closely.

【0027】図2は図1に示すスピンドルモータの軸受
の拡大断面図である。図2に示すように前記軸状部材2
0はスラスト軸受として機能するフランジ部21を有す
る。フランジ部21は鍔状に軸部23より突出し、その
上面24と下面が微小な隙間を以て筒状部材30の内周
部と対向している。フランジ部21の上下面24、25
及びそれらに対向する筒状部材30の内周部の一方もし
くは両方に図示しない流体動圧発生溝が形成される。
FIG. 2 is an enlarged sectional view of the bearing of the spindle motor shown in FIG. As shown in FIG.
0 has a flange portion 21 functioning as a thrust bearing. The flange portion 21 protrudes from the shaft portion 23 in a flange shape, and its upper surface 24 and lower surface face the inner peripheral portion of the cylindrical member 30 with a small gap. Upper and lower surfaces 24, 25 of the flange portion 21
A fluid dynamic pressure generating groove (not shown) is formed in one or both of the inner peripheral portions of the cylindrical member 30 facing the same.

【0028】軸状部材20のフランジ部21の下側は動
圧軸受用円筒部22が形成されている。動圧軸受用円筒
部22の外周面26は、微小な隙間を以て筒状部材30
の内周部と対向する。また動圧軸受用円筒部22の底面
27も同様に微小な隙間を以て筒状部材30の内周部と
対向する。これら動圧軸受用円筒部22の外周面26、
底面27及び筒状部材30の内周部には対向する面の一
方又は両方に図示しない流体動圧発生溝が形成されてい
る。
A cylindrical portion 22 for a dynamic pressure bearing is formed below the flange portion 21 of the shaft member 20. The outer peripheral surface 26 of the cylindrical portion 22 for a dynamic pressure bearing has a cylindrical member 30 with a small gap.
Opposes the inner peripheral portion. Similarly, the bottom surface 27 of the dynamic pressure bearing cylindrical portion 22 faces the inner peripheral portion of the cylindrical member 30 with a small gap. Outer peripheral surfaces 26 of these cylindrical portions 22 for dynamic pressure bearings,
A fluid dynamic pressure generating groove (not shown) is formed on one or both of the opposing surfaces on the bottom surface 27 and the inner peripheral portion of the cylindrical member 30.

【0029】軸状部材20と筒状部材30との間に形成
されている微小な隙間には、本発明の多孔性無機粒子を
含む潤滑油が充填されている。潤滑油は真空注入法や滴
下法によって軸状部材20と筒状部材30との間の隙間
に導入される。動圧軸受用円筒部22の底面27と筒状
部材30の嵌入部31の底面32の間の隙間、動圧軸受
用円筒部22の外周面26と前記嵌入部31の側面35
の間の隙間、フランジ部21の上面24とこれに対向す
るフランジ対向上面34の間の隙間を充填するように潤
滑油が導入される。
A minute gap formed between the shaft member 20 and the cylindrical member 30 is filled with a lubricating oil containing the porous inorganic particles of the present invention. The lubricating oil is introduced into the gap between the shaft member 20 and the cylindrical member 30 by a vacuum injection method or a dropping method. The gap between the bottom surface 27 of the dynamic pressure bearing cylindrical portion 22 and the bottom surface 32 of the fitting portion 31 of the cylindrical member 30, the outer peripheral surface 26 of the dynamic pressure bearing cylindrical portion 22, and the side surface 35 of the fitting portion 31
The lubricating oil is introduced so as to fill the gap between the upper surface 24 and the gap between the upper surface 24 of the flange portion 21 and the opposite flange upper surface 34.

【0030】軸受が静止している状態では図3に示すよ
うに、軸状部材20は筒状部材30の嵌入部の中心では
なく、一方に偏って接触している。このとき軸状部材2
0と筒状部材30の間には多孔性無機粒子を含む潤滑油
40が存在している。回転の起動時に軸状部材20は一
部が筒状部材30と接触した状態で回転を始めるが、潤
滑油40中の多孔性無機粒子により摩擦係数が低減せし
められており、スムーズな起動を行うことができる。更
に回転が定格回転に達するまでの低速度回転時の充分な
液体動圧が発生しない状態では、軸状部材20が筒状部
材30と接触した状態で回転しても、隙間に充填されて
いる潤滑油40により回転はスムーズに行われる。そし
て回転速度が定格回転に達すると、動圧発生溝に沿って
潤滑油が接触・流動して液体動圧が発生し、図2に示す
ように軸状部材20の周方向と軸方向の位置は筒状部材
30に対して非接触に保持される。
As shown in FIG. 3, when the bearing is stationary, the shaft member 20 is not in the center of the fitting portion of the cylindrical member 30, but is in one-sided contact. At this time, the shaft-like member 2
The lubricating oil 40 containing the porous inorganic particles exists between the cylinder member 30 and the cylindrical member 30. When the rotation is started, the shaft-like member 20 starts rotating in a state in which a part thereof is in contact with the cylindrical member 30, but the friction coefficient is reduced by the porous inorganic particles in the lubricating oil 40, and the smooth start-up is performed. be able to. Further, in a state where sufficient liquid dynamic pressure is not generated at the time of low-speed rotation until the rotation reaches the rated rotation, the gap is filled even if the shaft-shaped member 20 rotates in contact with the cylindrical member 30. The rotation is smoothly performed by the lubricating oil 40. Then, when the rotation speed reaches the rated rotation, the lubricating oil contacts and flows along the dynamic pressure generating groove to generate liquid dynamic pressure, and as shown in FIG. Is held in non-contact with the tubular member 30.

【0031】軸状部材20と筒状部材30の間の微小な
隙間部分には、液体動圧発生溝が形成されている。この
微小な隙間部分の寸法は、4〜20μm程度のもので、
軸状部材20の直径に応じた適切な大きさで設計時に選
ばれる。液体動圧発生溝には、スラスト動圧発生溝とラ
ジアル動圧発生溝がある。スラスト動圧発生溝を設ける
部分は、動圧軸受用円筒部22の底面27と筒状部材
30の嵌入部31の底面32との相互対向面の一方若し
くは両方の面、前記フランジ部21の下面25とこれ
に対向するフランジ対向下面33の一方若しくは両方の
面、さらに前記フランジ部21の上面24とこれに対
向するフランジ対向面上34の一方若しくは両方の面等
である。ラジアル動圧発生溝は、前記動圧軸受用円筒部
22の外周面26と前記嵌入部31の側面35との相互
対向面の一方または両方の面に形成される。
A liquid dynamic pressure generating groove is formed in a minute gap between the shaft member 20 and the cylindrical member 30. The size of the minute gap is about 4 to 20 μm,
An appropriate size according to the diameter of the shaft-like member 20 is selected at the time of design. The liquid dynamic pressure generating groove includes a thrust dynamic pressure generating groove and a radial dynamic pressure generating groove. The thrust dynamic pressure generating groove is provided on one or both surfaces of the bottom surface 27 of the dynamic pressure bearing cylindrical portion 22 and the bottom surface 32 of the fitting portion 31 of the cylindrical member 30, and on the lower surface of the flange portion 21. 25 and one or both surfaces of a flange-facing lower surface 33 facing the same, and one or both surfaces of the upper surface 24 of the flange portion 21 and the flange-facing surface 34 facing the same. The radial dynamic pressure generating groove is formed on one or both surfaces of the outer peripheral surface 26 of the cylindrical portion for dynamic pressure bearing 22 and the side surface 35 of the fitting portion 31 facing each other.

【0032】本発明の潤滑油が充填された液体動圧によ
って非接触で回転する動圧軸受は、本実施例ではスピン
ドルモータ1に組み込まれており、スピンドルモータ1
はローターを構成する閉塞部材50とその閉塞部材50
の外縁を折り曲げた内周部分に形成されたローター磁石
60と、このローター磁石60に近接して対峙するステ
ーターコイル70が設けられている。すなわち、本実施
例のスピンドルモータ1は液体動圧軸受によってロータ
をステータに支持させたシャフト回転型のスピンドルモ
ータとなっている。このスピンドルモータ1において、
モーターの起動スイッチを入れると、ステータコイル7
0に電流が流され、この電流によって生ずる磁場とロー
タ磁石の磁場の干渉によってローターが一定方向に回転
する。
The dynamic pressure bearing of the present invention, which rotates in a non-contact manner by the liquid dynamic pressure filled with the lubricating oil, is incorporated in the spindle motor 1 in this embodiment.
Is a closing member 50 constituting a rotor and the closing member 50
A rotor magnet 60 formed on an inner peripheral portion of the outer periphery of the rotor magnet is bent, and a stator coil 70 is provided in proximity to and facing the rotor magnet 60. That is, the spindle motor 1 of the present embodiment is a rotary shaft type spindle motor in which a rotor is supported on a stator by a liquid dynamic pressure bearing. In this spindle motor 1,
When the motor start switch is turned on, the stator coil 7
A current flows through the rotor, and the rotor rotates in a certain direction due to interference between the magnetic field generated by the current and the magnetic field of the rotor magnet.

