JP4041859B2 - Water-permeable / water-retaining ceramic block and manufacturing method thereof - Google Patents

Water-permeable / water-retaining ceramic block and manufacturing method thereof Download PDF

Info

Publication number
JP4041859B2
JP4041859B2 JP2003370219A JP2003370219A JP4041859B2 JP 4041859 B2 JP4041859 B2 JP 4041859B2 JP 2003370219 A JP2003370219 A JP 2003370219A JP 2003370219 A JP2003370219 A JP 2003370219A JP 4041859 B2 JP4041859 B2 JP 4041859B2
Authority
JP
Japan
Prior art keywords
water
raw material
glass
firing
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003370219A
Other languages
Japanese (ja)
Other versions
JP2005132668A (en
Inventor
奉 寺尾
勝彦 呉藤
光 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2003370219A priority Critical patent/JP4041859B2/en
Publication of JP2005132668A publication Critical patent/JP2005132668A/en
Application granted granted Critical
Publication of JP4041859B2 publication Critical patent/JP4041859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、高い透水性と保水性を併せ持ちながら耐凍結融解性能に優れ、既存のビルの屋上にも敷設可能な軽量セラミックブロックを、省資源かつ省エネルギーで提供する技術に関するものである。   The present invention relates to a technology for providing a light weight ceramic block that has both high water permeability and water retention and is excellent in freeze-thaw resistance and can be laid on the rooftop of an existing building with resource saving and energy saving.

透水性や保水性を有するセラミックブロックは、都市部のヒートアイランド現象の緩和や廃棄物のリサイクル対策等を目的として、歩行者用道路や広場の舗装用材料に使用されている。   Ceramic blocks having water permeability and water retention are used for pavement materials for pedestrian roads and plazas for the purpose of mitigating urban heat island phenomena and measures for recycling waste.

しかし、年々都市部の環境は悪化しつつあるため、さらなる都市環境改善の方策として、近年はビルの屋上や壁面にも緑化推進が提唱され、既存のビルの屋上にも敷設可能な、透水・保水性の舗装材が求められている現況にあるが、建築物の耐荷重の問題からゴムチップを固めた透水性舗装材があるに過ぎず、軽量かつ高機能の舗装材はない。   However, the environment in urban areas is getting worse year by year, and as a measure to further improve the urban environment, in recent years, greening has been promoted on the rooftops and walls of buildings, and can be laid on the rooftops of existing buildings. Although there is a demand for water-retaining pavement materials, there are only water-permeable pavement materials that have hardened rubber chips due to the problem of load resistance of buildings, and there are no lightweight and highly functional pavement materials.

セメント系舗装材に比較してセラミック系は比較的軽量で高強度であることや資源の有効利用の観点から、従来、廃ガラスや陶磁器廃材、下水スラッジ溶融スラグ等の廃棄物を原料とする透水性セラミックブロックが開発され、その製造方法については下記の従来技術が知られている。
特開平9−30873では、最大粒径9.5mm以下に粒度調整した鉄鋼スラグを75重量%以上含む骨材と焼結バインダーを含む混合物を成形後に焼成する製造方法で透水性と保水性に優れたセラミックブロックを得る。 特開平9−194269では火成岩を主体とする骨材とそれよりも低融点のバインダーとの混合物を成形後焼成することや、その上層に陶磁器粉砕物と低融点バインダーとを積層して焼成一体化させることを特徴とする透水性を有するセラミックブロックの製造方法。 特開平9−194268では、骨材、無機バインダー、α化されたでんぷん等を用いて加圧成形後に乾燥、焼成する方法。 特開平10−17376では曲げ強度と透水性に優れた透水性セラミックスを得るための熔化を制御する化学組成範囲。 特開平11−268972では電気炉酸化スラグを原料として混練加圧成形後1000〜1250℃で焼成する方法。 特開2000−203959では、カルシウム、ケイ素、アルミニウム等の酸化物結晶を含む下水汚泥溶融スラグとゴミ溶融スラグを骨材として75重量%以上含む混合物を800〜1200℃の範囲で焼成することを特徴とする、透水性と保水性を有して強度に優れたセラミックブロックの製造方法 特開2001−39780では、下水汚泥溶融スラグと陶磁器屑からなる骨材に焼結バインダーを混合して成形した後、800〜1200℃で焼成する方法。 特開2001−342055では、平均粒径1〜3mmの範囲内にある磁器質骨材に水を加えて表面を水で被覆されるように混合した後非可塑性バインダーを加え、次いで可塑性バインダーを加えて混合して空隙率が20%以上の成形体を作成した後、850〜1300℃の範囲内で焼成する。
From the viewpoint of relatively light weight and high strength compared to cement-based pavement materials and effective use of resources, conventional water permeable materials such as waste glass, ceramic waste, and sewage sludge molten slag A ceramic block has been developed, and the following prior art is known for its production method.
In Japanese Patent Laid-Open No. 9-30873, water permeability and water retention are excellent in a manufacturing method in which a mixture containing an aggregate containing 75% by weight or more of steel slag adjusted to a maximum particle size of 9.5 mm or less and a sintered binder is fired after molding. Get a ceramic block. In JP-A-9-194269, a mixture of an aggregate composed mainly of igneous rock and a binder having a lower melting point is molded and fired, or a ceramic pulverized product and a low melting point binder are laminated on the upper layer for firing. A method for producing a ceramic block having water permeability, characterized by comprising: In JP-A-9-194268, a method of drying and firing after pressure molding using aggregate, inorganic binder, pregelatinized starch and the like. In JP-A-10-17376, a chemical composition range for controlling the melting for obtaining a water-permeable ceramic excellent in bending strength and water permeability. In JP-A-11-268972, a method of firing at 1000 to 1250 ° C. after kneading and pressure forming using electric furnace oxidation slag as a raw material. Japanese Patent Laid-Open No. 2000-203959 is characterized in that a mixture containing 75% by weight or more of sewage sludge molten slag containing oxide crystals such as calcium, silicon, aluminum and the like is aggregated at 800 to 1200 ° C. A method for producing a ceramic block having water permeability and water retention and excellent strength JP-A-2001-39780 is a method in which a sintered binder is mixed with an aggregate made of sewage sludge molten slag and ceramic waste, and then sintered at 800 to 1200 ° C. In Japanese Patent Laid-Open No. 2001-342055, water is added to a porcelain aggregate having an average particle diameter in the range of 1 to 3 mm, the surface is mixed with water, a non-plastic binder is added, and then a plastic binder is added. And forming a molded body having a porosity of 20% or more, and then firing within a range of 850 to 1300 ° C.

等があり、いづれも1.廃棄物を骨材原料としていること2.骨材の周囲に焼成によってガラス化する融着用のバインダーを被覆させること3.高い透水性や保水性でありながら高強度が得られること等を特徴として述べられている。   Etc., both are 1. 1. Use waste as an aggregate material. 2. Cover the aggregate around the binder to be fused to be vitrified by firing. It is described as being characterized by high strength while being highly water permeable and water retentive.

それらに共通している欠点は、1.骨材周囲のバインダーがガラス質物で非晶質であることから、熱衝撃や機械的衝撃によって亀裂が伝播し易いこと2.表面の凹凸をかなり大きくしないと雨に濡れた場合とりわけ、積雪している場合に滑りやすいという欠点があること。3.透水性のみの場合は凍害を生じないが、保水性を併せ持つような空隙を持たせた場合は、凍結融解抵抗性が低くなり、積雪寒冷地では使用できないこと4.製品重量が重いために、既存のビル屋上に敷設不能であること等である。   The disadvantages common to them are: 1. Since the binder around the aggregate is glassy and amorphous, cracks are likely to propagate due to thermal shock and mechanical shock. If the unevenness of the surface is not made quite large, there is a drawback that it is easy to slip when it gets wet, especially when it gets wet. 3. Freezing damage does not occur in the case of water permeability only, but if there is a void that also has water retention capacity, resistance to freezing and thawing will be low, and it cannot be used in cold snowy areas. For example, it is impossible to lay on the roof of an existing building due to heavy product weight.

そのような課題を解決する効果的な技術としては、本願申請者らが取得した、
特許第3094226号(結晶化ガラス複合セラミックスおよびその製造方法)がある。これは、融着用バインダーの原料として配合されたセメント廃材中のケイ酸カルシウム水和物が焼成によって相転移し、骨材周囲のガラス質物中にβ−ウォラストナイト(CaO・SiO2)の針状結晶を生成せしめ、骨材粒子と粒界部分の熱特性の違いを利用することで前述の欠点1.と2.を解決できるものである。
As an effective technology to solve such a problem, the applicants of the present application acquired,
There exists patent 3094226 (crystallized glass composite ceramics and its manufacturing method). This is because calcium silicate hydrate in cement waste blended as a raw material for fusion binder undergoes phase transition by firing, and β-wollastonite (CaO · SiO 2) needles in the vitreous surrounding the aggregate The above-mentioned disadvantages 1 are obtained by generating crystals and utilizing the difference in thermal characteristics between the aggregate particles and the grain boundary part. And 2. Can be solved.

しかし、透水性を確保するためには気孔径が大きくなるような単独粒度分布を示す骨材原料と、高い空隙率が確保される程度の少量の焼結用バインダーを使用するために、成型直後の成形体の強度が低くハンドリング性に欠けることが従来技術の共通的課題である。
特開平9−71485多孔質セラミックスの製造法では、課題である成形体の保形性を高めるために、水ガラスのようなケイ酸ゾルを成形用バインダーとして添加し、これをゲル化させる方法を提案している。
However, in order to ensure water permeability, an aggregate raw material having a single particle size distribution that increases the pore size and a small amount of sintering binder that ensures a high porosity are used immediately after molding. It is a common problem of the prior art that the green body has a low strength and lacks handling properties.
JP-A-9-71485 is a method for producing porous ceramics, in which a silicate sol such as water glass is added as a molding binder in order to increase the shape retention of the molded body, which is a problem, and this is gelled. is suggesting.

透水性、保水性、強度等を高い水準で併せ持ちながら軽量化することは、密度を低くすれば強度も低下するという相関から従来法では限界があり、また、保水力を高めた場合は耐凍害性が低下することへの問題解決がされていなかった。   There is a limit in the conventional method due to the correlation that lowering the density reduces strength while holding water permeability, water retention, strength, etc. at a high level, and if water retention is increased, frost resistance The problem of the decline in performance was not solved.

また既存のビルを屋上緑化する場合、許容できる重量は1平方mあたりおよそ80Kg程度とされており、屋上広場や通路などの緑化部分以外に透水・保水性舗装材を使いたくても従来の無機系舗装材は使用できなかった。   In addition, when roofing an existing building, the allowable weight is about 80 kg per square meter, and even if you want to use water-permeable and water-retaining pavement materials in addition to greening parts such as rooftop squares and walkways, the conventional inorganic The paving material could not be used.

さらに、製造方法も、従来技術では特許文献10の方法を除いて、有機バインダーを多く添加して金型を用いてプレス成形し、成形体を完全に乾燥硬化させてからでないと次の工程へ搬送できないことや、市場の製品は900〜1100℃の高温で焼成されているなど、製造に多くの資源や時間とエネルギーを費やしていた。   Further, in the prior art, except for the method of Patent Document 10, the manufacturing method is not until after adding a large amount of an organic binder and press-molding using a mold to completely dry and cure the molded body. Many resources, time, and energy were consumed for manufacture, such as being unable to convey and the products on the market being baked at a high temperature of 900 to 1100 ° C.

本発明は、それらの課題を解決するために、従来の透水・保水性セラミックブロックとは異なり、図1に示したように、舗装材の上部表層は、表面や骨材粒子のマトリックス部分(粒界)に針状や柱状のβ−ウォラストナイトやデビトライト(Na2O・3CaO・6SiO2)の結晶が生成している効果によって、滑りにくく高強度である特徴を有する透水性の結晶化ガラス複合セラミックスとする。また、下部基層は、耐凍害性を高めるために気孔径の大きい連続気孔を有した保水性の高い発泡ガラスからなる構造とする。   In order to solve these problems, the present invention differs from a conventional water-permeable / water-retaining ceramic block, as shown in FIG. A water-permeable crystallized glass composite ceramic that has high strength and is not slippery due to the effect of the formation of acicular or columnar β-wollastonite or devitrite (Na2O · 3CaO · 6SiO2) crystals in the boundary) To do. Further, the lower base layer has a structure made of foamed glass having high water retention and having continuous pores having a large pore diameter in order to enhance frost damage resistance.

これは、従来技術で用いられている二層構造とは異なり、上部表層は単に意匠や滑り止め、目詰まり防止などの目的でなく、強度と透水機能を、また下部基層は保水機能を主に受け持つものであり、各層の厚さを変えることで求められる製品仕様・性能への対応や材料物性を制御することを目的とした構造である。   Unlike the two-layer structure used in the prior art, the upper surface layer is not merely for the purpose of design, anti-slip, clogging prevention, etc., but the strength and water permeability function, and the lower base layer mainly has a water retention function. It is a structure that aims to meet the product specifications and performance required by changing the thickness of each layer and to control the material properties.

透水性を有しながら高強度が要求される上部表層部分の主原料には、廃ガラスの粉砕・ふるい分けによって得られた径が4.8〜2.4mmの骨材を主原料として使用し、低温で結晶生成させるためにケイ酸カルシウム水和物を含む原料を用いる。   As the main raw material of the upper surface layer portion that is required to have high strength while having water permeability, an aggregate having a diameter of 4.8 to 2.4 mm obtained by crushing and sieving waste glass is used as the main raw material, A raw material containing calcium silicate hydrate is used for crystal formation at a low temperature.

なお、保水性を有する下部基層部分には、空隙率の大きい細粒子がガラス質物のみで融着・焼結した組織構造とは異なり、連続した大きい気孔径の発泡ガラスとなるように、石灰石やドロマイトなどの炭酸塩鉱物を発泡剤として混入した微粉砕ガラスを原料として用いる。   Unlike the structure in which fine particles having a large porosity are fused and sintered only by vitreous matter, the lower base layer portion having water retention has a continuous large pore diameter, such as limestone and Finely crushed glass mixed with carbonate mineral such as dolomite as a foaming agent is used as a raw material.

また、結晶化ガラス複合セラミックスと発泡ガラスを、一体的に成形と焼成を行なって上下の各層を強く融着させるために、焼成温度は750℃〜900℃の焼成温度範囲で炉内焼成雰囲気は酸化雰囲気とする。   In addition, in order to form and fire the crystallized glass composite ceramic and the foamed glass integrally to strongly fuse the upper and lower layers, the firing temperature is a firing temperature range of 750 ° C. to 900 ° C., and the firing atmosphere in the furnace is Use an oxidizing atmosphere.

さらに、製造方法は、原料骨材が粗粒であるために、成形体強度が低いので、従来の金型を用いたプレス成形とは異なり、焼成に耐える材質のセッター上に敷きならし充填させて、ローラーの転圧によって圧密させ、そのまま焼成炉に搬送できる方法とする。   Furthermore, since the raw material aggregate is coarse, the strength of the molded product is low, so unlike conventional press molding using a metal mold, the material is spread on a setter that is resistant to firing. Then, a method is adopted in which the compaction is performed by the rolling pressure of a roller, and the material can be directly conveyed to a firing furnace.

上部表層に使用する骨材原料の主原料をソーダ石灰系の廃ガラスとすることにより、低温で焼結バインダーとの融着や結晶生成反応が進展するし、4.8〜2.4mm径の骨材配合量を90〜70%とすることによって連続した大きな気孔が得られる。   By using soda-lime-based waste glass as the main raw material of the aggregate material used for the upper surface layer, fusion with a sintered binder and crystal formation reaction proceed at a low temperature, and the diameter of 4.8 to 2.4 mm Large continuous pores can be obtained by setting the amount of aggregate to 90 to 70%.

また、焼結バインダー原料中の珪酸カルシウム水和物は、750℃でβ−ウォラストナイトに相転移するとともに、骨材ガラス表面にデビトライトの生成を促進させ、粒界に針状結晶を含むガラス層を形成して圧縮応力を発生せしめることで高強度が得られる。   In addition, the calcium silicate hydrate in the sintered binder raw material undergoes phase transition to β-wollastonite at 750 ° C., promotes the formation of devitrite on the aggregate glass surface, and contains acicular crystals at the grain boundaries. High strength can be obtained by forming a layer and generating compressive stress.

下部基層原料に発泡剤として石灰石やドロマイトなどの炭酸塩鉱物使用することによって、750〜900℃の幅広い温度域で炭酸ガスを発生させることが可能となり、炉内の温度差による発泡状態のバラツキを軽減でき、得られる気孔も連続気孔が多く、径も大きく耐凍害性優れた組織が得られる。   By using carbonate minerals such as limestone and dolomite as a foaming agent in the lower base layer raw material, it becomes possible to generate carbon dioxide in a wide temperature range of 750 to 900 ° C. It can be reduced, and the resulting pores have many continuous pores, a large diameter and a structure with excellent frost resistance.

成形方法は通常、上部表層の成形は骨材粒子と焼結バインダーが分離しない程度の振動を加えて充填し加圧することや、ローラーで転圧することにより、成形体の組織均一化と焼成体に高い透水率が確保される。   The upper surface layer is usually formed by applying vibration to such an extent that the aggregate particles and the sintered binder do not separate, filling and pressing, or rolling with a roller to make the structure uniform and fired. High water permeability is secured.

次に、図2のように充填後加圧成形された上部表層原料の上部に下部基層となる発泡ガラス原料を充填すると、これは粒度が細かいので境界部分の骨材間隙にもむらなく充填される。   Next, when the foam glass raw material that becomes the lower base layer is filled on the upper surface raw material that has been pressure-molded after filling as shown in FIG. 2, this is filled evenly in the aggregate gap at the boundary because the particle size is fine. The

このようににして得られた成形体を焼成すると、600℃付近からソーダ石灰ガラスの骨材や発泡ガラス原料は急激に軟化焼結が始まり、750℃で骨材の粒界において、珪酸カルシウムの相転移によるβ−ウォラストナイトの結晶化とデビトライトの生成が始まりながら、表層部が焼結し透水層(結晶化ガラス複合セラミックス)を形成していく。また、これと同時に炭酸塩鉱物の分解によって基層部を構成する発泡ガラスが形成され、表層と基層が一体化していく。   When the molded body thus obtained is fired, the soda-lime glass aggregate and the foamed glass raw material are suddenly softened and sintered from around 600 ° C., and at 750 ° C. at the grain boundary of the calcium silicate. While crystallization of β-wollastonite and generation of devitrite are initiated by the phase transition, the surface layer portion is sintered to form a water permeable layer (crystallized glass composite ceramics). At the same time, foamed glass constituting the base layer is formed by decomposition of the carbonate mineral, and the surface layer and the base layer are integrated.

なお、焼成温度が900℃を越えると、発泡ガラス粘性低下と分解ガスの供給量の減少によって収縮・緻密化して発泡ガラス層が形成されない。   When the firing temperature exceeds 900 ° C., the foamed glass layer is not formed due to shrinkage and densification due to the decrease in the viscosity of the foamed glass and the decrease in the supply amount of the decomposition gas.

通常、焼結体に存在する連続した気孔の径が大きい場合は、水の凍結による膨張圧力が解放されやすいために破損し難いことが知られており、本発明によって得られるセラミックブロックは、表層部、基層部とも気孔径が大きく、透水機能を持つ表層部分の骨材融着部分は高強度、保水機能を持つ基層部分の発泡ガラスは軽量であるために、透水性と保水性を併せ持ちながら強度と耐凍結融解性能に優れた軽量なセラミックブロックとなる。   Usually, when the diameter of the continuous pores present in the sintered body is large, it is known that the expansion pressure due to freezing of water is easily released, so that it is difficult to break. Both the base part and the base layer part have large pore diameters, the aggregate fused part of the surface layer part with water permeability function is high strength, the foam glass of the base layer part with water retention function is lightweight, so it has both water permeability and water retention It becomes a lightweight ceramic block with excellent strength and freeze-thaw resistance.

