JP2000203959A - Water permeable ceramic block and its production - Google Patents

Water permeable ceramic block and its production

Info

Publication number
JP2000203959A
JP2000203959A JP30677899A JP30677899A JP2000203959A JP 2000203959 A JP2000203959 A JP 2000203959A JP 30677899 A JP30677899 A JP 30677899A JP 30677899 A JP30677899 A JP 30677899A JP 2000203959 A JP2000203959 A JP 2000203959A
Authority
JP
Japan
Prior art keywords
weight
water
aggregate
particles
ceramic block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30677899A
Other languages
Japanese (ja)
Inventor
Tadashi Miyake
直史 三宅
Akihiro Tokuda
章博 徳田
Eizo Goto
栄三 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30677899A priority Critical patent/JP2000203959A/en
Publication of JP2000203959A publication Critical patent/JP2000203959A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/108Burned or pyrolised refuse involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Road Paving Structures (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Processing Of Solid Wastes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a water permeable ceramic block excellent in water- holding capacity as well as in water permeability and strength and suitable for paving sidewalks, parks or other squares. SOLUTION: The water permeable ceramic block is produced by a process including a step for molding a mixture containing at least an aggregate and a binder and a step for firing the resulting molding in a temperature range of 800-1,200 deg.C. The aggregate demons trates diffraction peaks by X-ray diffraction, has the crystal structure of a multiple oxide containing at least CaO and SiO2 or CaO, Al2O3 and SiO2 and contains >=75 wt.% molten slag of sewage sludge and/or molten slag of garbage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大量に発生する下
水汚泥溶融スラグやゴミ溶融スラグを有効利用し、たと
えば、車道、歩道などの道路構造物や、公園その他の広
場、駐車場、各種建造物(ビルなど)の外構の舗装に適
した透水性セラミックブロックおよびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes effective use of sewage sludge melting slag and refuse melting slag generated in large quantities, for example, road structures such as roads and sidewalks, parks and other plazas, parking lots, and various types of construction. The present invention relates to a water-permeable ceramic block suitable for paving the exterior of a product (such as a building) and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、雨水を地中に還元することによっ
て下水道や都市河川に流入する雨水を低減し、下水処理
場の負担を軽減したり、河川の氾濫を防止したりするこ
とが重要な課題となっている。また、雨水を地中に還元
することによって地下水の枯渇を防ぎ、地盤沈下を防止
したり、都市部における植栽を促進したりすることも重
要なことである。さらに、降雨時の跳ね返りが少なく、
水たまりのできにくい、歩行感に優れた歩道も要求され
ている。透水性ブロックは、このような要求を満たすの
に好適な材料として注目されている。
2. Description of the Related Art In recent years, it is important to reduce rainwater flowing into sewers and urban rivers by reducing rainwater into the ground, thereby reducing the burden on sewage treatment plants and preventing flooding of rivers. It has become a challenge. It is also important to reduce rainwater into the ground to prevent the depletion of groundwater, prevent land subsidence, and promote planting in urban areas. Furthermore, there is little rebound during rainfall,
There is also a demand for sidewalks that are less likely to be puddleed and have a better walking feeling. The water-permeable block has attracted attention as a material suitable for satisfying such requirements.

【0003】このような透水性ブロックの製造方法とし
ては、下水汚泥を原料とし、これを溶融スラグ化して透
水ブロックを製造する方法が、特公平7−42176号
公報に示されている。この製造方法はブロックを焼成す
る過程において骨材の結晶化を進行させて、骨材強度を
高める方法である。
As a method of manufacturing such a water-permeable block, Japanese Patent Publication No. 7-42176 discloses a method of manufacturing a water-permeable block by using sewage sludge as a raw material and converting it into a molten slag. This manufacturing method is a method in which the crystallization of the aggregate proceeds in the process of firing the block to increase the aggregate strength.

【0004】しかしながら、この従来の透水ブロックに
おいては、ブロックの寸法安定性を維持するために、焼
成条件に制約があり、よって骨材の結晶化の進行が不充
分で、強度に限界があり、透水性を高める代わりに強度
が低くなったり、逆に強度の低下を防ぐため、骨材粒径
を小さくしたりしているが、透水性が充分でない。その
ため、下水処理場やゴミ処理場を持つ自治体などでは、
下水汚泥溶融スラグやゴミ溶融スラグの有効な利用方法
を見つけられないでいる。
However, in this conventional water-permeable block, firing conditions are limited in order to maintain the dimensional stability of the block, and therefore the progress of crystallization of the aggregate is insufficient, and the strength is limited. Although the strength is lowered instead of increasing the water permeability, or the aggregate particle size is reduced to prevent the strength from decreasing, the water permeability is not sufficient. Therefore, in municipalities with sewage treatment plants and garbage treatment plants,
They have not found an effective way to use sewage sludge melting slag or waste melting slag.

【0005】[0005]

【発明が解決しようとする課題】この発明の目的は、従
来の透水性ブロックの上述した問題点を解決し、透水性
や強度に優れているばかりか、保水性に優れ、特に歩
道、公園その他の広場を舗装するのに好適な透水性セラ
ミックブロックおよびその製造方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional water-permeable block, and not only to have excellent water permeability and strength, but also excellent water retention, especially for sidewalks, parks and the like. It is an object of the present invention to provide a permeable ceramic block suitable for paving a plaza and a method for manufacturing the same.

【0006】また、処分に困っている下水汚泥溶融スラ
グやゴミ溶融スラグを主骨材とすることで有効利用を図
ることも目的のひとつである。
Another object is to use sewage sludge melting slag or refuse melting slag, which is difficult to dispose of, as the main aggregate for effective use.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、少なくとも下記aおよびbを含む混合
物を成形する工程と、成形体を800〜1,200℃の
範囲で焼成する工程とを含むことを特徴とする透水性セ
ラミックブロックの製造方法を提供する。
In order to achieve the above-mentioned object, the present invention provides a step of forming a mixture containing at least the following a and b, and a step of firing a formed body at a temperature of 800 to 1,200 ° C. And a method for producing a water-permeable ceramic block.

【0008】a.X線回折により回折ピークが得られ、
少なくとも、CaOとSiO2、またはCaOとAl23
SiO2とを含む複酸化物の結晶構造を有している、下水
汚泥溶融スラグおよび/またはゴミ溶融スラグを75重
量%以上含む骨材。
A. A diffraction peak is obtained by X-ray diffraction,
Aggregate containing at least 75% by weight of sewage sludge melting slag and / or dust melting slag having a crystal structure of at least CaO and SiO 2 or a complex oxide containing CaO, Al 2 O 3 and SiO 2. .

【0009】b.バインダー。B. binder.

【0010】また、好ましくは少なくとも下記a、bを
含む混合物を成形する工程と、成形体を800〜1,2
00℃の範囲で焼成する工程とを含むことを特徴とする
透水性セラミックブロックの製造方法を提供する。
Preferably, a step of molding a mixture containing at least the following a and b, and
And baking at a temperature in the range of 00 ° C.

【0011】a.X線回折により回折ピークが得られ、
少なくとも、CaOとSiO2、または、CaOとAl23
とSiO2とを含む複酸化物の結晶構造を有し、かつ、粒
径が0.5mm以下の粒子を3〜12重量%の範囲内で
含む、下水汚泥溶融スラグおよび/またはゴミ溶融スラ
グを80〜95重量%の範囲内で含む骨材。
A. A diffraction peak is obtained by X-ray diffraction,
At least CaO and SiO 2 , or CaO and Al 2 O 3
A sewage sludge melting slag and / or dust melting slag having a crystal structure of a double oxide containing TiO 2 and SiO 2 and having a particle size of 0.5 mm or less in a range of 3 to 12% by weight. Aggregate containing in the range of 80-95% by weight.

【0012】b.バインダー。B. binder.

【0013】ここで、CaOとSiO2、または、CaOと
Al23とSiO2とを含む複酸化物としては、アノルサ
イト(CaO・2SiO2・Al23)やβ−ウォラス
トナイト(CaO・SiO2)、ゲーレナイト(2Ca
O・SiO2・Al23)などが好ましい。
Here, as a composite oxide containing CaO and SiO 2 or CaO, Al 2 O 3 and SiO 2 , anorthite (CaO.2SiO 2 .Al 2 O 3 ) or β-wollastonite ( CaO.SiO 2 ), Gehlenite (2Ca
O.SiO 2 .Al 2 O 3 ) and the like are preferable.

【0014】また、上記の下水汚泥溶スラグやゴミ溶融
スラグは、徐冷または再熱処理により結晶化されている
ものが好ましい。特に、結晶質の徐冷スラグを粉砕、分
級により粒度調整されたものであることが好ましい。さ
らに、水砕スラグまたは空冷スラグを再熱処理により結
晶化させ、所望の粒度に調整されたものであることが好
ましい。スラグを粒状で結晶質に改質することにより、
寸法安定性を考慮せずに理想的な温度条件で結晶化が進
行するため、強度に優れ、熱的に安定化された骨材とな
る。
It is preferable that the sewage sludge-dissolving slag and the waste melting slag are crystallized by slow cooling or re-heat treatment. In particular, it is preferable that the crystalline slow-cooled slag has been subjected to particle size adjustment by pulverization and classification. Further, it is preferable that the granulated slag or air-cooled slag is crystallized by reheat treatment and adjusted to a desired particle size. By modifying the slag to be granular and crystalline,
Since crystallization proceeds under ideal temperature conditions without considering dimensional stability, an aggregate having excellent strength and thermally stabilized can be obtained.

【0015】上記の骨材は、最大粒径が9.5mm以下
であり、粒径が4.75mm以下の粒子を80重量%以
上含み、粒径が0.5mm以下の粒子を7〜25重量%
の範囲内で含んでいると好ましい。
The above aggregate has a maximum particle size of 9.5 mm or less, contains 80% by weight or more of particles having a particle size of 4.75 mm or less, and contains 7 to 25% by weight of particles having a particle size of 0.5 mm or less. %
It is preferable that it is contained within the range of.

【0016】また、粒径が0.5mm以下の粒子とし
て、陶磁器質粒子を50重量%以上含むものを用いると
好ましい。
Further, it is preferable to use, as the particles having a particle size of 0.5 mm or less, those containing 50% by weight or more of ceramic particles.

【0017】さらに、上述の方法による混合物を成形す
る工程において、成形されるブロックの厚みを20〜8
5mmの範囲内とし、その上に、骨材を含む表層材料を
積層して焼成することも好ましい。この場合、最大粒径
が5.0mm以下であり、粒径が0.5mm以下である
粒子の含有量が10重量%以下であり、かつ、磁器質粒
子の含有量が50重量%以上である骨材を含む表層材料
を用いるとより好ましい。
Further, in the step of molding the mixture by the above method, the thickness of the molded block is set to 20 to 8
It is also preferable that the thickness is within a range of 5 mm, and a surface layer material including an aggregate is laminated thereon and fired. In this case, the maximum particle size is 5.0 mm or less, the content of particles having a particle size of 0.5 mm or less is 10% by weight or less, and the content of porcelain particles is 50% by weight or more. It is more preferable to use a surface material containing an aggregate.

【0018】また、バインダーとして、長石、粘土、天
然石、陶磁器、下水汚泥溶融スラグ、ゴミ溶融スラグ、
下水汚泥焼却灰、ゴミ焼却灰およびガラスからなる群か
ら選ばれる少なくとも1種の材料を粉末としたものを用
いることが好ましい。
As binders, feldspar, clay, natural stone, porcelain, sewage sludge melting slag, refuse melting slag,
It is preferable to use powder of at least one material selected from the group consisting of sewage sludge incineration ash, refuse incineration ash, and glass.

【0019】さらに、上記の成形には、振動プレスを用
いるのが好ましい。
Further, it is preferable to use a vibration press for the above-mentioned molding.

【0020】また、本発明では、下水汚泥溶融スラグお
よび/またはゴミ溶融スラグを80〜95重量%含む骨
材とバインダーとを含み、かつ、X線回折により得られ
る、CaOとSiO2、または、CaOとAl23とS
iO2とを含む複酸化物の結晶構造に起因する回折ピー
クから求められる結晶性成分の含有量が50〜100重
量%の範囲内にあり、かつ、平均曲げ強度が8MPa以
上である透水性セラミックブロックを提供する。
Further, according to the present invention, CaO and SiO 2 , which contain an aggregate containing 80 to 95% by weight of sewage sludge melting slag and / or dust melting slag and a binder and are obtained by X-ray diffraction, or CaO, Al 2 O 3 and S
a water-permeable ceramic having a content of a crystalline component determined from a diffraction peak caused by a crystal structure of a complex oxide containing iO 2 in the range of 50 to 100% by weight and having an average bending strength of 8 MPa or more; Provide blocks.

【0021】さらに、上記において、複酸化物が、アノ
ルサイト、β−ウォラストナイトおよびゲーレナイトか
らなる群から選ばれる少なくとも1種である透水性セラ
ミックブロックであると好ましい。
Further, in the above, it is preferable that the double oxide is a water-permeable ceramic block which is at least one selected from the group consisting of anorthite, β-wollastonite and gehlenite.

【0022】なお、本発明において平均曲げ強度とは、
10個のブロックについてJISA1106により曲げ
強さの測定を行い得られた値の平均値をいう。
In the present invention, the average bending strength is
The average value of the values obtained by measuring the bending strength of 10 blocks according to JIS A1106.

【0023】また、本発明において、X線回折に基づく
結晶性成分の含有量は、以下に示す方法により得られる
値をいう。
In the present invention, the content of the crystalline component based on X-ray diffraction means a value obtained by the following method.

【0024】結晶性成分の含有量は、Cu−Kα線を用
いたX線回折によって得られる回折角(2θ)が20〜
55゜の範囲に存在する回折ピークのうち、CaOとS
iO 2、または、CaOとAl23とSiO2とを含む複
酸化物の結晶構造に起因する回折ピークから求める。
The content of the crystalline component is determined by using Cu-Kα ray.
Diffraction angle (2θ) obtained by X-ray diffraction
Among diffraction peaks existing in the range of 55 °, CaO and S
iO TwoOr CaO and AlTwoOThreeAnd SiOTwoAnd including
It is determined from a diffraction peak due to the crystal structure of the oxide.

【0025】CaOとSiO2、または、CaOとAl2
3とSiO2とを含む複酸化物の結晶成分の定量化は内
部標準法により行う。
CaO and SiO 2 , or CaO and Al 2
Quantification of the crystal component of the double oxide containing O 3 and SiO 2 is performed by an internal standard method.

【0026】まず、定量化したい結晶の純粋な粉末試料
と、標準試料として純粋なアルミナ粉末(合成コランダ
ム(α−Al23))を準備する。この純粋な結晶粉末
と純アルミナ粉末を1:1の重量比に混合し、X線回折
を行い、両者の主回折ピークの強度比を調べ、標準デー
タとする。
First, a pure powder sample of a crystal to be quantified and a pure alumina powder (synthetic corundum (α-Al 2 O 3 )) are prepared as a standard sample. The pure crystal powder and the pure alumina powder are mixed at a weight ratio of 1: 1 and subjected to X-ray diffraction, and the intensity ratio between the main diffraction peaks of the two is examined and used as standard data.

【0027】次いで、下水汚泥溶融スラグやゴミ溶融ス
ラグの粉砕物と純アルミナ粉末を1:1の重量比に混合
し、X線回折を行い、上記と同様に両者のピーク強度を
調べ、標準データと比較することにより、定量化したい
結晶性成分の重量%を得ることができる。CaOとSi
2、または、CaOとAl23とSiO2とを含む複酸
化物としては、アノルサイト(CaO・2SiO2・A
23)やβ−ウォラストナイト(CaO・Si
2)、ゲーレナイト(2CaO・SiO2・Al23
などがあり、それぞれの結晶について、上記の測定を行
い、それらの結晶性成分の総和を結晶性成分の含有量と
する。
Next, the sewage sludge melting slag and the refuse melting slag pulverized material and pure alumina powder were mixed at a weight ratio of 1: 1 and subjected to X-ray diffraction. By comparing with, the weight% of the crystalline component to be quantified can be obtained. CaO and Si
O 2 or a complex oxide containing CaO, Al 2 O 3, and SiO 2 includes anorthite (CaO.2SiO 2 .A
l 2 O 3 ) and β-wollastonite (CaO.Si)
O 2 ), Gehlenite (2CaO.SiO 2 .Al 2 O 3 )
The above measurement is performed for each crystal, and the sum of the crystalline components is defined as the content of the crystalline component.

【0028】[0028]

【発明の実施の形態】以下、本発明の透水性ブロックの
製造方法の好ましい実施の形態を各工程毎にさらに詳細
に説明する。 I.基層材料の調製工程:この工程においては、骨材に
成形用糊剤、バインダーを添加、混合して基層材料を調
製する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for producing a water-permeable block according to the present invention will be described below in more detail for each step. I. Step of preparing base layer material: In this step, a forming paste and a binder are added to the aggregate and mixed to prepare a base layer material.

【0029】骨材とは、一般に、砂や砂利、砕石などの
粒状のものをいい、透水性セラミックブロックの主たる
原料となる材料である。骨材は、適度な粒度を有し、ま
た、堅硬で、焼成時にもその熱に耐え、形状をほぼ保つ
ものである。一部、微粒成分を含んでも構わない。焼成
時には、部分的に融着が発生することもある。
The aggregate generally refers to a granular material such as sand, gravel or crushed stone, and is a material that is a main raw material of a water-permeable ceramic block. The aggregate has an appropriate particle size, is hard and hard, can withstand the heat even during firing, and substantially retains its shape. Partially, fine particles may be included. At the time of firing, partial fusion may occur.

【0030】本発明に用いる骨材は、X線回折により回
折ピークが得られ、少なくとも、CaOとSiO2、また
は、CaOとAl23とSiO2とを含む複酸化物の結晶構
造を有している、下水汚泥溶融スラグおよび/またはゴ
ミ溶融スラグを75重量%以上含んでいる。骨材は、最
大粒径が9.5mm以下、その粒径分布が4.75mm
以下の粒子が80重量%以上、かつ、0.5mm以下の
粒子が7〜25重量%の範囲であると好ましい。また、
上記に加えて、粒径が1.18〜0.5mmの範囲内に
ある粒子が5〜30重量%の範囲内で含んでいることも
好ましい。
The aggregate used in the present invention has a diffraction peak obtained by X-ray diffraction and has a crystal structure of at least CaO and SiO 2 , or a complex oxide containing CaO, Al 2 O 3 and SiO 2. The sewage sludge melting slag and / or refuse melting slag in an amount of 75% by weight or more. The aggregate has a maximum particle size of 9.5 mm or less and a particle size distribution of 4.75 mm.
The following particles are preferably 80% by weight or more, and the particles having a size of 0.5 mm or less are preferably in the range of 7 to 25% by weight. Also,
In addition to the above, it is also preferable that particles having a particle size in the range of 1.18 to 0.5 mm are contained in the range of 5 to 30% by weight.

【0031】粒径が0.5mm以下の粒子は、0.5m
mを超える粗粒骨材間の空隙を埋める構造をなすことに
よって、粒子同士の結合力を高め、また、粗粒骨材間に
粒子が位置することによって、焼成の際、粗粒骨材の膨
張を吸収し、ブロック全体の体積膨張を緩和するため、
焼成による形状変形や、表層にクラックが発生する現象
を抑制する効果がある。粒径が0.5mm以下の粒子が
7重量%を下回る場合には、上記の効果を得にくくな
り、また、25重量%を超えると、空隙を埋める量が多
くなり、透水性が低下しやすくなる。
Particles having a particle size of 0.5 mm or less are 0.5 m
m, the structure that fills the gaps between the coarse-grained aggregates increases the bonding force between the particles, and the particles are located between the coarse-grained aggregates. In order to absorb the expansion and reduce the volume expansion of the entire block,
This has the effect of suppressing shape deformation due to firing and the occurrence of cracks in the surface layer. When the particles having a particle diameter of 0.5 mm or less are less than 7% by weight, it is difficult to obtain the above-mentioned effects. When the particles exceed 25% by weight, the amount of filling the voids increases, and the water permeability tends to decrease. Become.

【0032】なお、スラグの製法上、0.5mm以下の
粒子が不足しやすいが、比較的入手が容易で、かつ、性
状の安定した0.5mm以下の陶磁器質粒子を骨材とし
て補うことができる。その際、0.5mm以下の粒子に
対し上記の陶磁器質粒子が50重量%以上含まれている
と好ましい。50重量%以上含まれることにより、上述
の形状安定効果や表層クラック抑制効果がさらに向上す
る。この陶磁器質粒子は、陶器質粒子や磁器質粒子を用
いることができ、それらを単独で、あるいは混合して用
いることもできる。陶器質粒子としては、たとえば、瓦
屑や陶管屑を用いることができ、また、磁器質粒子とし
ては、たとえば、磁器タイル屑や電力用碍子屑を用いる
ことができる。これらは、単独で用いることもできる
し、混合して用いることもできる。
In the slag production method, particles of 0.5 mm or less are apt to be insufficient, but it is relatively easy to obtain, and it is possible to supplement ceramic particles of 0.5 mm or less with stable properties as aggregates. it can. At this time, it is preferable that the above ceramic particles are contained in an amount of 50% by weight or more with respect to the particles having a size of 0.5 mm or less. By containing 50% by weight or more, the above-described shape stabilizing effect and surface crack suppressing effect are further improved. As the ceramic particles, ceramic particles and ceramic particles can be used, and they can be used alone or in combination. As the porcelain particles, for example, tile waste and porcelain waste can be used, and as the porcelain particles, for example, porcelain tile waste and power insulator waste can be used. These can be used alone or as a mixture.

【0033】また、CaOとSiO2、あるいはCaO
とAl23とSiO2を含む複酸化物としては、アノル
サイト(CaO・2SiO2・Al23)やβ−ウォラ
ストナイト(CaO・SiO2)、ゲーレナイト(2C
aO・SiO2・Al23)などを用いると好ましい。
Further, CaO and SiO 2 , or CaO
Al 2 O 3 and As mixed oxide containing SiO 2, anorthite (CaO · 2SiO 2 · Al 2 O 3) or β- wollastonite (CaO · SiO 2), gehlenite (2C
aO.SiO 2 .Al 2 O 3 ) or the like is preferably used.

【0034】下水汚泥溶融スラグは、下水を汚水と汚泥
に分離した後、汚泥を濃縮、脱水したケーキをさらに溶
融し、回収後、冷却したもので、冷却方法により水砕ス
ラグ、空冷スラグ、徐冷スラグなどがある。ゴミ溶融ス
ラグはゴミを焼却、溶融し、回収後、冷却したもので、
冷却方法により水砕スラグ、空冷スラグなどがあり、さ
らには温度管理しながら冷却し、その過程において結晶
化をすすめた徐冷スラグや、水砕スラグや空冷スラグを
再熱処理することにより結晶化をすすめた結晶化スラグ
などがある。スラグ結晶化を促進するために、あらかじ
め、CaOやSiO2などの成分を調整してもよい。骨
材は、天然原料に比べ安価であり、大量に消費する土木
建材用の原料としては最適である。
The sewage sludge molten slag is obtained by separating the sewage into sewage and sludge, further condensing and dewatering the sludge, melting the cake, collecting the cake, and cooling the cake. There are cold slag and the like. Waste melting slag is incinerated, melted, collected, and cooled.
Depending on the cooling method, there are granulated slag, air-cooled slag, etc.Moreover, cooling is performed while controlling the temperature, and in the process, crystallization is promoted by slow cooling slag, and granulated slag or air-cooled slag is re-heat treated. There is a recommended crystallized slag. In order to promote slag crystallization, components such as CaO and SiO 2 may be adjusted in advance. Aggregate is inexpensive compared to natural raw materials, and is optimal as a raw material for civil engineering and building materials consumed in large quantities.

【0035】骨材に下水汚泥溶融スラグやゴミ溶融スラ
グ以外の原料が25重量%を超えて含まれると、下水汚
泥溶融スラグやゴミ溶融スラグが安価であるという特長
が失われ、また、下水汚泥や都市ゴミの処分や有効活用
の効果も小さくなる。また、粒径が4.75mmを超え
る骨材が20重量%を超えて含まれると、強度や製品表
面平滑性が損なわれる。
If the aggregate contains more than 25% by weight of raw materials other than the sewage sludge melting slag and the refuse melting slag, the advantage that the sewage sludge melting slag and the refuse melting slag are inexpensive is lost. Also, the effects of disposal and effective utilization of urban garbage will be reduced. If the aggregate having a particle size exceeding 4.75 mm is contained in an amount exceeding 20% by weight, the strength and the product surface smoothness are impaired.

【0036】また、骨材が、X線回折によりピークが得
られ、少なくとも、CaOとSiO 2、または、CaO
とAl23とSiO2とを含む複酸化物の結晶構造を有
しており、かつ、粒径0.5mm以下の粒子を3〜12
重量%含んでいる下水汚泥溶融スラグおよび/またはゴ
ミ溶融スラグが80〜95重量%の範囲内にある骨材
と、バインダーとを含む混合物を用いて焼成する場合に
は、ブロックの焼成時に、これら溶融温度の低いスラグ
の微粒子が一部溶融し、バインダーとしても機能するこ
とにより、平均曲げ強度が8MPa以上という高い性能
を有するブロックを得ることができる。本発明において
は、このように極めて高強度のブロックを得ることがで
きるため、車両乗り入れ部など、高強度が要求される用
途において、従来は、ブロックの厚みをたとえば60m
mから80mmへと厚くするなどの必要があったが、本
発明により、60mm厚みの通常品で対応することがで
きるなどのメリットがある。
Further, a peak was obtained from the aggregate by X-ray diffraction.
And at least CaO and SiO TwoOr CaO
And AlTwoOThreeAnd SiOTwoHas the crystal structure of a complex oxide containing
And 3 to 12 particles having a particle size of 0.5 mm or less.
Sewage sludge containing molten slag and / or
Aggregate in which the molten slag is in the range of 80 to 95% by weight
And firing using a mixture containing a binder
During the firing of the block, these low melting temperature slag
Some of the fine particles melt and function as a binder.
High performance with an average bending strength of 8 MPa or more
Can be obtained. In the present invention
Can obtain such a very strong block.
For high strength applications such as vehicle entry
Conventionally, the thickness of the block is, for example, 60 m
It was necessary to increase the thickness from m to 80 mm.
According to the invention, it is possible to respond with a normal product having a thickness of 60 mm.
There are merits such as cutting.

【0037】上記下水汚泥溶融スラグおよび/またはゴ
ミ溶融スラグについて、0.5mm以下の粒子が3重量
%未満の場合には、上述した機能が十分に発揮されず、
また、12重量%を超えると、平均曲げ強度は向上する
ものの、焼結が進行しすぎてブロックの形状安定性が悪
くなりがちであり、また、透水性能も低下しやすくな
る。
When the sewage sludge melting slag and / or dust melting slag contains less than 3% by weight of particles having a size of 0.5 mm or less, the above-mentioned functions cannot be sufficiently exhibited.
If it exceeds 12% by weight, the average bending strength is improved, but the sintering proceeds too much and the shape stability of the block tends to deteriorate, and the water permeability tends to decrease.

【0038】また、溶融スラグ微粒子による骨材融着効
果は、同質骨材である溶融スラグ粗骨材と強固な結合を
生じやすい。そのため、溶融スラグが80重量%を下回
る場合は、上記の効果を得にくくなり、95重量%を超
えると、以下に述べる補助骨材として加える陶磁器質粒
子が少なくなり、これによる形状安定効果が小さくなり
やすい。
In addition, the effect of the aggregate fusion by the molten slag fine particles is likely to cause a strong bond with the molten slag coarse aggregate which is a homogeneous aggregate. Therefore, when the molten slag is less than 80% by weight, it is difficult to obtain the above-mentioned effects. When the molten slag exceeds 95% by weight, the amount of ceramic particles added as an auxiliary aggregate described below is reduced, and the shape stabilizing effect due to this is small. Prone.

【0039】なお、この発明において破砕片の最大寸法
は、JIS Z8801に規定されたふるいで骨材50
0gをふるい、100〜95重量%の骨材が通過するふ
るいのうち最小のふるいの目開きとして表される。ま
た、粒度分布も同じく、JISZ8801に規定された
ふるいで骨材2kgをふるい分け、その重量比で表す。
In the present invention, the maximum size of the crushed pieces is determined by a sieve specified in JIS Z8801.
Sieve 0 g, expressed as the smallest sieve opening of the sieve through which 100-95% by weight of aggregate passes. Similarly, the particle size distribution is expressed by a weight ratio of 2 kg of the aggregate using a sieve specified in JISZ8801.

【0040】本発明で用いる下水汚泥溶融スラグやゴミ
溶融スラグは、結晶質であることを特徴とする。下水汚
泥溶融スラグやゴミ溶融スラグが結晶質であるかどうか
は、例えば、X線回折により確認できる。下水汚泥溶融
スラグやゴミ溶融スラグの粒子を細かく砕いた粉体サン
プルのX線回折パターンを調べ、回折ピークが認められ
る場合、結晶質であると判断できる。その場合の回折パ
ターンが、CaOとSiO2あるいはCaOとAl23とSi
2とを含む複酸化物の結晶構造を示していることが好
ましい。スラグを結晶質とすることにより、強度に優
れ、また熱的に安定化されているため、焼成による膨張
や発泡が生じなくなる。よって強度や寸法精度に優れた
透水性セラミックブロックを得ることができる。
The sewage sludge melting slag and dust melting slag used in the present invention are characterized by being crystalline. Whether or not the sewage sludge melting slag and the dust melting slag are crystalline can be confirmed by, for example, X-ray diffraction. An X-ray diffraction pattern of a powder sample obtained by finely crushing particles of sewage sludge melting refuse slag and dust melting slag is examined. If a diffraction peak is observed, it can be determined that the sample is crystalline. The diffraction pattern in that case is CaO and SiO 2 or CaO and Al 2 O 3 and Si.
It preferably shows a crystal structure of a double oxide containing O 2 . By making the slag crystalline, the slag has excellent strength and is thermally stabilized, so that expansion and foaming due to firing do not occur. Therefore, a water-permeable ceramic block having excellent strength and dimensional accuracy can be obtained.

【0041】一方、バインダーとしては、骨材よりも融
点の低いあるいは粒度分布の小さい長石、粘土、天然
石、陶磁器、下水汚泥溶融スラグ、ゴミ溶融スラグ、下
水汚泥焼却灰、ゴミ焼却灰またはガラスの粉末を用いる
ことができる。焼成時に骨材やバインダーに発生する歪
みを小さくするために、バインダーの熱膨張率は、骨材
のそれと同等かそれ以上であるのが好ましい。バインダ
ーは焼成時に溶融して骨材同士を結合するが、バインダ
ーの最大粒径は、骨材同士の結合が一様に行われるよう
に、また、焼成時の溶融に時間がかかってエネルギーコ
ストが上昇しないよう、0.5mm以下とするのが好ま
しい。また、バインダーの量は、ブロックの強度や透水
性を考慮しながら決めるが、通常、骨材100重量部に
対して3〜20重量部ほど添加する。
On the other hand, as the binder, feldspar, clay, natural stone, porcelain, sewage sludge melting slag, trash melting slag, sewage sludge incineration ash, trash incineration ash or glass powder having a lower melting point or smaller particle size distribution than the aggregates Can be used. The binder preferably has a coefficient of thermal expansion equal to or higher than that of the aggregate in order to reduce distortion generated in the aggregate and the binder during firing. The binder melts at the time of firing and bonds the aggregates together, but the maximum particle size of the binder is such that the bonding of the aggregates is performed uniformly, and it takes time to melt at the time of firing and the energy cost is low. The thickness is preferably 0.5 mm or less so as not to rise. The amount of the binder is determined in consideration of the strength and water permeability of the block, but is usually added in an amount of about 3 to 20 parts by weight based on 100 parts by weight of the aggregate.

【0042】また、成形用糊剤としては、カルボキシメ
チルセルロース(CMC)、メチルセルロース、でんぷ
んなどの有機糊剤や、水ガラスやセメントなどの無機質
糊剤を用いることができる。さらに、ベントナイトや粘
土も用いることができる。通常、粉体形状のものは、加
水して水溶液やペーストの形で用いる。ただし、乾粉で
混合し、その混合物に後から加水する方法をとっても良
い。
As the molding paste, organic pastes such as carboxymethylcellulose (CMC), methylcellulose and starch, and inorganic pastes such as water glass and cement can be used. Furthermore, bentonite and clay can also be used. Normally, the powdered material is used after being added with water and in the form of an aqueous solution or paste. However, a method of mixing with dry powder and adding water to the mixture later may be adopted.

【0043】糊剤の量は、後の成形時における保形性や
焼成時における成形体のハンドリング性などを考慮して
決めるが、通常、骨材100重量部に対して5〜20重
量部ほど添加する。
The amount of the sizing agent is determined in consideration of the shape retention at the time of subsequent molding and the handling of the molded product at the time of firing, and is usually about 5 to 20 parts by weight per 100 parts by weight of the aggregate. Added.

【0044】さて、骨材と成形用糊剤、バインダーを混
合する際、まず、骨材に、液状にした糊剤を、たとえば
シャワーにして少しずつ添加しながら混合すると良い。
次に骨材と糊剤の混合物にバインダーを少しずつ添加し
ながら混合すると良い。ここで、骨材と糊剤とをあらか
じめ混合しておき、その混合物にバインダーをさらに添
加、混合するのは、まず骨材表面に液状糊剤を均一に行
き渡らせるためであり、これら3者を同時に混合すると
糊剤と細かいバインダーとが凝集しやすく、凝集した糊
剤が成形時に型に付着したり、糊剤とバインダーが凝集
することで本来の結合の作用が低下してしまう。同じ目
的で、骨材に含まれる微粒、たとえば、0.5mm以下
の粒子は、予めふるい分けしておいて、バインダーと同
様に、0.5mm以上の骨材と糊剤を混合した後に、添
加することも好ましい。
Now, when mixing the aggregate with the molding paste and the binder, it is preferable to first add the liquefied paste to the aggregate, for example, by showering while adding it little by little.
Next, it is preferable to add the binder to the mixture of the aggregate and the paste while adding the binder little by little. Here, the reason why the aggregate and the sizing agent are mixed in advance and the binder is further added to the mixture and mixed is to first spread the liquid sizing agent uniformly on the surface of the aggregate. If they are mixed at the same time, the sizing agent and the fine binder tend to agglomerate, and the agglomerated sizing agent adheres to the mold at the time of molding, or the sizing agent and the binder agglomerate, thereby reducing the function of the original bonding. For the same purpose, fine particles contained in the aggregate, for example, particles of 0.5 mm or less, are sieved in advance, and are added after the aggregate of 0.5 mm or more and the sizing agent are mixed similarly to the binder. It is also preferred.

【0045】粉体形状の糊剤をまず乾粉で混合し、その
混合物に後から加水することもできるが、この方法は、
糊剤を液状にすると、高粘性で分散性が悪く、凝集が生
じやすいような場合には非常に効果的である。 II.表層材料の調製工程:上述の基材のみでブロックと
することもできるが、基材の上に別仕様の表層を構成さ
せることも好ましい。その場合、成形する工程におい
て、厚さが20〜85mmの基材の上に、厚さ3〜15
mmの表層を構成させることが好ましい。
It is also possible to first mix the powdered paste with dry powder and then add water to the mixture.
When the paste is made liquid, it is very effective in cases where the paste has high viscosity and poor dispersibility, and aggregation is likely to occur. II. Step of preparing surface layer material: Although it is possible to form a block using only the above-described base material, it is also preferable to form a surface layer of another specification on the base material. In that case, in the forming step, a thickness of 3 to 15 mm is placed on a substrate having a thickness of 20 to 85 mm.
It is preferable to form a surface layer of mm.

【0046】その表層材料もまた、基材と同様に調製す
る。
The surface material is also prepared in the same manner as the base material.

【0047】表層材料には、最大粒径が5.0mm以下
であり、粒径が0.5mm以下である粒子の含有量が1
0重量%以下であり、かつ、磁器質粒子を50重量%以
上含む骨材を用いると好ましい。
The surface material has a maximum particle size of 5.0 mm or less and a content of particles having a particle size of 0.5 mm or less of 1 mm or less.
It is preferable to use an aggregate containing 0% by weight or less and containing 50% by weight or more of porcelain particles.

【0048】ここで、磁器質粒子を50重量%以上用い
ると、表層表面が汚れにくくなり、しかも、水洗などに
より洗浄が容易に行うことができる。磁器質粒子として
は、たとえば、磁器タイル屑や電力用碍子屑を単独で、
あるいは混合して用いることができる。もちろん、下水
汚泥溶融スラグおよび/またはゴミ溶融スラグを用いる
こともできる。その場合には、たとえば、溶融スラグが
斑点模様となり、意匠性向上なども期待できる。
Here, if the porcelain particles are used in an amount of 50% by weight or more, the surface of the surface layer is hardly stained, and the washing can be easily performed by washing with water. As the porcelain particles, for example, porcelain tile waste and power insulator waste alone,
Alternatively, they can be used as a mixture. Of course, sewage sludge melting slag and / or dust melting slag can also be used. In this case, for example, the molten slag becomes a speckled pattern, and an improvement in designability can be expected.

【0049】骨材の最大寸法が5mm以上になると、湿
潤時における表層の滑り抵抗値が小さくなり、降雨時な
どの湿潤時に滑りやすくなる。滑り抵抗値は、ASTM
E303に準拠して求める。0.5mm以下の範囲の
粒子が10重量%以上だと、成形時の充填性が悪く、焼
成の際に基層と表層とで収縮挙動が異なり、層間の歪み
や表層内のきれつの発生原因となる。また、空隙の寸法
も、小さな部分が増え、透水性が低下してしまう。
When the maximum size of the aggregate is 5 mm or more, the slip resistance value of the surface layer when wet becomes small, and the aggregate becomes slippery when wet such as rainfall. The sliding resistance value is ASTM
Determined in accordance with E303. If the particles in the range of 0.5 mm or less are 10% by weight or more, the filling property at the time of molding is poor, and the shrinkage behavior differs between the base layer and the surface layer during firing, which causes distortion between layers and cracks in the surface layer. Become. Also, the dimensions of the voids are increased in small portions, and the water permeability is reduced.

【0050】表層を着色するために、表層材料を調製す
るときそれに顔料を加えることができる。顔料として
は、酸化鉄系、酸化チタン系、酸化コバルト系などの粉
末を用いることができ、通常、骨材に添加、混合する。
顔料の量は、その発色の程度などにもよるが、骨材10
0重量部に対して0.2〜10重量部ほど添加する。
In order to color the surface layer, a pigment can be added to the surface layer material when preparing the material. As the pigment, a powder of iron oxide, titanium oxide, cobalt oxide or the like can be used, and is usually added to and mixed with the aggregate.
The amount of the pigment depends on the degree of color development, etc.
About 0.2 to 10 parts by weight is added to 0 parts by weight.

【0051】また、表層材料を調製する時に、寸法が骨
材と同等かそれより小さな斑点材料を加えて、表面意匠
を天然石風にしたり、多彩な模様を形成させ、意匠性を
向上させることができる。斑点材料としては、既に着色
された人工の無機粒子や、ウンモ、マンガン、鉄、ざく
ろ石など、焼成後に濃く発色する粒子が好ましく、その
量は、その形成模様の設計などにもよるが、骨材100
重量部に対して2〜10重量部ほど添加する。 III .成形工程:成形は、型を用い、焼成後において所
望する厚みになるよう、充填厚みを考慮しながら充填す
る。
Further, when preparing the surface layer material, it is possible to improve the design by adding a spot material having a size equal to or smaller than that of the aggregate to make the surface design look like a natural stone or to form various patterns. it can. As the spotting material, artificial inorganic particles that have already been colored, or particles that develop a strong color after firing, such as plum, manganese, iron, and garnet, are preferable.The amount depends on the design of the formation pattern, and the like. Lumber 100
About 2 to 10 parts by weight are added to parts by weight. III. Molding step: Molding is performed using a mold, taking into consideration the filling thickness so as to obtain a desired thickness after firing.

【0052】基材のみでも製品にはなるが、表層との2
層の構成にする場合、まず、基層材料を型に入れ、振動
プレスを用いて一次成形した後、その上に、表層材料を
入れ、再び加圧して成形する。 IV.焼成工程:この工程では、上述した成形工程で得ら
れた成形体を焼成し、透水性ブロックを得る。成形体
は、焼成に先立って、乾燥するか、糊剤として水ガラス
を用いている場合には、炭酸ガスを作用させて水ガラス
を一次硬化させるか、セメントを用いている場合には養
生して水和反応を促進させ硬化させ、ハンドリングを容
易にしておく。
Although the base material alone can be used as a product, two
In the case of forming a layer, first, a base layer material is put into a mold and subjected to primary forming by using a vibration press, and then a surface layer material is put thereon, and pressed again to be formed. IV. Firing step: In this step, the molded body obtained in the above-mentioned molding step is fired to obtain a water-permeable block. The molded body is dried prior to firing, or if water glass is used as a sizing agent, carbon dioxide is allowed to act on it to cure the water glass temporarily, or if cement is used, it is cured. To accelerate the hydration reaction and harden it, making it easier to handle.

【0053】焼成には、トンネルキルンやローラハース
キルンなどを用いることができる。焼成条件は、骨材の
耐火度、バインダーの溶融挙動などを考慮して決める
が、通常、800〜1,200℃の範囲とする。焼成時
間は、基層材料および表層材料の種類や成形体の大きさ
などにもよるので一概にはいえないが、2〜72時間程
度である。
For firing, a tunnel kiln, a roller hearth kiln, or the like can be used. The firing conditions are determined in consideration of the fire resistance of the aggregate, the melting behavior of the binder, and the like, and are usually in the range of 800 to 1,200 ° C. The firing time depends on the type of the base layer material and the surface layer material, the size of the molded body, and the like, and cannot be unconditionally determined, but is about 2 to 72 hours.

【0054】上記した透水性セラミックブロックの製造
方法によれば、下水汚泥溶融スラグおよび/またはゴミ
溶融スラグを80〜95重量%含む骨材とバインダーと
を含み、かつ、X線回折により得られる、CaOとSi
2、または、CaOとAl23とSiO2とを含む複酸
化物の結晶構造に起因する回折ピークから求められる結
晶性成分の含有量が50〜100重量%の範囲内にある
透水性セラミックブロックを得ることができ、平均曲げ
強度が8MPa以上である極めて高強度なブロックを製
造することができる。
According to the method for producing a water-permeable ceramic block described above, an aggregate containing 80 to 95% by weight of sewage sludge melting slag and / or dust melting slag and a binder are obtained by X-ray diffraction. CaO and Si
Water permeability in which the content of a crystalline component determined from a diffraction peak caused by the crystal structure of O 2 or a complex oxide containing CaO, Al 2 O 3 and SiO 2 is in the range of 50 to 100% by weight A ceramic block can be obtained, and an extremely high-strength block having an average bending strength of 8 MPa or more can be manufactured.

【0055】上記した結晶性成分の含有量が50〜10
0重量%の範囲内にあると、骨材となる粒子の強度が高
くなるため、平均曲げ強度が8MPa以上の高強度のブ
ロックとなる。上記の含有量が50重量%を下回ると、
実質的にガラス質の粒子が多くなり、強度が低下しやす
い。
When the content of the crystalline component is 50 to 10
When the content is within the range of 0% by weight, the strength of the particles serving as the aggregate increases, so that a high-strength block having an average bending strength of 8 MPa or more is obtained. When the above content is less than 50% by weight,
Substantially more vitreous particles increase the strength.

【0056】[0056]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0057】なお、実施例においては、特性値を以下の
方法により求めた。
In the examples, the characteristic values were obtained by the following methods.

【0058】空隙率:ブロックから表層を切削、除去
し、さらに約5×5×5cm角の試験片を切り出し、1
05℃で24時間乾燥した後に室温まで冷却し、重量w
(g)と体積V(cm3)からかさ密度ρ1 =w/Vを
求め、これと同様に処理した試験片についてアルキメデ
ス法で求めた見掛け密度ρ2 から、次式によって求め
る。
Porosity: The surface layer was cut and removed from the block, and a test piece of about 5 × 5 × 5 cm square was cut out.
After drying at 05 ° C. for 24 hours, the mixture was cooled to room temperature and weighed w
(G) and the volume V (cm 3 ), the bulk density ρ1 = w / V is determined. The apparent density ρ2 of the test piece treated in the same manner is determined by the following equation from the apparent density ρ2 determined by the Archimedes method.

【0059】空隙率(%)=(1−ρ1/ρ2)×100 透水係数:JIS A1218に準拠して求める。Porosity (%) = (1-ρ1 / ρ2) × 100 Permeability: Determined according to JIS A1218.

【0060】保水量:乾燥したブロックについて、水中
に浸漬させた後、水が流出しないようにそっと取り出し
たブロックの重量増分をブロック1個当たりの保水量と
して求めた。 実施例1 下水汚泥結晶化スラグを、粒径が最大寸法4.75mm
であり、4.75〜1.18mmの範囲の粒子が72重
量%、1.18〜0.5mmの範囲が18重量%、0.
5mm以下の範囲が10重量%である粒度分布を持つよ
うに分級し、骨材とした。この下水汚泥結晶化スラグ
は、X線回折法により強い回折ピークが認められ、回折
角2θ=20〜55°の回折パターンからゲーレナイト
(2CaO・SiO2・Al23)とアノルサイト(C
aO・2SiO2・Al23)の結晶化率の高い構造を
有していることが確認できた。
Water retention: After the dried block was immersed in water, the weight increment of the block that was gently removed so that water did not flow out was determined as the water retention per block. Example 1 A sewage sludge crystallized slag having a maximum particle size of 4.75 mm
72% by weight of particles in the range of 4.75 to 1.18 mm, 18% by weight of particles in the range of 1.18 to 0.5 mm, 0.1% by weight.
Classification was performed so that the range of 5 mm or less had a particle size distribution of 10% by weight to obtain an aggregate. This sewage sludge crystallized slag has a strong diffraction peak observed by the X-ray diffraction method. Gelenite (2CaO.SiO 2 .Al 2 O 3 ) and anorthite (C
aO.2SiO 2 .Al 2 O 3 ) was confirmed to have a structure with a high crystallization ratio.

【0061】これに、糊剤として水ガラス3号を骨材1
00重量部に対して10重量部になるように添加混合
し、得られた混合物にバインダーとして板ガラス廃材の
粉末(最大寸法0.3mm)を骨材100重量部に対し
て10重量部になるように添加、混合し基層材料を得
た。
In addition, water glass No. 3 was used as an adhesive for the aggregate 1
100 parts by weight was added and mixed so as to be 10 parts by weight, and the obtained mixture was used as a binder, and the powder (maximum size: 0.3 mm) of the waste glass sheet was used as a binder so as to be 10 parts by weight with respect to 100 parts by weight of the aggregate. To obtain a base layer material.

【0062】一方、磁器タイル廃材の破砕片(最大寸
法:1.7mm、0.5mm以下の範囲が6重量%)を
骨材とし、これに酸化鉄系顔料を骨材100重量部に対
して2重量部になるように添加、混合し、さらに、糊剤
として水ガラス3号を骨材100重量部に対して8重量
部になるように添加混合し、得られた混合物にバインダ
ーとして板ガラス廃材の粉末(最大寸法0.3mm)を
骨材100重量部に対して8重量部になるように添加、
混合し表層材料を得た。
On the other hand, crushed pieces (maximum size: 1.7 mm, 6% by weight in the range of 0.5 mm or less, 6% by weight) of the porcelain tile waste are used as aggregates, and iron oxide pigment is added to the aggregates for 100 parts by weight of the aggregates. 2 parts by weight were added and mixed. Further, water glass No. 3 was added and mixed as a sizing agent in an amount of 8 parts by weight with respect to 100 parts by weight of the aggregate, and the obtained mixture was used as a binder for waste sheet glass. Powder (maximum dimension 0.3 mm) was added so as to be 8 parts by weight with respect to 100 parts by weight of the aggregate.
After mixing, a surface layer material was obtained.

【0063】次に、上記基層材料を厚みが55mmにな
るように型に入れ、振動プレスを用いて0.098MP
a(1kgf/cm2)の圧力で一次成形した後、その
上に、上記表層材料を厚みが15mmになるように入
れ、再び0.098MPa(1kgf/cm2)の圧力
で加圧して成形した。
Next, the above-mentioned base layer material was put into a mold so as to have a thickness of 55 mm, and was subjected to 0.098 MPa using a vibration press.
a (1 kgf / cm 2 ) after the primary molding, the above-mentioned surface layer material was put thereon so as to have a thickness of 15 mm, and pressed again at a pressure of 0.098 MPa (1 kgf / cm 2 ). .

【0064】次に、成形体に炭酸ガスを作用させて糊剤
である水ガラス3号を一次硬化させた後、トンネルキル
ンを用い、1,100℃で28時間焼成し、大きさが1
00×200mm、表層の厚みが12mm、基層の厚み
が48mm、全体の厚みが60mmのブロックを得た。
Next, the molded body was subjected to carbon dioxide gas to first harden the water glass No. 3 as a sizing agent, and then calcined at 1,100 ° C. for 28 hours using a tunnel kiln.
A block having a size of 00 × 200 mm, a surface layer thickness of 12 mm, a base layer thickness of 48 mm, and an overall thickness of 60 mm was obtained.

【0065】以上の製造条件で本発明を用いて得られた
透水性ブロックの各データを列挙すると、次の通りであ
り、当初の目的通り、透水性、強度、および、保水性に
優れたものが得られた。
The data of the water-permeable blocks obtained by using the present invention under the above-mentioned production conditions are listed as follows. Those having excellent water-permeability, strength, and water-retentivity as originally intended are as follows. was gotten.

【0066】 透水係数:4.1×10-2cm/sec 平均曲げ強度:5.6MPa(57kgf/cm2) 保水量:0.2kg/個 空隙率:21% 表層表面のモース硬度:6.5 湿潤時における滑り抵抗値:52BPN 実施例2 最大粒径が4.75mmであるゴミ結晶化スラグ90重
量部に、粒径を0.5mm以下に粉砕した磁器タイル屑
を10重量部加え、全体の粒度分布を、4.75〜1.
18mmの範囲の粒子が69重量%、1.18〜0.5
mmの範囲の粒子が15重量%、0.5mm以下の粒子
が16重量%含まれるように調整した骨材を基層に用い
る骨材としたほかは実施例1と同様にしてブロックを作
成した。なお、このゴミ結晶化スラグは、X線回折法に
より強い回折ピークが認められ、回折角2θ=20〜5
5゜の範囲の回折パターンから、ゲーレナイト(2Ca
O・SiO2・Al23)、β−ウォラストナイト(C
aO・SiO2)およびアノルサイト(CaO・2Si
2・Al23)の結晶化率の高い構造を有しているこ
とが確認できた。
Water permeability: 4.1 × 10 −2 cm / sec Average bending strength: 5.6 MPa (57 kgf / cm 2 ) Water retention: 0.2 kg / piece Porosity: 21% Mohs hardness of surface layer surface: 6. 5 Slip resistance value when wet: 52 BPN Example 2 10 parts by weight of porcelain tile debris pulverized to a particle size of 0.5 mm or less was added to 90 parts by weight of trash crystallization slag having a maximum particle size of 4.75 mm, and Of 4.75-1.
69% by weight of particles in the range of 18 mm, 1.18-0.5
A block was prepared in the same manner as in Example 1 except that the aggregate used as the base layer was adjusted so that the particles in the range of 15 mm by weight and the particles of 0.5 mm or less contained 16% by weight. The dust crystallized slag has a strong diffraction peak by X-ray diffraction, and a diffraction angle 2θ of 20 to 5
From the diffraction pattern in the range of 5 °, Gehrenite (2Ca
O.SiO 2 .Al 2 O 3 ), β-wollastonite (C
aO.SiO 2 ) and anorthite (CaO.2Si)
O 2 .Al 2 O 3 ) was confirmed to have a structure with a high crystallization ratio.

【0067】得られたブロックは以下に示すように、平
均曲げ強度の極めて大きなものであった。
The obtained block had an extremely large average bending strength as shown below.

【0068】 透水係数:3.6×10-2cm/sec 平均曲げ強度:11.8MPa(120kgf/c
2) 保水量:0.2kg/個 空隙率:19% 表層表面のモース硬度:6.5 湿潤時における滑り抵抗値:55BPN
Water permeability: 3.6 × 10 −2 cm / sec Average bending strength: 11.8 MPa (120 kgf / c)
m 2 ) Water retention: 0.2 kg / piece Porosity: 19% Mohs hardness on the surface of the surface layer: 6.5 Slip resistance when wet: 55 BPN

【0069】[0069]

【発明の効果】本発明によると、大量に生成する下水汚
泥溶融スラグやゴミ溶融スラグを使用することでコスト
上昇を抑えることができ、また、強度、透水性や寸法精
度や保水性に優れた透水性ブロックを得ることができ
る。
According to the present invention, cost increases can be suppressed by using a large amount of sewage sludge melting slag and dust melting slag, and the strength, water permeability, dimensional accuracy and water retention are excellent. A water-permeable block can be obtained.

【0070】また、処分に困っている下水汚泥溶融スラ
グやゴミ溶融スラグの有効利用にもなる。
[0070] In addition, sewage sludge melting slag and waste melting slag, which are difficult to dispose of, can be effectively used.

【0071】さらに、本発明によれば、X線回折により
回折ピークが得られ、少なくとも、CaOとSiO2、ま
たは、CaOとAl23とSiO2とを含む複酸化物の結晶
構造を有し、かつ、粒径が0.5mm以下の粒子を3〜
12重量%の範囲内で含む、下水汚泥溶融スラグおよび
/またはゴミ溶融スラグを80〜95重量%の範囲内で
含む骨材と、バインダーとを含む混合物を原料として成
形して成形体を得、この成形体を800〜1,200℃
の範囲内で焼成することにより、平均曲げ強度が8MP
a以上といった極めて強度の高い透水性セラミックブロ
ックを得ることができる。
Further, according to the present invention, a diffraction peak is obtained by X-ray diffraction and has a crystal structure of a complex oxide containing at least CaO and SiO 2 or CaO, Al 2 O 3 and SiO 2. And particles having a particle size of 0.5 mm or less
A mixture containing the binder and the sewage sludge melting slag and / or the refuse melting slag in the range of 80 to 95% by weight, which is contained in the range of 12% by weight, and a binder are used as a raw material to obtain a molded body; 800 to 1200 ° C
By baking within the range, the average bending strength is 8MP
It is possible to obtain a water-permeable ceramic block having extremely high strength such as a or more.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 38/08 B09B 3/00 ZAB E01C 5/04 303K G01N 23/20 303D C04B 35/00 V ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C04B 38/08 B09B 3/00 ZAB E01C 5/04 303K G01N 23/20 303D C04B 35/00 V

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 X線回折により回折ピークが得られ、少
なくとも、CaOとSiO 2、または、CaOとAl23
SiO2とを含む複酸化物の結晶構造を有している、下水
汚泥溶融スラグおよび/またはゴミ溶融スラグを75重
量%以上含む骨材と、バインダーとを含む混合物を原料
として成形して成形体を得、この成形体を800〜1,
200℃の範囲内で焼成することを特徴とする透水性セ
ラミックブロックの製造方法。
1. A diffraction peak is obtained by X-ray diffraction,
At least, CaO and SiO TwoOr CaO and AlTwoOThreeWhen
SiOTwoSewage having a double oxide crystal structure containing
75 layers of sludge melting slag and / or waste melting slag
Raw material is a mixture containing aggregate containing at least% by volume and a binder
To obtain a molded body, and the molded body is 800 to 1,
Baking at a temperature of 200 ° C.
Manufacturing method of lamic block.
【請求項2】 X線回折により回折ピークが得られ、少
なくとも、CaOとSiO 2、または、CaOとAl23
SiO2とを含む複酸化物の結晶構造を有し、かつ、粒径
が0.5mm以下の粒子を3〜12重量%の範囲内で含
む、下水汚泥溶融スラグおよび/またはゴミ溶融スラグ
を80〜95重量%の範囲内で含む骨材と、バインダー
とを含む混合物を原料として成形して成形体を得、この
成形体を800〜1,200℃の範囲内で焼成すること
を特徴とする透水性セラミックブロックの製造方法。
2. A diffraction peak is obtained by X-ray diffraction.
At least, CaO and SiO TwoOr CaO and AlTwoOThreeWhen
SiOTwoHaving a crystal structure of a double oxide containing
Contains particles having a diameter of 0.5 mm or less within a range of 3 to 12% by weight.
Sewage sludge melting slag and / or refuse melting slag
In the range of 80 to 95% by weight, and a binder
A molded body is obtained by molding a mixture containing
Firing the molded body in the range of 800 to 1200 ° C.
A method for producing a water-permeable ceramic block, comprising:
【請求項3】 複酸化物として、アノルサイト、β−ウ
ォラストナイトおよびゲーレナイトからなる群から選ば
れる少なくとも1種を含む下水汚泥溶融スラグおよび/
またはゴミ溶融スラグを用いる、請求項1または2に記
載の透水性セラミックブロックの製造方法。
3. A sewage sludge molten slag containing at least one selected from the group consisting of anorthite, β-wollastonite and gehlenite as a double oxide, and / or
The method for producing a water-permeable ceramic block according to claim 1 or 2, wherein a refuse slag is used.
【請求項4】 徐冷または再熱処理により結晶化されて
いる、下水汚泥溶融スラグおよび/またはゴミ溶融スラ
グを用いる、請求項1〜3のいずれかに記載の透水性セ
ラミックブロックの製造方法。
4. The method for producing a water-permeable ceramic block according to claim 1, wherein sewage sludge melting slag and / or dust melting slag crystallized by slow cooling or reheat treatment are used.
【請求項5】 最大粒径が9.5mm以下であり、粒径
が4.75mm以下の粒子を80重量%以上含み、か
つ、粒径が0.5mm以下の粒子を7〜25重量%の範
囲内で含む骨材を用いる、請求項1〜4のいずれかに記
載の透水性セラミックブロックの製造方法。
5. A particle having a maximum particle size of 9.5 mm or less, containing 80% by weight or more of particles having a particle size of 4.75 mm or less, and containing 7 to 25% by weight of particles having a particle size of 0.5 mm or less. The method for producing a water-permeable ceramic block according to any one of claims 1 to 4, wherein an aggregate contained within the range is used.
【請求項6】 粒径が0.5mm以下の粒子として、陶
磁器質粒子を50重量%以上含むものを用いる、請求項
5に記載の透水性セラミックブロックの製造方法。
6. The method for producing a water-permeable ceramic block according to claim 5, wherein as the particles having a particle size of 0.5 mm or less, those containing 50% by weight or more of ceramic particles are used.
【請求項7】 成形体の厚みを20〜85mmの範囲内
とし、この成形体に骨材を含む表層材料を積層して焼成
する、請求項1〜6のいずれかに記載の透水性セラミッ
クブロックの製造方法。
7. The water-permeable ceramic block according to claim 1, wherein the molded body has a thickness in a range of 20 to 85 mm, and a surface layer material including an aggregate is laminated on the molded body and fired. Manufacturing method.
【請求項8】 以下の(A)〜(C)を同時に満たす骨
材を含む表層材料を用いる、請求項7に記載の透水性セ
ラミックブロックの製造方法。 (A)最大粒径が5.0mm以下 (B)粒径が0.5mm以下の範囲内にある粒子の含有
量が10重量%以下 (C)磁器質粒子の含有量が50重量%以上
8. The method for producing a water-permeable ceramic block according to claim 7, wherein a surface layer material containing an aggregate that simultaneously satisfies the following (A) to (C) is used. (A) The maximum particle size is 5.0 mm or less. (B) The content of particles having a particle size within 0.5 mm or less is 10% by weight or less. (C) The content of porcelain particles is 50% by weight or more.
【請求項9】 バインダーとして、長石、粘土、天然
石、陶磁器、下水汚泥溶融スラグ、ゴミ溶融スラグ、下
水汚泥焼却灰、ゴミ焼却灰およびガラスからなる群から
選ばれる少なくとも1種の材料の粉末を用いる、請求項
1〜8のいずれかに記載の透水性セラミックブロックの
製造方法。
9. A powder of at least one material selected from the group consisting of feldspar, clay, natural stone, porcelain, sewage sludge melting slag, refuse melting slag, sewage sludge incineration ash, refuse incineration ash and glass is used as the binder. A method for producing a water-permeable ceramic block according to any one of claims 1 to 8.
【請求項10】 振動プレスを用いて成形体を成形す
る、請求項1〜9のいずれかに記載の透水性セラミック
ブロックの製造方法。
10. The method for producing a water-permeable ceramic block according to claim 1, wherein the molded body is molded using a vibration press.
【請求項11】 下水汚泥溶融スラグおよび/またはゴ
ミ溶融スラグを80〜95重量%含む骨材とバインダー
とを含み、かつ、X線回折により得られる、CaOとS
iO2、または、CaOとAl23とSiO2とを含む複
酸化物の結晶構造に起因する回折ピークから求められる
結晶性成分の含有量が50〜100重量%の範囲内にあ
り、かつ、平均曲げ強度が8MPa以上であることを特
徴とする透水性セラミックブロック。
11. CaO and S containing an aggregate containing 80 to 95% by weight of sewage sludge melting slag and / or dust melting slag and a binder, and obtained by X-ray diffraction.
the content of a crystalline component determined from a diffraction peak caused by a crystal structure of iO 2 or a complex oxide containing CaO, Al 2 O 3 and SiO 2 is in the range of 50 to 100% by weight, and A water-permeable ceramic block having an average bending strength of 8 MPa or more.
【請求項12】 複酸化物が、アノルサイト、β−ウォ
ラストナイトおよびゲーレナイトからなる群から選ばれ
る少なくとも1種である、請求項11に記載の透水性セ
ラミックブロック。
12. The water-permeable ceramic block according to claim 11, wherein the double oxide is at least one selected from the group consisting of anorthite, β-wollastonite and gehlenite.
JP30677899A 1998-10-30 1999-10-28 Water permeable ceramic block and its production Pending JP2000203959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30677899A JP2000203959A (en) 1998-10-30 1999-10-28 Water permeable ceramic block and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-310742 1998-10-30
JP31074298 1998-10-30
JP30677899A JP2000203959A (en) 1998-10-30 1999-10-28 Water permeable ceramic block and its production

Publications (1)

Publication Number Publication Date
JP2000203959A true JP2000203959A (en) 2000-07-25

Family

ID=26564860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30677899A Pending JP2000203959A (en) 1998-10-30 1999-10-28 Water permeable ceramic block and its production

Country Status (1)

Country Link
JP (1) JP2000203959A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340830A (en) * 2000-06-01 2001-12-11 Osamu Ikeda Method for crystallizing refuse molten slug
JP2007186367A (en) * 2006-01-12 2007-07-26 Kurosaki Harima Corp Lightweight tile
CN108373339A (en) * 2018-03-21 2018-08-07 武汉理工大学 The environmental protection and energy saving water-permeable brick and preparation method thereof prepared using gangue red mud
CN109142411A (en) * 2018-08-07 2019-01-04 巨石集团有限公司 A kind of cell furnace waste gas pollution control and treatment sludge chemical component detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340830A (en) * 2000-06-01 2001-12-11 Osamu Ikeda Method for crystallizing refuse molten slug
JP2007186367A (en) * 2006-01-12 2007-07-26 Kurosaki Harima Corp Lightweight tile
CN108373339A (en) * 2018-03-21 2018-08-07 武汉理工大学 The environmental protection and energy saving water-permeable brick and preparation method thereof prepared using gangue red mud
CN109142411A (en) * 2018-08-07 2019-01-04 巨石集团有限公司 A kind of cell furnace waste gas pollution control and treatment sludge chemical component detection method

Similar Documents

Publication Publication Date Title
KR101214596B1 (en) Permeable concrete composition using cement and geopolymer binder, and bottom ash aggregate and making method of the same
CN106045416B (en) A kind of green high-strength water-permeable brick
JP4962915B2 (en) Manufacturing method of water retention block
KR101896251B1 (en) Lightweight sidewalk block with water permeability and water holding capacity
WO1990007474A1 (en) Method of producing ceramic products using sludge of sewage treatment
KR20150022033A (en) Compositions of pervious concrete products by using the aggregates from industrial wastes and method for the same
CN105330326A (en) Anti-cracking toughened and sintered high-strength water permeable brick
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
Ghosh et al. A review on performance of pervious concrete using waste materials
JP2008075270A (en) Water-retentive block
JP2007145669A (en) Water-retainable block and its production method
JP2005060159A (en) Water retentive and water-permeable ceramic block obtained by utilizing inorganic waste material, and producing method therefor
JP2002327402A (en) Permeable block and its manufacturing method
JP3446409B2 (en) Method for producing water-permeable ceramic block
JP2000203959A (en) Water permeable ceramic block and its production
JP3707270B2 (en) Water-permeable ceramic block and manufacturing method thereof
KR101155043B1 (en) Cement using waterworks and method for manufacturing the same
JP2001342055A (en) Water-pervious ceramic block and its production method
JP4041859B2 (en) Water-permeable / water-retaining ceramic block and manufacturing method thereof
WO2011070399A1 (en) Ceramics produced from solid waste incineration bottom ash
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2002187784A (en) Porous ceramics, method of manufacturing the same, paving material, roof laying material, external wall material and plant growth container material comprising the same
JP2000302534A (en) Ceramic block and its production
JP4140228B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP2001295210A (en) Water permeable block and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124