【0033】図4は本実施例のスピンドルモータ1を採
用した回転体装置を示す。この回転体装置は磁気ディス
ク装置5であり、前述のスピンドルモータ1に回転体で
ある複数枚の磁気ディスク3を取り付けたものであっ
て、各磁気ディスク3に各磁気ヘッド4が対峙する。本
発明の動圧軸受は、磁気ディスク装置に限らず、他の光
ディスク装置、光磁気ディスク装置、ポリゴンミラー装
置、その他の精密小型回転体装置に適用できる。これら
の回転体装置は、本発明の潤滑油を用いた液体動圧軸受
を備えている為、起動の際の摩擦係数が低く消費電力が
小さくて済み、長期間にわたり良好な性能を維持でき
る。
FIG. 4 shows a rotating body device employing the spindle motor 1 of this embodiment. This rotating device is a magnetic disk device 5 in which a plurality of rotating magnetic disks 3 are attached to the above-described spindle motor 1, and each magnetic head 4 faces each magnetic disk 3. The dynamic pressure bearing of the present invention is not limited to a magnetic disk device, but can be applied to other optical disk devices, magneto-optical disk devices, polygon mirror devices, and other small precision rotating body devices. Since these rotary devices are provided with the liquid dynamic pressure bearing using the lubricating oil of the present invention, the friction coefficient at the time of startup is low, the power consumption is small, and good performance can be maintained for a long period of time.

【0034】[0034]

【実施例】実施例1 比重0.81のエーテル系基油に、気孔率60%、平均
粒径0.5〜1μmの多孔性石英ビーズを混合し5分間
超音波分散した後、簡易減圧ポンプで10分間減圧処理
して潤滑油を得た。この潤滑油を液体動圧軸受に充填し
て使用したところ、多孔性石英ビーズを添加しない潤滑
油と比較して摩擦係数が約35%低減していた。また、
ビーズの沈降は1万時間以上見られなかった。
EXAMPLE 1 Porous quartz beads having a porosity of 60% and an average particle size of 0.5 to 1 μm were mixed with an ether base oil having a specific gravity of 0.81 and ultrasonically dispersed for 5 minutes. For 10 minutes to obtain a lubricating oil. When this lubricating oil was used by filling it into a liquid dynamic pressure bearing, the friction coefficient was reduced by about 35% as compared with a lubricating oil to which no porous quartz beads were added. Also,
No sedimentation of the beads was observed for more than 10,000 hours.

【0035】実施例2 比重1.82のフッ素系基油に、気孔率18%、平均粒
径2〜3μmの多孔性石英ビーズを混合し20分間超音
波分散した後、簡易減圧ポンプで15分間減圧処理して
潤滑油を得た。この潤滑油を多孔性石英ビーズを添加し
ない潤滑油と比較したところ摩擦係数が約28%低減し
ていた。また、ビーズの沈降は1万時間以上見られなか
った。
Example 2 Porous quartz beads having a porosity of 18% and an average particle diameter of 2 to 3 μm were mixed with a fluorine-based base oil having a specific gravity of 1.82, ultrasonically dispersed for 20 minutes, and then 15 minutes with a simple vacuum pump. The lubricating oil was obtained by performing a vacuum treatment. When this lubricating oil was compared with a lubricating oil to which no porous quartz beads were added, the coefficient of friction was reduced by about 28%. No sedimentation of beads was observed for 10,000 hours or more.

【0036】[0036]

【発明の効果】本発明の潤滑油は、基油に多孔性無機粒
子を分散してなるものであるため、従来の非多孔性粒子
を用いた潤滑油と比較して、粒子の沈降のない摩擦係数
の小さな潤滑油が得られる。多孔性無機粒子は分散性が
良好であり沈降しにくいため、液体動圧軸受の液体動圧
発生部における軸受隙間の特定の場所に該粒子が沈降し
たり付着することがなく、長期間良好な摩擦係数の低減
効果を発揮できる。また、起動時に動圧発生溝を破損す
る虞れもない。
Since the lubricating oil of the present invention is obtained by dispersing porous inorganic particles in a base oil, the lubricating oil of the present invention does not cause sedimentation of particles compared to conventional lubricating oils using non-porous particles. A lubricating oil with a small coefficient of friction is obtained. Since the porous inorganic particles have good dispersibility and are unlikely to settle, the particles do not settle or adhere to a specific place in the bearing gap in the liquid dynamic pressure generating portion of the liquid dynamic pressure bearing, and are good for a long time. The effect of reducing the coefficient of friction can be exhibited. Further, there is no fear that the dynamic pressure generating groove is damaged at the time of starting.

【0037】本発明の潤滑油を用いた軸受は、特に起動
時にスムーズな回転が可能である為、この軸受を備える
機器は消費電力を小さくすることができる。また、本発
明の潤滑油を用いた軸受は、潤滑油が液体から発生する
動圧と多孔性無機粒子成分のファンデルワールス力によ
って軸状部材を支持するために、大きな軸受剛性を出す
ことが可能となり、スピンドルモータ等に適用する際、
設計マージンを大きくすることができ、その結果信頼性
が高く、安価なスピンドルモータを提供することができ
る。
Since the bearing using the lubricating oil of the present invention can smoothly rotate, especially at the time of startup, the equipment equipped with this bearing can reduce power consumption. Further, the bearing using the lubricating oil of the present invention can provide a large bearing rigidity because the lubricating oil supports the shaft-like member by the dynamic pressure generated from the liquid and the van der Waals force of the porous inorganic particle component. Becomes possible, and when applied to spindle motors, etc.
The design margin can be increased, and as a result, a highly reliable and inexpensive spindle motor can be provided.

【0038】本発明の潤滑油の製造方法は、超音波分散
装置を用いて基油中に多孔性無機粒子を分散させた後、
減圧処理を行う方法を採用したことにより、多孔性無機
粒子を安定的に分散させることができる。その結果、多
孔性無機粒子が経時的に上昇して分離する虞れがなく、
優れた摩擦係数を有する潤滑油が確実に得られる。
The method for producing a lubricating oil of the present invention comprises dispersing porous inorganic particles in a base oil using an ultrasonic dispersion device,
By adopting the method of performing the reduced pressure treatment, the porous inorganic particles can be stably dispersed. As a result, there is no danger that the porous inorganic particles rise and separate over time,
A lubricating oil having an excellent coefficient of friction is reliably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動圧軸受を備えたスピンドルモータの
一実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a spindle motor provided with a dynamic pressure bearing of the present invention.

【図2】図1のスピンドルモータの動圧軸受部を示す拡
大断面図である。
FIG. 2 is an enlarged sectional view showing a dynamic pressure bearing portion of the spindle motor of FIG.

【図3】図1のスピンドルモータの動圧軸受部の一部の
静止状態を示す拡大断面図である。
FIG. 3 is an enlarged sectional view showing a part of the dynamic pressure bearing portion of the spindle motor of FIG. 1 in a stationary state.

【図4】本発明の回転体装置の一例である磁気ディスク
装置を示す斜視図である。
FIG. 4 is a perspective view showing a magnetic disk device which is an example of the rotating device of the present invention.

【符号の説明】[Explanation of symbols]

1 スピンドルモータ 3 磁気ディスク 4 磁気ヘッド 5 磁気ディスク装置 10 固定台 20 軸状部材 21 フランジ部 22 動圧軸受用円筒部 23 軸部材 24 上面 25 下面 30 筒状部材 31 嵌入部 32 底面 33 フランジ部対向下面 34 フランジ部対向上面 DESCRIPTION OF SYMBOLS 1 Spindle motor 3 Magnetic disk 4 Magnetic head 5 Magnetic disk device 10 Fixed base 20 Shaft member 21 Flange part 22 Cylindrical part for dynamic pressure bearings 23 Shaft member 24 Upper surface 25 Lower surface 30 Cylindrical member 31 Fitting part 32 Bottom surface 33 Flange portion opposition Lower surface 34 Upper surface facing flange

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10N 30:06 40:02 70:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C10N 30:06 40:02 70:00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基油に多孔性無機粒子を分散してなるこ
とを特徴とする潤滑油。
1. A lubricating oil comprising porous inorganic particles dispersed in a base oil.
【請求項2】 多孔性無機粒子が、多孔性石英ビーズ又
は多孔性ガラスビーズである請求項1記載の潤滑油。
2. The lubricating oil according to claim 1, wherein the porous inorganic particles are porous quartz beads or porous glass beads.
【請求項3】 多孔性無機粒子の含有量が、軸受隙間に
おける面密度が400個/mm2 以下である請求項1又
は2記載の潤滑油。
3. The lubricating oil according to claim 1, wherein the content of the porous inorganic particles is such that the areal density in the bearing gap is 400 particles / mm 2 or less.
【請求項4】 多孔性無機粒子の気孔率が、該多孔性無
機粒子の比重が基油の比重の±20%以内となるように
形成されている請求項1〜3のいずれか1に記載の潤滑
油。
4. The porous inorganic particle according to claim 1, wherein the porosity of the porous inorganic particle is formed so that the specific gravity of the porous inorganic particle is within ± 20% of the specific gravity of the base oil. Lubricating oil.
【請求項5】 超音波分散装置を用いて基油中に多孔性
無機粒子を分散させた後、減圧処理を行うことを特徴と
する潤滑油の製造方法。
5. A method for producing a lubricating oil, comprising: dispersing porous inorganic particles in a base oil using an ultrasonic dispersion device;
【請求項6】 回転部材と固定部材とが組み合わされた
軸受であって、前記回転部材と前記固定部材との間の隙
間に請求項1〜4のいずれか1に記載された潤滑油が充
填されていることを特徴とする動圧軸受。
6. A bearing in which a rotating member and a fixed member are combined, wherein a gap between the rotating member and the fixed member is filled with the lubricating oil according to any one of claims 1 to 4. A dynamic pressure bearing characterized by being made.
【請求項7】 請求項6に記載された動圧軸受で軸受が
構成されていることを特徴とするスピンドルモータ。
7. A spindle motor comprising a bearing comprising the dynamic pressure bearing according to claim 6.
【請求項8】 請求項7に記載されたスピンドルモータ
を回転体の駆動源として備えていることを特徴とする回
転体装置。
8. A rotator device comprising the spindle motor according to claim 7 as a drive source for the rotator.
JP548999A 1999-01-12 1999-01-12 Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus Pending JP2000204387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP548999A JP2000204387A (en) 1999-01-12 1999-01-12 Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP548999A JP2000204387A (en) 1999-01-12 1999-01-12 Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus

Publications (1)

Publication Number Publication Date
JP2000204387A true JP2000204387A (en) 2000-07-25

Family

ID=11612672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP548999A Pending JP2000204387A (en) 1999-01-12 1999-01-12 Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus

Country Status (1)

Country Link
JP (1) JP2000204387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115607B1 (en) * 2019-04-24 2020-05-27 한국화학연구원 Nanofluid lubricant for rotating machines using surface-treated alumina nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115607B1 (en) * 2019-04-24 2020-05-27 한국화학연구원 Nanofluid lubricant for rotating machines using surface-treated alumina nanoparticles

Similar Documents

Publication Publication Date Title
JP3099033B2 (en) Bearing device
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP2001286116A (en) Noncontact drive motor
JPH11285195A (en) Motor
JP5619550B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
JP2008082414A (en) Fluid dynamic bearing device, magnetic disk device and portable electronic equipment
JP2014181750A (en) Fluid dynamic pressure bearing device and motor including the same
JPH09303398A (en) Oil retaining bearing unit and motor equipped therewith
JP2008069805A (en) Dynamic pressure bearing device
JPS585518A (en) Dynamic pressure spindle apparatus
JP2004183772A (en) Fluid dynamic bearing and disk rotating device
JP2004176816A (en) Dynamic pressure bearing device
JP2000204387A (en) Lubricating oil, its production, hydrodynamic lubrication bearing, spindle motor and rotor apparatus
KR101141332B1 (en) Fluid dynamic bearing assembly
JP2006074981A (en) Hydrodynamic pressure bearing spindle motor
JP3943381B2 (en) Bearing device and motor equipped with the same
JP4374090B2 (en) Hydrodynamic bearing, spindle motor, and rotating body device
JPS6360247B2 (en)
JPH11191945A (en) Spindle motor and rotary shaft support device of hard disc drive
JP2004239346A (en) Fluid dynamic pressure bearing, motor with the same, and disk drive device with the motor
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JP2004116623A (en) Fluid bearing device
JP2001124057A (en) Dynamic pressure bearing
JP2006342926A (en) Thrust bearing unit for motor
JP2003166524A (en) Hydrodynamic bearing unit