低温焼成でセラミックブロックを製造するために、透水機能を有する上部表層を構成する骨材原料は、ソーダ石灰ガラス系のガラス廃材とし、これを融着させるバインダーは、媒熔材として骨材を得る際に生じた微粉ガラス、ケイ酸原料として珪石または廃鋳物砂、結晶生成原料としてセメントコンクリート二次製品製造や再生骨材の製造時に発生する廃材もしくは回収したケイ酸カルシウム製品等を用いる。   In order to produce a ceramic block by low-temperature firing, the aggregate material constituting the upper surface layer having a water permeability function is soda-lime glass-based glass waste material, and the binder for fusing it is obtained as a medium melting material. Fine powder glass generated at the time, silica stone or waste foundry sand as the silicate raw material, waste material generated during the production of cement concrete secondary product or recycled aggregate, or recovered calcium silicate product, etc., are used as the crystal forming raw material.

なお基層部を構成する発泡ガラス原料には、微粉ガラスに発泡材として石灰石とドロマイトの混合物を2〜6重量%配合したものを平均粒径74ミクロン以下に微粉砕混合することが望ましい。   In addition, it is desirable that the foamed glass raw material constituting the base layer part is pulverized and mixed to a fine powder glass containing 2 to 6% by weight of a mixture of limestone and dolomite as a foaming material to an average particle size of 74 microns or less.

表層を構成する骨材と融着用のバインダーの配合割合は、強度と透水性確保の観点から、骨材量を90〜70重量%とするのが最良である。   The blending ratio of the aggregate constituting the surface layer and the binder to be fused is optimally 90 to 70% by weight in terms of strength and water permeability.

成型の方法は、最初に、表層用の骨材原料に成型用のバインダーを加え、さらに融着用のバインダーを加えて造粒したものを型に必要量充填して加圧成型した後、基層用の発泡ガラス原料を投入してさらに充填敷きならしもしくは加圧成型する。   The molding method is as follows. First, a binder for molding is added to the raw material for the surface layer, and a granulated material is added with a binder for fusion. The raw material of foam glass is added and further filling and pressure molding are performed.

なお、表層原料と基層原料との割合は、表層は求められる強度を満足するに必要な厚さ、基層は求められる製品厚さや嵩密度となるよう考慮して設定でするものであるが、製品厚さ6cmで30cm角平板の場合、通常は表層2〜3cm基層は4から3cm程度とする。   The ratio of the surface layer raw material to the base layer raw material is set in consideration of the thickness necessary for the surface layer to satisfy the required strength, and the base layer to the required product thickness and bulk density. In the case of a 30 cm square plate with a thickness of 6 cm, the surface layer is usually about 4 to 3 cm in the base layer of 2 to 3 cm.

また、基層の発泡度は嵩密度や吸水率、強度等に影響するために、これを原料配合割合で制御するために、粘土質物のようにソーダ石灰ガラスより耐火度の高い無機粉体を調整材として使用するのが望ましい。。   In addition, since the degree of foaming of the base layer affects the bulk density, water absorption rate, strength, etc., in order to control this with the raw material blending ratio, inorganic powder with higher fire resistance than soda lime glass is adjusted like clay It is desirable to use it as a material. .

焼成は最高温度850℃で炉内雰囲気は酸化とし、有機のバインダーを使用する場合は、素地が還元されないように昇温し、冷却においても冷め割れを生じないよう徐冷する。   Firing is performed at a maximum temperature of 850 ° C., and the atmosphere in the furnace is oxidized. When an organic binder is used, the temperature is raised so that the substrate is not reduced, and cooling is gradually performed so that the substrate is cooled and does not crack.

また、仕上げ加工は、焼成後は基層の発泡ガラスは膨張して変形しているので、形状が製品寸法を満足するように切断や研磨加工をすることが望ましい。   In addition, since the foamed glass of the base layer is expanded and deformed after firing, it is desirable to perform cutting and polishing so that the shape satisfies the product dimensions.

骨材ガラス、焼結バインダー、発泡ガラス用のガラス質原料として、ソーダ石灰ガラスである板ガラス廃材(以下廃ガラスという)を4.8mmの篩を全通するように粉砕し、4.8mmから2.4mmの粒子を骨材ガラス、1.2mm以下の粒子を焼結バインダー原料用の廃ガラス微粉とした。   As a vitreous raw material for aggregate glass, sintered binder, and foamed glass, a soda-lime glass plate glass waste (hereinafter referred to as waste glass) is pulverized through a 4.8 mm sieve and 4.8 mm to 2 The particles of 4 mm were aggregate glass, and the particles of 1.2 mm or less were used as waste glass fine powder for a sintered binder material.

廃ガラス微粉−珪石微粉−セメント廃材(コンクリートパイル工場から廃出される廃セメントスラリーのオートクレーブ処理硬化体)系の配合焼成実験を行い、750〜900℃の焼成温度範囲で最も焼結度が良好であり、デビトライトやβ−ウォラストナイト等の結晶が多く生成した配合物(廃ガラス微粉66重量%、珪石微粉16重量%、セメント廃材18重量%の混合物)40重量%に、廃ガラス微粉60重量%を配合したもの(以下複合ガラス原料という)を焼結バインダーとした。   Waste glass fine powder-silica fine powder-cement waste (autoclaved hardened body of waste cement slurry discarded from concrete pile factory) system was fired and the sintering degree was the best in the firing temperature range of 750-900 ° C. Yes, 40% by weight of waste glass fine powder, 60% by weight (mixture of 66% by weight of waste glass fine powder, 16% by weight of quartzite fine powder, 18% by weight of cement waste) containing a lot of crystals such as devitrite and β-wollastonite % (Hereinafter referred to as composite glass raw material) was used as a sintered binder.

表層部を構成する透水タイル原料として、
骨材ガラス ・・・80重量%
複合ガラス原料・・・20重量%
を混合し造粒物とした。
As a water-permeable tile raw material constituting the surface layer part,
Aggregate glass: 80% by weight
Composite glass raw material 20% by weight
Were mixed to obtain a granulated product.

基層部を構成する発泡ガラス原料として、
廃ガラス微粉 ・・・92重量%
石灰石微粉 ・・・ 3重量%
ドロマイト ・・・ 1重量%
ベントナイト ・・・ 4重量%
を混合し微粉砕後造粒した。
As a foam glass raw material constituting the base layer part,
Waste glass fine powder: 92% by weight
Limestone fine powder: 3% by weight
Dolomite ... 1% by weight
Bentonite: 4% by weight
Were mixed, pulverized and granulated.

表層部の透水タイル原料造粒物を、300mm角の型枠に一定の厚さに(焼成後に厚さ20mm程度になる量)充填してプレス成型した後、次いでその上に基層部の発泡ガラス原料造粒物を充填して(発泡部分が焼成後に厚さ40mm以上になるの量)再度プレスし、成形体を得た。   The water-permeable tile raw material granulated material of the surface layer portion is filled into a 300 mm square formwork in a certain thickness (amount to be about 20 mm thick after firing), press-molded, and then the foam glass of the base layer portion thereon The raw material granule was filled (amount of foamed portion having a thickness of 40 mm or more after firing) and pressed again to obtain a molded body.

成形体を酸化雰囲気で850〜900℃で焼成した後、全体の厚さが60mmにやるように切断加工して平板を製造した。   After the molded body was fired at 850 to 900 ° C. in an oxidizing atmosphere, a flat plate was manufactured by cutting so that the total thickness was 60 mm.

実施例1の平板について、曲げ強度、嵩密度、透水率(係数)、吸水率(保水率)、等の物性をセメント系透水ブロック市販品と比較した結果は表1のとおりであった。   Table 1 shows the results of comparing the physical properties of the flat plate of Example 1 such as bending strength, bulk density, water permeability (coefficient), and water absorption (water retention) with cement-based water permeable block commercial products.

Figure 0004041859
Figure 0004041859

耐凍害性能をJISA5204陶磁器タイルの規定にもとづいて(−20℃〜+20での気中凍結水中融解法)10サイクルの試験を行った結果、市販の透水・保水性セラミックブロックは5個の試験体全てに破損を生じたが、実施例1の透水・保水性平板とセメント系透水平板は異常が無かった。   As a result of 10 cycles of frost damage resistance performance based on the JIS A5204 ceramic tile regulations (in the air frozen water melting method at -20 ° C to +20), 5 commercially available water-permeable / water-retaining ceramic blocks were tested. Although all were damaged, the water-permeable / water-retaining flat plate and the cement-based horizontal horizontal plate of Example 1 were not abnormal.

舗装材としての滑り抵抗をBPN法で比較した結果、実施例1の平板はセメント製品と同等の75を示し、市販透水・保水性セラミックブロックの30〜60と比較して高い値で、通常安全でと言われている数値の40を大幅に上回った。   As a result of comparing the sliding resistance as a paving material by the BPN method, the flat plate of Example 1 shows 75 equivalent to cement products, which is a high value compared with 30-60 of commercially available water-permeable / water-retaining ceramic blocks, and is usually safe. The value of 40, which is said to be, was greatly exceeded.

表層部表面や粒界部分を電子顕微鏡観察した結果、長さ数十ミクロンの針状や柱状の結晶が観察されたので、X線回折分析法で結晶同定をしたところ、その結晶はデビトライトとβ−ウォラストナイトであった。   As a result of observing the surface of the surface layer part and the grain boundary part with an electron microscope, needle-like or columnar crystals having a length of several tens of microns were observed. When the crystals were identified by X-ray diffraction analysis, the crystals were identified as devitrite and β -Wollastonite.

図2に示した装置を用いて、実施例1に使用した表層用原料造粒物を耐火棚板上に敷きならし、ローラーで3cmの厚さまで圧密した後、板状の表層部の上部に、実施例1に使用した基層部用の発泡ガラス原料を敷きならし成形したものを、850〜900℃で焼成を行い、実施例1と同様の物性のセラミックブロックを得た。   Using the apparatus shown in FIG. 2, the raw material granule for the surface layer used in Example 1 was laid on a fireproof shelf board, consolidated to a thickness of 3 cm with a roller, and then placed on the upper part of the plate-shaped surface layer part. Then, the foamed glass raw material for the base layer part used in Example 1 was spread and molded, and then fired at 850 to 900 ° C. to obtain a ceramic block having the same physical properties as in Example 1.

実施例1の透水・保水性セラミックが、都市部のヒートアイランド現象を緩和する舗装材としてどの程度の性能を確認するために、人工気象室で室内温度33℃、風速2.3m/秒の条件で効果を測定した結果、飽水させた試料の蒸発効率は0.8であり、30時間潜熱効果を持続した。 In order to confirm the performance of the water-permeable / water-retaining ceramic of Example 1 as a pavement material to alleviate the urban heat island phenomenon, in an artificial weather room, the room temperature is 33 ° C. and the wind speed is 2.3 m / sec. As a result of measuring the effect, the evaporation efficiency of the saturated sample was 0.8, and the latent heat effect was maintained for 30 hours.

本願発明の透水・保水性セラミックスは、市販の透水・保水性舗装材に比較して、軽量で保水性能が極めて高い特徴を持ちながら、舗装材として十分な強度を確保しているので、新築はもとより既存の建築物の屋上やベランダ、通路などの舗装材として、建築物の構造設計上の利点の他に、都市環境の改善に寄与できる舗装材として最適である。   The water-permeable / water-retaining ceramic of the present invention has a feature that is lightweight and has extremely high water-retaining performance compared to commercially available water-permeable / water-retaining pavement materials, while ensuring sufficient strength as a paving material, Of course, as a paving material for rooftops, verandas, and passages of existing buildings, it is optimal as a paving material that can contribute to the improvement of the urban environment in addition to the advantages of structural design of buildings.

本願発明の透水・保水性発熱セラミックブロックの断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of the water-permeable / water-retaining exothermic ceramic block of the present invention. 実施例3で使用した成形装置の模式図である。6 is a schematic diagram of a molding apparatus used in Example 3. FIG.

符号の説明Explanation of symbols

1 ソーダ石灰系廃ガラス骨材が焼結バインダーで融着し、粒界のガラス質物 中にβ−ウォラストナイトやデビトライトの結晶を含む構造の透水機能を有 する結晶化ガラス複合セラミックスからなる表層。
2 連続した気孔によって保水機能を有する発泡ガラスの基層。
3 β−ウォラストナイトやデビトライト等の結晶を含むガラス質物からなる 骨材粒界(融着)部および表面部。
4 粒径4.8〜2.4mmの廃ガラス骨材
5 コンベアベルト
6 耐火材(セッター)
7 ホッパー
8 表層用原料造粒物
9 転圧用ローラー
10 基層用原料配合物(発泡ガラス原料)
11 一定厚に敷きならし成形された基層部原料
12 転圧成形された表層部原料
1 Surface layer composed of crystallized glass composite ceramics with soda-lime waste glass aggregate fused with a sintered binder and having a water-permeable function with a structure including β-wollastonite and devitrite crystals in the grain boundary glassy material .
2 A base layer of foam glass having a water retention function by continuous pores.
3 Aggregate grain boundary (fused) part and surface part made of glassy material containing crystals such as β-wollastonite and devitrite.
4 Waste glass aggregate with a particle size of 4.8-2.4 mm 5 Conveyor belt 6 Refractory material (setter)
7 Hopper 8 Raw material granules for surface layer 9 Rolling roller
10 Raw material composition for base layer (foamed glass raw material)
11 Raw material of base layer formed by spreading to a certain thickness
12 Rolled surface layer raw material

Claims (2)

β−ウォラストナイト及びデビトライトの結晶を含むガラス質物で骨材が熔結された連続気孔を有する上部表層と連続気孔を有する発泡ガラスからなる下部基層とを備え、上部表層及び下部基層が焼成により一体的構造となっていることを特徴とする、透水性と保水性を併せ持つセラミックブロック。 An upper surface layer having continuous pores in which aggregates are fused with a glassy material containing β-wollastonite and devitrite crystals and a lower base layer made of foamed glass having continuous pores , and the upper surface layer and the lower base layer are obtained by firing. A ceramic block with both water permeability and water retention, characterized by an integral structure . ソーダ石灰系廃ガラス、陶磁器屑、都市ゴミ溶融スラグ、下水スラッジ溶融スラグからなる群から選ばれる少なくとも1種で構成される粒径5〜2.5mmの範囲の骨材90〜70重量%に、焼結バインダーとして、焼成によってβーウォラストナイトの結晶及びデビトライトの結晶を含むガラス質物を生成する配合物10〜30重量%を加えて得られた表層用原料造粒物を、耐火材からなるセッター上に所定の厚さに敷きならしまたは充填する工程、それをローラー転圧によって圧密もしくは加圧プレスで成形する工程、その上部に基層用原料である連続気孔を生成する発泡ガラス原料を敷きならし充填する工程、次いでローラー転圧によって圧密もしくは加圧プレスで成形する工程、酸化雰囲気で750〜900℃の温度で焼成する工程を順次行い、請求項1に記載の構造となることを特徴とする、透水性と保水性を併せ持つセラミックブロックの製造方法。
To 90-70% by weight of aggregate having a particle diameter of 5 to 2.5 mm composed of at least one selected from the group consisting of soda-lime waste glass, ceramic waste, municipal waste melting slag, sewage sludge melting slag, A raw material granule for the surface layer obtained by adding 10 to 30% by weight of a composition that produces a vitreous material containing β-wollastonite crystals and devitrite crystals by firing as a sintered binder is made of a refractory material. A process of spreading or filling a setter on a set thickness, a process of forming it by compaction or pressure press by roller rolling, and a foam glass raw material that generates continuous pores as a base layer raw material on the top The step of leveling and filling, then the step of compacting by roller rolling or forming with a pressure press, and the step of firing at a temperature of 750 to 900 ° C. in an oxidizing atmosphere. A method for producing a ceramic block having both water permeability and water retention, which is performed next and having the structure according to claim 1.
JP2003370219A 2003-10-30 2003-10-30 Water-permeable / water-retaining ceramic block and manufacturing method thereof Expired - Fee Related JP4041859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370219A JP4041859B2 (en) 2003-10-30 2003-10-30 Water-permeable / water-retaining ceramic block and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370219A JP4041859B2 (en) 2003-10-30 2003-10-30 Water-permeable / water-retaining ceramic block and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005132668A JP2005132668A (en) 2005-05-26
JP4041859B2 true JP4041859B2 (en) 2008-02-06

Family

ID=34647297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370219A Expired - Fee Related JP4041859B2 (en) 2003-10-30 2003-10-30 Water-permeable / water-retaining ceramic block and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4041859B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186367A (en) * 2006-01-12 2007-07-26 Kurosaki Harima Corp Lightweight tile
LT5426B (en) 2006-07-05 2007-06-26 Vilniaus Gedimino technikos universitetas Frost resistance and long service life porous ceramics
CN103332958B (en) * 2013-07-09 2014-09-24 广东天弼陶瓷有限公司 Foamed ceramic with gradient pore structure and preparation method thereof
CN111285665A (en) * 2020-03-12 2020-06-16 宜兴友邦陶瓷有限公司 Method for manufacturing water permeable brick by combining waste glass with waste ceramic
CN114149249A (en) * 2021-12-09 2022-03-08 洛阳北玻硅巢技术有限公司 Method for preparing light insulation board by using rock plate as mold
CN114685182B (en) * 2022-03-24 2023-04-11 北京科技大学 Luminous permeable multifunctional brick capable of catalytically degrading automobile exhaust and manufacturing method thereof
KR102649728B1 (en) * 2023-07-07 2024-03-20 주식회사 동아에이블 Method of manufacturing sidewalk blocks using granite sludge

Also Published As

Publication number Publication date
JP2005132668A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US20220315244A1 (en) Foamed glass composite material and a method using the same
US8171751B1 (en) Foamed glass composite material and a method of producing same
WO2020056470A1 (en) Sintered geopolymer compositions and articles
US11858657B2 (en) Foamed glass composite material and a method for producing the same
US9637246B2 (en) Foamed glass composite arrestor beds and methods for making and using the same
JP4041859B2 (en) Water-permeable / water-retaining ceramic block and manufacturing method thereof
JP2005060159A (en) Water retentive and water-permeable ceramic block obtained by utilizing inorganic waste material, and producing method therefor
US20210171215A1 (en) Foamed glass composite material and a method for making and using the same
CN107324837A (en) A kind of permeable drainage paving slab brick of water conservation and preparation method thereof
JP3446409B2 (en) Method for producing water-permeable ceramic block
JPH11292611A (en) Production of brick effectively using sludge and municipal refuse
JP2896300B2 (en) Porcelain pavement material and its manufacturing method
JP3707270B2 (en) Water-permeable ceramic block and manufacturing method thereof
JP2002187784A (en) Porous ceramics, method of manufacturing the same, paving material, roof laying material, external wall material and plant growth container material comprising the same
JPH11246279A (en) Lightweight ceramics and its production
KR101616273B1 (en) Bottom ash to the main material for a eco-friendly composition permeable block
JP2000203959A (en) Water permeable ceramic block and its production
JP3216034B2 (en) Porous sintered body and method for producing the same
JPH0977530A (en) Vitreous hardened body and its production
JPH1017376A (en) Ceramic block
JP2001039780A (en) Production of water permeable ceramic block
JPH11139886A (en) Coarse particle sintered compact and its production
JP3079122B2 (en) Pavement bricks and tiles made of ferronickel grained iron slag
JPH11171635A (en) Production of ceramic for construction
JPH1067579A (en) Production of double-layer water-permeable paving block

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees