JP4374090B2 - Hydrodynamic bearing, spindle motor, and rotating body device - Google Patents

Hydrodynamic bearing, spindle motor, and rotating body device Download PDF

Info

Publication number
JP4374090B2
JP4374090B2 JP14813099A JP14813099A JP4374090B2 JP 4374090 B2 JP4374090 B2 JP 4374090B2 JP 14813099 A JP14813099 A JP 14813099A JP 14813099 A JP14813099 A JP 14813099A JP 4374090 B2 JP4374090 B2 JP 4374090B2
Authority
JP
Japan
Prior art keywords
bearing
hydrodynamic bearing
spindle motor
hydrodynamic
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14813099A
Other languages
Japanese (ja)
Other versions
JP2000336383A (en
Inventor
秀樹 北島
岩城  忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP14813099A priority Critical patent/JP4374090B2/en
Publication of JP2000336383A publication Critical patent/JP2000336383A/en
Application granted granted Critical
Publication of JP4374090B2 publication Critical patent/JP4374090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸および軸受面に設けた動圧溝の動圧効果により発生した動圧によって回転軸の摺動面を浮上支持する動圧流体軸受に関し、特にレーザビームプリンタ(LBP)のポリゴンスキャナモータや磁気ディスクドライブ装置(Hard Disk Drive)等の回転体装置用のスピンドルモータのように、高速下で高回転精度が要求される機種や、DVD(digital Versatale disk)−ROM、DVD−RAMなどの光ディスクドライブ装置あるいは光磁気ディスクドライブ装置等の回転体装置用のスピンドルモータのように、ディスクが載ることによって大きなアンバランス荷重が加わる条件下で高速で駆動する機器などに適している。
【0002】
【従来の技術】
上記のような情報機器関連の小型スピンドルモ−タでは、回転性能のより一層の向上と低コスト化が求められており、そのための手段として、軸受面にへリングボーン型やスパイラル型などの動圧溝を設け、軸の回転に伴う動圧効果によってラジアル剛性などの軸受機能を高める一方、不安定振動を解消可能な動圧流体軸受に置き換える検討がなされている。
【0003】
一方、動圧流体軸受に要求される潤滑油の特性としては、低蒸発特性かつ低粘度、使用中のスラッジの発生が少なく、使用温度範囲が広く、潤滑性が優れ、長寿命である。上記の特性を有する潤滑油として、動圧流体軸受には、主にエステル系基油が使用され、例えば、特開平1−188592号公報に開示されているようなトリメチロールプロパンと1価脂肪酸から得られるトリエステルにヒンダードフェノール系酸化防止剤を混合したものが使用されている。また、特開平9−177766号公報に開示されているようなセバシン酸ジオクチルを基油にフタル酸モノエチルエステルを基油に対して1〜3重量%混合したものが使用されている。上記の潤滑油は動庄流体軸受の専用油として低トルクで初期なじみが良く、耐久性も良好であるなど、優れた特性を持つものであるが、基油粘度が11〜31cSt(40℃)と高く、低温始動性および回転トルクが高く、要求性能を満たしていないのが現状である。
【0004】
一方、磁気ディスクドライブ用スピンドルモータについて、セバシン酸ジオクチルのように体積抵抗率が1.0×1012Ω・cm以上の潤滑油を使用すると、動圧流体軸受動作時に、磁気ディスクに電荷が蓄積して、磁気ヘッドとの間に電位差が発生し、最悪の場合、磁気ヘッドの静電破壊が発生することがあった。動圧流体軸受では、従来のボールベアリングを使用した軸受と異なり、動圧流体軸受の動作状態において、磁気ヘッドとハードディスクの導通が確保できないことが原因である。
【0005】
したがって、本発明の目的は、低粘度且つ低蒸発損失であり、体積抵抗率が低い潤滑油を用いることによって、耐久寿命の長く、軸と軸受間の電位差を低減した動圧流体軸受及び当該動圧流体軸受を搭載したスピンドルモータ及び回転体装置を提供することにある。
【0006】
【課題を解決するための手段】
前記課題を解決する本発明の第1の態様は、基油がネオペンチルグリコールのカプリル酸とカプリン酸の混合エステルで構成され、アゾ系化合物又はジアゾ系化合物が含まれることを特徴とする動圧流体軸受用潤滑油を使用した動圧流体軸受にある。本発明の第2の態様は、第1の態様において、アゾ系化合物又はジアゾ系化合物が、前記基油の0.01〜1重量%添加されていることを特徴とする動圧流体軸受用潤滑油を使用した動圧流体軸受にある。
【0007】
ここでネオペンチルグリコールのカプリル酸とカプリン酸の混合エステルは、例えば、下記の化学式で示される。
【0008】
【化1】

Figure 0004374090
【0009】
【発明の実施の形態】
以下、実施の形態に基づいて本発明を詳細に説明する。
(実施例1)
ネオペンチルグリコールのカプリル酸とカプリン酸の混合エステルを潤滑油とした。
(実施例2)
ネオペンチルグリコールのカプリル酸とカプリン酸の混合エステル100重量部に、2,2’−アゾビス(2−メチルプロパノニトリル)1重量部を添加して潤滑油とした。
(実施例3)
ネオペンチルグリコールのカプリル酸とカプリン酸の混合エステル100重量部に、2,2’−アゾビスベンジルメタン1重量部を添加して潤滑油とした。
(実施例4)
ネオペンチルグリコールのカプリル酸とカプリン酸の混合エステル100重量部に、p−ジメチルアミノアゾベンゼンを1重量部添加して潤滑油とした。
(比較例1)
セバシン酸ジオクチルを単独で潤滑油とした。
(比較例2)
アジピン酸ジオクチルを単独で潤滑油とした。
【0010】
上述した各実施例及び比較例の潤滑油を図1〜3に示す動圧流体軸受に使用した。
図1に動圧流体軸受の概略断面図を示す。
図1に示す動圧流体軸受部は、フランジ付円柱状軸受部材20と、段付円筒状軸受部材30と、円盤状スラスト押さえ部材40とを具備する。フランジ付円柱状軸受部材20は、図2に示すように、軸方向中央部に円盤状スラスト軸受部21を有し、その下側にラジアル軸受用円柱部22、上側に支持用円柱部23をそれぞれ有する。段付円筒状軸受部材30は、図3に示すように、フランジ付円柱状軸受部材20のラジアル軸受用円柱部22が回転自在に挿入される小径円筒部31と、円盤状スラスト軸受部21が回転自在に挿入される大径円筒部32とを少なくとも有する。これらの二つの円筒部は同軸で隣接して設けられ、両者の境界には境界面34が存在する。大径円筒部32に隣接して同軸に形成された円筒部33は、大径円筒部32の開放端、すなわち段付円筒状軸受部材30の開放端にキャピラリーシールを施してシールする円盤状スラスト押さえ部材40を挿入して固着するためのものである。このような段付円筒状軸受部材30は、スラスト押さえ部材用円筒部33,大径円筒部32及び小径円筒部31を上から順に切削等により形成することにより製作され、従って、閉塞端側には小径円筒部31が、開放端には大径円筒部32が形成されることになる。なお、円盤状スラスト押さえ部材40には、キャピラリーシールを構成するオイル溜Sが形成されている。
【0011】
かかる動圧流体軸受は、一つのラジアル動圧軸受部と、上側の第1スラスト軸受部及び下側の第2スラスト軸受部とからなる。ラジアル動圧軸受部は、フランジ付円柱状軸受部材20のラジアル軸受円柱部22の外周面と段付円筒状軸受部材30の小径円筒部31の内周面とで構成され、且つこれらの外周面と内周面の何れか一方に図4に示すようなラジアル動圧発生溝G1が形成され、他方は平坦面となる。第1スラスト軸受部は、円盤状スラスト軸受部21の上面と円盤状スラスト押さえ部材40の対向面である下面とで構成され、且つこれら上面と下面との何れか一方には、例えば、図5に示すようなスラスト動圧発生溝G2が形成され、他方は平坦面となる。さらに、第2スラスト動圧軸受部は、円盤状スラスト軸受部21の下面と段付円筒状軸受部材30の境界面34とで構成され、且つ、これらの下面と境界面34との何れか一方には図5に示すようなスラスト動圧発生溝G2が形成され、他方は平坦面となっている。
【0012】
上述の動圧流体軸受に実施例1〜4と比較例1及び2の潤滑油を使用し、60℃、回転数5000rpmの条件下で得られた駆動時間と、20℃、回転数5000rpmの条件下で得られた回転トルクを表1に示す。
【0013】
【表1】
Figure 0004374090
【0014】
実施例1〜4の潤滑油を用いた場合、3000時間以上の駆動時間が得られ、かつ回転トルクも13.6〜13.8g・cmと比較例1及び2に対して低減することが可能となる。
一方、比較例1の潤滑油を用いた場合には、変性ゲル化等の問題は発生しなかったが、回転トルクは18.2g・cmで実施例1〜4の値と比較して20%程度高くなり、消費電力を考慮すると実施例1〜4に対して不利である。
【0015】
一方、比較例2の潤滑油を用いた場合には、起動トルクが15.2g・cmと実施例1〜4より高く、加えて、1000時間の運転で変性ゲル化が生じることから、実施例1〜4の潤滑油が比較例1及び2に対して有利である。
上記6種類の潤滑油をガラス容器に注入し、100℃の条件下で恒温槽に保存し、720時間後の粘度、蒸発損失、体積抵抗率を表2に示す。
【0016】
【表2】
Figure 0004374090
【0017】
表2から明らかなように、粘度に関しては、比較例1及び2に対して実施例1〜4が低いことがわかる。また、蒸発損失に関しては、比較例2に対して実施例1〜4の蒸発損失が大幅に小さいが、比較例1に対して実施例1〜4の蒸発損失は若干大きくなっている。ただし、実施例1〜4の粘度が比較例1の粘度と比較して低いため、軸受部の摩擦熱等の影響から、動圧流体軸受搭載時の蒸発損失の差は小さくなる。また、体積抵抗率に関しては、アゾ系添加剤またはジアゾ系添加剤を使用した実施例2〜4が実施例1と比較例1及び2に対して大幅に低くなっている。前記動圧流体軸受を含むスピンドルモータを磁気ディスクドライブ装置に搭載する場合、潤滑油の体積抵抗率を低減することにより、磁気ディスク−動圧流体軸受−磁気ヘッド間の導通が確保されるため、磁気ヘッドの静電破壊防止対策として有効である。
【0018】
なお、本発明の動圧流体軸受用潤滑油は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて適宣変更可能である。例えば、本発明の実施形態に加えて、酸化防止剤や界面活性剤等の各種添加剤を使用したとしても、本発明の趣旨である低粘度及び低体積抵抗率の条件を逸脱しない限りにおいて適宣変更可能である。
【0019】
次に本発明の動圧流体軸受を一実施形態として、上述の動圧流体軸受を採用した本発明のスピンドルモータについて、図6を参照して説明する。
このスピンドルモータは、図1で説明した動圧流体軸受を構成する段付円筒状軸受部材30を固定しているベース50と、動圧流体軸受を構成する回転軸20に固定されたロータ51と、段付円筒状軸受部材30に圧入固着されたステータ52と、ステータ52に備えられたコイル53と、ロータ51に設けられた永久磁石54を備える。このスピンドルモータは、動圧流体軸受に搭載する潤滑油の基油として、ネオペンチルグリコールのカプリル酸とカプリン酸の混合エステルを使用しているため、上述したように消費電力と駆動時間の両方を改善することが可能となる。
【0020】
最後に、本発明の動圧流体軸受の一実施形態として、上述の動圧流体軸受及びスピンドルモータを搭載した磁気ディスクドライブ装置について、図7を参照して説明する。
この磁気ディスクドライブ装置は、上述した動圧流体軸受及びスピンドルモータを搭載しており、スピンドルモータのベース50が磁気ディスクドライブ装置のフレーム(図示しない)に固定されるようになっている。そしてハブ51の周辺部にハードディスク60が支持されて、ハブ51とハードディスク60はともに回転されるようになっている。
【0021】
尚、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて適宣変更可能である。例えば、本発明の実施形態について、ハードディスクを例に挙げて説明したが、CD、DVD−ROM、DVD−RAM等の光ディスクドライブ装置や光磁気ディスクドライブ装置にも十分適用可能である。
【0022】
【発明の効果】
このように、本発明は、基油としてネオペンチルグリコールのカプリル酸とカプリン酸の混合エステルを使用しているため、従来のセバシン酸ジオクチルやトリメチロールプロパンと1価脂肪酸から得られるトリエステルを基油とした潤滑油よりも粘度が低く、アジピン酸ジオクチルを基油とした潤滑油より、高温ゲル化の問題も少ない。このため、動圧流体軸受における最大の問題であるトルクの上昇がなく、耐久寿命の長くなる。
【0023】
また、潤滑油の体積抵抗率を1.0×1011Ω・cm以下に設定することにより、回転子−動圧流体軸受−固定子間の導通が確保されるため、電位差を低く抑えることができる。
さらに、潤滑油にアゾ化合物、又はジアゾ化合物を添加剤として加えることにより、金属との親和力を上げると同時に、潤滑油の体積抵抗率を1.0×1011Ω・cm以下に設定することが可能となる。
【0024】
また、スピンドルモータや回転体装置に動圧流体軸受を搭載することにより、システムとして消費電力を低減でき、駆動時間を大幅に向上させることが可能となる。また、光磁気ディスク等の回転体装置に用いる場合、磁気ヘッドの静電破壊防止対策としても有効である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る動圧流体軸受を示す概略断面図である。
【図2】本発明の一実施形態に係る動圧流体軸受のフランジ付円柱状軸受部材の断面図である。
【図3】本発明の一実施形態に係る動圧流体軸受の段付円筒状軸受部材の断面図である。
【図4】ラジアル動圧発生溝の一例を示す図である。
【図5】スラスト動圧発生溝の一例を示す図である。
【図6】本発明の一実施形態に係るスピンドルモータの断面図である。
【図7】本発明の一実施形態に係る磁気ディスクドライブ装置の概略図である。
【符号の説明】
20 フランジ付円柱状軸受部材
21 円盤状スラスト軸受部
22 ラジアル軸受用円柱部
23 支持用軸受部
30 段付円筒状軸受部材
31 小径円筒部
32 大径円筒部
33 スラスト押さえ部材用円筒部
34 境界面
40 円盤状スラスト押さえ部材
50 ベース
51 ロータ
52 ステータ
53 コイル
54 永久磁石
60 ハードディスク
S オイル溜
G1 ラジアル動圧発生溝
G2 スラスト動圧発生溝[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing that floats and supports a sliding surface of a rotating shaft by dynamic pressure generated by a dynamic pressure effect of a dynamic pressure groove provided on the shaft and the bearing surface, and more particularly, a polygon scanner of a laser beam printer (LBP). Models that require high rotational accuracy at high speed, such as spindle motors for rotating devices such as motors and magnetic disk drive devices (Hard Disk Drive), DVD (digital Versatile disk) -ROM, DVD-RAM, etc. It is suitable for a device that is driven at a high speed under a condition in which a large unbalance load is applied when a disk is mounted, such as a spindle motor for a rotating body device such as an optical disk drive device or a magneto-optical disk drive device.
[0002]
[Prior art]
The above-mentioned small spindle motors related to information equipment are required to further improve the rotational performance and reduce the cost. As a means for that purpose, the bearing surface has a herringbone type or a spiral type. Consideration is being given to replacing the bearing with a hydrodynamic bearing that can provide pressure grooves and enhance the bearing function such as radial rigidity by the dynamic pressure effect accompanying the rotation of the shaft, while eliminating unstable vibration.
[0003]
On the other hand, the characteristics of the lubricating oil required for the hydrodynamic bearing are low evaporation characteristics, low viscosity, little sludge generation during use, wide use temperature range, excellent lubricity, and long life. As the lubricating oil having the above characteristics, ester base oils are mainly used for hydrodynamic bearings. For example, trimethylolpropane and monovalent fatty acids as disclosed in JP-A-1-188592 are used. What mixed the hindered phenolic antioxidant with the triester obtained is used. In addition, dioctyl sebacate as disclosed in JP-A-9-177766 is mixed with 1 to 3% by weight of phthalic acid monoethyl ester with respect to the base oil. The above lubricating oil has excellent characteristics such as low torque, good initial fit and good durability as a dedicated fluid for dynamic fluid bearings, but has a base oil viscosity of 11 to 31 cSt (40 ° C.). At present, the low temperature startability and the rotational torque are high and the required performance is not satisfied.
[0004]
On the other hand, when a lubricant with a volume resistivity of 1.0 × 10 12 Ω · cm or more is used for a magnetic disk drive spindle motor, such as dioctyl sebacate, charges accumulate on the magnetic disk during hydrodynamic fluid bearing operation. Thus, a potential difference is generated between the magnetic head and, in the worst case, electrostatic breakdown of the magnetic head may occur. This is because, in the hydrodynamic bearing, unlike the conventional bearing using a ball bearing, the continuity between the magnetic head and the hard disk cannot be ensured in the operating state of the hydrodynamic bearing.
[0005]
Accordingly, an object of the present invention is to provide a hydrodynamic bearing having a long durability life and a reduced potential difference between the shaft and the bearing by using a lubricating oil having low viscosity and low evaporation loss and low volume resistivity. It is an object of the present invention to provide a spindle motor and a rotating body device equipped with a hydrodynamic bearing.
[0006]
[Means for Solving the Problems]
In a first aspect of the present invention for solving the above-mentioned problems, the base oil is composed of a mixed ester of caprylic acid and capric acid of neopentyl glycol, and includes an azo compound or a diazo compound. It is a hydrodynamic bearing using a fluid bearing lubricant. A second aspect of the present invention, in a first aspect, an azo compound or a diazo compound, lubricating hydrodynamic bearing, characterized in that it is added 0.01 wt% of the base oil It is a hydrodynamic bearing using oil.
[0007]
Here, the mixed ester of caprylic acid and capric acid of neopentyl glycol is represented by the following chemical formula, for example.
[0008]
[Chemical 1]
Figure 0004374090
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
Example 1
A mixed ester of caprylic acid and capric acid of neopentyl glycol was used as a lubricating oil.
(Example 2)
1 part by weight of 2,2′-azobis (2-methylpropanonitrile) was added to 100 parts by weight of a mixed ester of neopentyl glycol caprylic acid and capric acid to obtain a lubricating oil.
(Example 3)
A lubricating oil was obtained by adding 1 part by weight of 2,2′-azobisbenzylmethane to 100 parts by weight of a mixed ester of caprylic acid and capric acid of neopentyl glycol.
(Example 4)
1 part by weight of p-dimethylaminoazobenzene was added to 100 parts by weight of mixed ester of caprylic acid and capric acid of neopentyl glycol to obtain a lubricating oil.
(Comparative Example 1)
Dioctyl sebacate was used alone as a lubricating oil.
(Comparative Example 2)
Dioctyl adipate was used alone as a lubricant.
[0010]
The lubricating oils of the above-described examples and comparative examples were used in the hydrodynamic bearing shown in FIGS.
FIG. 1 is a schematic sectional view of a hydrodynamic bearing.
The hydrodynamic fluid bearing portion shown in FIG. 1 includes a columnar bearing member 20 with a flange, a stepped cylindrical bearing member 30, and a discoid thrust holding member 40. As shown in FIG. 2, the flanged columnar bearing member 20 has a disk-like thrust bearing portion 21 at the center in the axial direction, a radial bearing columnar portion 22 at the lower side, and a supporting columnar portion 23 at the upper side. Have each. As shown in FIG. 3, the stepped cylindrical bearing member 30 includes a small-diameter cylindrical portion 31 into which the radial bearing column portion 22 of the flanged columnar bearing member 20 is rotatably inserted, and a disc-shaped thrust bearing portion 21. And a large-diameter cylindrical portion 32 that is rotatably inserted. These two cylindrical portions are coaxially provided adjacent to each other, and a boundary surface 34 exists between the two. The cylindrical portion 33 formed coaxially adjacent to the large-diameter cylindrical portion 32 is a disc-shaped thrust that seals by applying a capillary seal to the open end of the large-diameter cylindrical portion 32, that is, the open end of the stepped cylindrical bearing member 30. The pressing member 40 is inserted and fixed. Such a stepped cylindrical bearing member 30 is manufactured by forming the thrust holding member cylindrical portion 33, the large diameter cylindrical portion 32, and the small diameter cylindrical portion 31 in order from the top by cutting or the like. A small-diameter cylindrical portion 31 is formed, and a large-diameter cylindrical portion 32 is formed at the open end. The disc-like thrust holding member 40 is formed with an oil reservoir S that constitutes a capillary seal.
[0011]
Such a hydrodynamic bearing is composed of one radial dynamic pressure bearing portion, an upper first thrust bearing portion, and a lower second thrust bearing portion. The radial dynamic pressure bearing portion is constituted by the outer peripheral surface of the radial bearing column portion 22 of the flanged columnar bearing member 20 and the inner peripheral surface of the small-diameter cylindrical portion 31 of the stepped cylindrical bearing member 30, and these outer peripheral surfaces. As shown in FIG. 4, a radial dynamic pressure generating groove G1 is formed on one of the inner peripheral surfaces and the other is a flat surface. The first thrust bearing portion is composed of an upper surface of the disc-shaped thrust bearing portion 21 and a lower surface which is a facing surface of the disc-shaped thrust holding member 40, and any one of these upper and lower surfaces is, for example, FIG. A thrust dynamic pressure generating groove G2 as shown in FIG. 2 is formed, and the other is a flat surface. Further, the second thrust dynamic pressure bearing portion is configured by the lower surface of the disc-shaped thrust bearing portion 21 and the boundary surface 34 of the stepped cylindrical bearing member 30, and either one of the lower surface or the boundary surface 34. 5, a thrust dynamic pressure generating groove G2 as shown in FIG. 5 is formed, and the other is a flat surface.
[0012]
Using the lubricating oils of Examples 1 to 4 and Comparative Examples 1 and 2 for the hydrodynamic bearing described above, the driving time obtained under the conditions of 60 ° C. and a rotational speed of 5000 rpm, and the conditions of 20 ° C. and the rotational speed of 5000 rpm The rotational torque obtained below is shown in Table 1.
[0013]
[Table 1]
Figure 0004374090
[0014]
When the lubricating oils of Examples 1 to 4 are used, a driving time of 3000 hours or more can be obtained, and the rotational torque can be reduced to 13.6 to 13.8 g · cm as compared with Comparative Examples 1 and 2. It becomes.
On the other hand, when the lubricating oil of Comparative Example 1 was used, problems such as denaturation gelation did not occur, but the rotational torque was 18.2 g · cm, which was 20% compared with the values of Examples 1 to 4. When the power consumption is considered, it is disadvantageous to the first to fourth embodiments.
[0015]
On the other hand, when the lubricating oil of Comparative Example 2 is used, the starting torque is 15.2 g · cm, which is higher than those of Examples 1 to 4, and in addition, the modified gelation occurs after 1000 hours of operation. 1-4 lubricating oils are advantageous over Comparative Examples 1 and 2.
The above six types of lubricating oil are poured into a glass container and stored in a thermostatic bath at 100 ° C., and the viscosity, evaporation loss, and volume resistivity after 720 hours are shown in Table 2.
[0016]
[Table 2]
Figure 0004374090
[0017]
As is clear from Table 2, it can be seen that Examples 1-4 are lower than Comparative Examples 1 and 2 in terms of viscosity. Regarding the evaporation loss, the evaporation loss of Examples 1 to 4 is significantly smaller than that of Comparative Example 2, but the evaporation loss of Examples 1 to 4 is slightly larger than that of Comparative Example 1. However, since the viscosities of Examples 1 to 4 are lower than the viscosities of Comparative Example 1, the difference in evaporation loss when the hydrodynamic bearing is mounted is reduced due to the influence of frictional heat and the like of the bearing portion. Moreover, regarding the volume resistivity, Examples 2 to 4 using an azo-based additive or a diazo-based additive are significantly lower than Example 1 and Comparative Examples 1 and 2. When a spindle motor including the hydrodynamic bearing is mounted on a magnetic disk drive device, by reducing the volume resistivity of the lubricating oil, conduction between the magnetic disk, the hydrodynamic fluid bearing, and the magnetic head is ensured. This is effective as a countermeasure for preventing electrostatic breakdown of magnetic heads.
[0018]
The lubricating oil for hydrodynamic bearings of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, even if various additives such as an antioxidant and a surfactant are used in addition to the embodiment of the present invention, they are suitable as long as they do not deviate from the low viscosity and low volume resistivity conditions which are the gist of the present invention. It can be changed.
[0019]
Next, a spindle motor of the present invention that employs the above-described hydrodynamic fluid bearing will be described with reference to FIG.
This spindle motor includes a base 50 that fixes the stepped cylindrical bearing member 30 that constitutes the hydrodynamic fluid bearing described in FIG. 1, and a rotor 51 that is secured to the rotary shaft 20 that constitutes the hydrodynamic bearing. The stator 52 is press-fitted and fixed to the stepped cylindrical bearing member 30, the coil 53 is provided in the stator 52, and the permanent magnet 54 is provided in the rotor 51. Since this spindle motor uses a mixed ester of caprylic acid and capric acid of neopentyl glycol as the base oil of the lubricating oil to be mounted on the hydrodynamic bearing, both power consumption and driving time are reduced as described above. It becomes possible to improve.
[0020]
Finally, as an embodiment of the hydrodynamic bearing of the present invention, a magnetic disk drive apparatus equipped with the above hydrodynamic bearing and spindle motor will be described with reference to FIG.
This magnetic disk drive apparatus is equipped with the above-described hydrodynamic bearing and spindle motor, and the spindle motor base 50 is fixed to a frame (not shown) of the magnetic disk drive apparatus. The hard disk 60 is supported on the periphery of the hub 51, and both the hub 51 and the hard disk 60 are rotated.
[0021]
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the embodiment of the present invention has been described by taking a hard disk as an example. However, the present invention is sufficiently applicable to an optical disk drive device such as a CD, a DVD-ROM, and a DVD-RAM, and a magneto-optical disk drive device.
[0022]
【The invention's effect】
Thus, since the present invention uses a mixed ester of caprylic acid and capric acid of neopentyl glycol as the base oil, it is based on a triester obtained from conventional dioctyl sebacate or trimethylolpropane and a monovalent fatty acid. The viscosity is lower than that of the lubricating oil used as an oil, and the problem of high-temperature gelation is less than that of a lubricating oil based on dioctyl adipate. For this reason, there is no increase in torque, which is the biggest problem in the hydrodynamic bearing, and the durability life is prolonged.
[0023]
Further, by setting the volume resistivity of the lubricating oil to 1.0 × 10 11 Ω · cm or less, conduction between the rotor, the hydrodynamic fluid bearing, and the stator is ensured, so that the potential difference can be kept low. it can.
Furthermore, by adding an azo compound or a diazo compound as an additive to the lubricating oil, the affinity with the metal can be increased, and at the same time, the volume resistivity of the lubricating oil can be set to 1.0 × 10 11 Ω · cm or less. It becomes possible.
[0024]
Further, by mounting the hydrodynamic bearing on the spindle motor or the rotating body device, the power consumption of the system can be reduced, and the driving time can be greatly improved. Further, when used in a rotating body device such as a magneto-optical disk, it is also effective as a countermeasure for preventing electrostatic breakdown of the magnetic head.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a hydrodynamic bearing according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a flanged cylindrical bearing member of a hydrodynamic bearing according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a stepped cylindrical bearing member of a hydrodynamic bearing according to an embodiment of the present invention.
FIG. 4 is a diagram showing an example of a radial dynamic pressure generating groove.
FIG. 5 is a diagram showing an example of a thrust dynamic pressure generating groove.
FIG. 6 is a cross-sectional view of a spindle motor according to an embodiment of the present invention.
FIG. 7 is a schematic view of a magnetic disk drive device according to an embodiment of the present invention.
[Explanation of symbols]
20 Cylindrical bearing member 21 with flange 21 Disc-shaped thrust bearing portion 22 Cylindrical portion for radial bearing 23 Support bearing portion 30 Stepped cylindrical bearing member 31 Small diameter cylindrical portion 32 Large diameter cylindrical portion 33 Thrust holding member cylindrical portion 34 Boundary surface 40 Disc-shaped thrust holding member 50 Base 51 Rotor 52 Stator 53 Coil 54 Permanent magnet 60 Hard disk S Oil reservoir G1 Radial dynamic pressure generating groove G2 Thrust dynamic pressure generating groove

Claims (5)

軸または軸受面本体にスラスト及びラジアル方向に対して形成された動圧溝の動圧効果で、軸受隙間に動圧を発生することによって回転軸を非接触支持する動圧流体軸受において、前記動圧流体軸受に使用される潤滑油の基油が、ネオペンチルグリコールのカプリル酸とカプリン酸の混合エステルであり、前記基油に使用する添加剤に、アゾ系化合物、又は、ジアゾ系化合物が含まれていることを特徴とする動圧流体軸受。In the hydrodynamic bearing that supports the rotary shaft in a non-contact manner by generating dynamic pressure in the bearing gap by the dynamic pressure effect of the dynamic pressure grooves formed in the thrust or radial direction on the shaft or the bearing surface body. The base oil of the lubricating oil used in the hydrodynamic bearing is a mixed ester of caprylic acid and capric acid of neopentyl glycol, and the additive used for the base oil contains an azo compound or a diazo compound. A hydrodynamic bearing characterized by the above . 前記潤滑油の体積抵抗率が、1.0×1011Ω・cm以下であることを特徴とする請求項1記載の動圧流体軸受。2. The hydrodynamic bearing according to claim 1, wherein a volume resistivity of the lubricating oil is 1.0 × 10 11 Ω · cm or less. 前記添加剤に含まれるアゾ系化合物、又は、ジアゾ系化合物が0.01〜1重量%添加されていることを特徴とする請求項1又は2記載の動圧流体軸受。The hydrodynamic bearing according to claim 1 or 2, wherein 0.01 to 1 wt% of an azo compound or a diazo compound contained in the additive is added . 請求項1〜3のいずれかに記載の動圧流体軸受を搭載したスピンドルモータ。A spindle motor equipped with the hydrodynamic bearing according to claim 1. 請求項4記載のスピンドルモータを搭載した回転体装置。A rotating body device on which the spindle motor according to claim 4 is mounted.
JP14813099A 1999-05-27 1999-05-27 Hydrodynamic bearing, spindle motor, and rotating body device Expired - Fee Related JP4374090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14813099A JP4374090B2 (en) 1999-05-27 1999-05-27 Hydrodynamic bearing, spindle motor, and rotating body device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14813099A JP4374090B2 (en) 1999-05-27 1999-05-27 Hydrodynamic bearing, spindle motor, and rotating body device

Publications (2)

Publication Number Publication Date
JP2000336383A JP2000336383A (en) 2000-12-05
JP4374090B2 true JP4374090B2 (en) 2009-12-02

Family

ID=15445941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14813099A Expired - Fee Related JP4374090B2 (en) 1999-05-27 1999-05-27 Hydrodynamic bearing, spindle motor, and rotating body device

Country Status (1)

Country Link
JP (1) JP4374090B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351356C (en) * 2001-05-15 2007-11-28 松下电器产业株式会社 Lubricant composition and analysis method for same
JP2003105369A (en) * 2001-09-28 2003-04-09 Cimeo Precision Co Ltd Lubricant for hydrodynamic bearing
US20050282713A1 (en) * 2004-03-31 2005-12-22 Matsushita Electric Industrial Co., Ltd. Hydrodynamic bearing device and spindle motor using the same
US7737095B2 (en) 2004-08-30 2010-06-15 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information device using the same
JP2006083321A (en) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Lubricating oil composition, kinetic liquid bearing and motor loading liquid bearing using the same composition
JP2006105207A (en) 2004-10-01 2006-04-20 Matsushita Electric Ind Co Ltd Fluid bearing device, spindle motor using the same, and disk driving device using the spindle motor
JP5732046B2 (en) * 2010-03-31 2015-06-10 新日鉄住金化学株式会社 Lubricating oil composition
JP5719836B2 (en) * 2010-03-31 2015-05-20 新日鉄住金化学株式会社 Lubricating oil composition

Also Published As

Publication number Publication date
JP2000336383A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
JP3099033B2 (en) Bearing device
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP4374090B2 (en) Hydrodynamic bearing, spindle motor, and rotating body device
JP2008064302A (en) Hydrodynamic bearing device
JP2006105207A (en) Fluid bearing device, spindle motor using the same, and disk driving device using the spindle motor
US7178983B2 (en) Spindle motor and magnetic disk drive
JP2006193723A (en) Liquid bearing device, spindle motor given by using the same, and information device
JP4373928B2 (en) Spindle motor for disk drive
KR100528329B1 (en) Spindle motor for hard disk drive
JP2006304565A (en) Brushless electric motor and its manufacturing method
JP2001139971A (en) Lubricant, hydrodynamic bearing, spindle motor and rotator
JP2002195252A (en) Fluid bearing device and scanner motor for image forming apparatus using bearing device
JP2000063860A (en) Fluid bearing
JP6888500B2 (en) Lubricating oil for fluid dynamic bearings, fluid dynamic bearings and spindle motors
JP2001208069A (en) Spindle motor with liquid bearing
JPH11311253A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP3140027B2 (en) Spindle motor for disk
KR100453332B1 (en) Fluid dynamic bearing spindle motor
KR100281933B1 (en) motor
KR100282265B1 (en) motor
WO2013027764A1 (en) Lubricant base oil for fluid dynamic bearing, lubricant for fluid dynamic bearing containing lubricant base oil for fluid dynamic bearing, and spindle motor provided with lubricant for fluid dynamic bearing
JP2007063505A (en) Lubricant oil for fluid bearing motor and bearing motor using the same
JP2001146918A (en) Fluid bearing device and polygon mirror scanner unit
KR20010038339A (en) Spindle motor
JP2004067957A (en) Lubricating oil for bearing and motor using it

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20010710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees