JP4962915B2 - Manufacturing method of water retention block - Google Patents

Manufacturing method of water retention block Download PDF

Info

Publication number
JP4962915B2
JP4962915B2 JP2007319122A JP2007319122A JP4962915B2 JP 4962915 B2 JP4962915 B2 JP 4962915B2 JP 2007319122 A JP2007319122 A JP 2007319122A JP 2007319122 A JP2007319122 A JP 2007319122A JP 4962915 B2 JP4962915 B2 JP 4962915B2
Authority
JP
Japan
Prior art keywords
weight
based material
powder
block
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007319122A
Other languages
Japanese (ja)
Other versions
JP2008247728A (en
Inventor
崇 眞保
茂 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007319122A priority Critical patent/JP4962915B2/en
Publication of JP2008247728A publication Critical patent/JP2008247728A/en
Application granted granted Critical
Publication of JP4962915B2 publication Critical patent/JP4962915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、雨水をブロック内に保水しておき、晴天時に保水した雨水を蒸発させて気化熱を奪うことにより路面を冷却し、ヒートアイランド現象の緩和に資する保水性ブロックの製造方法に関する。   The present invention relates to a method for producing a water-retaining block that keeps rainwater in a block, cools the road surface by evaporating rainwater retained in fine weather and takes away heat of vaporization, and contributes to alleviation of the heat island phenomenon.

近年、都市部や建築物が密集している地域では、アスファルト舗装又はコンクリート建築物からの放熱、照り返しによる輻射熱、ビル等の空調による排熱などによる熱によって気温が上昇するヒートアイランド現象が問題視されている。   In recent years, heat island phenomenon in which the temperature rises due to heat from asphalt pavement or concrete buildings, radiant heat from reflection, exhaust heat from air conditioning of buildings, etc. has been regarded as a problem in urban areas and densely populated areas. ing.

このヒートアイランド現象の緩和策として、近年、保水性を有するブロックを道路面に敷き詰め、雨水をブロック内に保水しておき、晴天時に水分が蒸発する際の気化熱によって路面の熱を奪い、温度上昇を抑制する提案が種々なされている。   As a mitigation measure for this heat island phenomenon, in recent years, water-blocking blocks are laid on the road surface, rainwater is kept in the block, and the heat of vaporization when moisture evaporates in clear weather takes the heat of the road surface, increasing the temperature. Various proposals have been made to suppress this.

例えば、下記特許文献1では、セメントと、骨材と、水と、保水材とを含む保水性ブロックであって、上記保水材が、オートクレーブ養生した気泡コンクリートの粒体、パーライトの粉粒体、ロックウールの粉粒体の中から選ばれる1種以上を含む保水性ブロックが提案されている。   For example, in Patent Document 1 below, a water retention block including cement, aggregate, water, and a water retention material, the water retention material is a granule of aerated concrete, a pearlite granule that has been autoclaved, Water-retaining blocks containing one or more selected from among rock wool particles have been proposed.

また、下記特許文献2では、骨材とセメントとを主成分とする舗装用ブロックにおいて、骨材は陶器瓦の破砕屑を含み、破砕屑の重量比をセメント1に対し0.5以上6以下とする舗装用ブロックが提案されている。   Further, in Patent Document 2 below, in a paving block mainly composed of aggregate and cement, the aggregate includes crushed debris of earthenware tile, and the weight ratio of crushed debris is 0.5 to 6 with respect to cement 1. A paving block has been proposed.

下記特許文献3では、骨材とフライアッシュなどの不溶性無機物質の粉体とセメントを混合し、この混合物に水を加えて混練した後、圧縮成形した舗装用ブロックが提案されている。   Patent Document 3 below proposes a paving block in which aggregate, powder of an insoluble inorganic substance such as fly ash, and cement are mixed, water is added to the mixture, and the mixture is kneaded and then compression molded.

更に、下記特許文献4では、骨材として耐火度の高いフライアッシュ、結合材として300μm以下に粉砕した廃ガラス粉末、成形助剤や骨材と結合材との結合促進剤として低級粘土あるいは砕石廃泥からなる原料を混合し、成形後に焼成することにより得られた、見掛け気孔率20〜30%、曲げ強さ8MPa以上、圧縮強さが40N/mm以上で、直径が1〜20μmの気孔で構成される多孔質の保水、透水性セラミックブロックが提案されている。 Furthermore, in the following Patent Document 4, fly ash having a high fire resistance as an aggregate, waste glass powder pulverized to 300 μm or less as a binder, low-grade clay or crushed stone waste as a molding aid and an accelerator for binding between the aggregate and the binder Pores having an apparent porosity of 20 to 30%, a bending strength of 8 MPa or more, a compressive strength of 40 N / mm 2 or more, and a diameter of 1 to 20 μm, obtained by mixing raw materials made of mud and firing after molding. A porous water-retaining and water-permeable ceramic block composed of

一方で、保水性ブロックではないが、下記特許文献5では、産業廃棄物や副産物を有効活用し、エネルギーの低減化と二酸化炭素ガスの排出を抑制し得るとともに、経済的で地球環境に優れたブロック体の製造方法が提案されている。このブロック体製造方法は、廃棄粘性土及び必要に応じて廃棄塊並びに廃棄部分を主原料とし、これとセメント及び水分を混合、混練し、この混合物を真空吸引によって脱気しつつ押出し成形して、焼成することなく、乾燥してブロック体を得るものである。前記廃棄粘性土は建設発生土、採石廃土、窯業廃土又はケイソウ廃土のいずれかを含み、前記廃棄塊は石炭脈石(ぼた)、高炉スラグ、転炉スラグ、電炉スラグ、キュポラ水滓スラグ、ボトムアッシュ、コンクリートがら、レンガ破片、ブロック破片又は瓦破片のいずれかを含み、廃棄微粉はフライアッシュ又は下水道汚泥焼却灰のいずれかを含むものである。上記製法で製造されたブロックは、商品名「アーザンブリックス」として市販されている。
特開2003−252673号公報 特開2004−19406号公報 特開2004−285608号公報 特開2005−60159号公報 特開2004−90585号公報
On the other hand, although it is not a water retention block, in the following Patent Document 5, industrial waste and by-products can be effectively used, energy can be reduced and carbon dioxide gas emission can be suppressed, and it is economical and excellent in the global environment. A block body manufacturing method has been proposed. This block body manufacturing method uses waste viscous soil and, if necessary, waste lump and waste part as main raw materials, and mixes and kneads this with cement and moisture, and extrudes this mixture while degassing it by vacuum suction. The block body is obtained by drying without firing. The waste cohesive soil includes any of construction generated soil, quarrying waste soil, ceramic waste waste, or diatomaceous earth waste, and the waste lump is coal gangue, blast furnace slag, converter slag, electric furnace slag, cupola water It includes any one of dredged slag, bottom ash, concrete waste, brick shards, block shards or tile shards, and the waste fine powder contains either fly ash or sewage sludge incineration ash. The block manufactured by the above-mentioned manufacturing method is marketed under the trade name “Arzan Brix”.
JP 2003-252673 A JP 2004-19406 A JP 2004-285608 A Japanese Patent Laid-Open No. 2005-60159 JP 2004-90585 A

上記特許文献1〜3記載のブロック体は、セメントを硬化材とし、クリンカー鉱物の水和反応によって固化体に成形するものであるが、このようなブロック体はセメント質の質感が表出してしまい、意匠性に乏しいなどの問題がある。   The block bodies described in Patent Documents 1 to 3 are those in which cement is used as a hardener and molded into a solidified body by a hydration reaction of a clinker mineral. However, such block bodies have a cementitious texture. There are problems such as poor design.

一方、上記特許文献4記載のブロック体のように、焼成工程を経て製造されるものは、レンガ風の風合いを持ち、意匠性も高く、好まれる傾向にある。しかし、焼成設備が嵩む、多大なエネルギーを必要とする、二酸化炭素の排出が抑制できない、産業廃棄物の有効利用度が低いなどの問題を有する。   On the other hand, what is manufactured through a baking process like the block body of the said patent document 4 has a brick-like texture, has high designability, and tends to be liked. However, there are problems such that the firing equipment is bulky, requires a large amount of energy, the emission of carbon dioxide cannot be suppressed, and the effective utilization of industrial waste is low.

これに対して、上記特許文献5記載のブロック製造方法は、焼成工程を経ないにも拘わらず、レンガ風の風合いを出すことができ、かつ環境的に時代の要請に対応し、将来的な発展が大いに期待されるものであるが、焼成工程を有しないという特殊性から、一般的に保水性材料として用いられているフライアッシュを混合すると、予見しなかった種々の問題が生じることが判明した。   On the other hand, the block manufacturing method described in Patent Document 5 can produce a brick-like texture in spite of not undergoing the firing process, and responds to the demands of the era in the future. Although development is greatly expected, it turns out that various problems that were not foreseen occur when mixing fly ash, which is generally used as a water-retaining material, due to the uniqueness of not having a firing process did.

そこで本発明の主たる課題は、焼成工程を経ることなく、真空押出し成形によって製造される保水性ブロックの製造方法によって、保水性ブロックとしての機能を満足すべく、十分な保水性能を有するとともに、舗装体としての機能を満足すべく、十分な圧縮強度及び曲げ強度特性を有するブロック体を得ることにある。   Therefore, the main problem of the present invention is that it has sufficient water retention performance to satisfy the function as a water retention block by a method for producing a water retention block manufactured by vacuum extrusion molding without passing through a firing step, and paved. An object of the present invention is to obtain a block body having sufficient compressive strength and bending strength characteristics to satisfy the function as a body.

前記課題を解決するために請求項1に係る本発明として、採石廃土、石砕スラッジ、窯業廃土、ケイソウ廃土および浄水汚泥の群から選ばれた1種以上を主とする粘土系材料、セメントを主とする粉体系材料およびクリンカーアッシュ又は石炭灰固化砕石を主とする骨材系材料からなり、
前記粘土系材料を30〜39重量%、前記粉体系材料を15〜38重量%、前記骨材系材料を32〜46重量%の配合で混練し、これらの混合物を真空吸引によって脱気しつつ、押出し成形した後、焼成することなく乾燥させてブロック体を得ることを特徴とする保水性ブロックの製造方法が提供される。
In order to solve the above-mentioned problems, the present invention according to claim 1 is a clay-based material mainly comprising at least one selected from the group of quarrying waste soil, crushed sludge, ceramic waste soil, diatom waste soil and purified water sludge. A powder-based material mainly composed of cement and an aggregate-based material mainly composed of clinker ash or coal ash solidified crushed stone,
The clay-based material is kneaded with a composition of 30 to 39% by weight, the powder-based material is 15 to 38% by weight, and the aggregate-based material is 32 to 46% by weight, and these mixtures are degassed by vacuum suction. There is provided a method for producing a water-retaining block, wherein the block body is obtained by extruding and then drying without firing.

上記請求項1記載の発明では、産業廃棄物や副産物を有効活用し、焼成工程を省略することで、エネルギーの低減化と二酸化炭素ガスの排出を抑制し得るなどの利点を有するブロック体の製造方法を採用する前提の下で、これに所要の強度特性を与えながら、十分な保水性を与えるようにしたものである。本発明に係る製造方法の特徴は、フライアッシュを使用することなく、骨材系材料として、クリンカーアッシュを主として、32〜46重量%の割合で配合してブロック体を得ることにある。当初は、粉体系材料としてフライアッシュを多く配合することで保水性を持たせるように設計を試みたが、本製造方法は真空押出し成型を採用する特殊性から、押出し成形時に粘性不足からひび割れや割れが多く発生し、型抜き時に水が浮き出るなどの問題が露見した。   In the invention of claim 1, the production of a block body having advantages such as effective use of industrial waste and by-products, and omission of the firing step can suppress energy reduction and emission of carbon dioxide gas. Under the premise of adopting the method, sufficient water retention is provided while giving the required strength characteristics. The production method according to the present invention is characterized in that a block body is obtained by blending clinker ash mainly in a proportion of 32 to 46% by weight as an aggregate material without using fly ash. Initially, we tried to design water-retaining properties by blending a lot of fly ash as a powder-based material, but this manufacturing method is unique in that it uses vacuum extrusion molding. Many cracks occurred, and problems such as water floating out during die cutting were revealed.

その後に、種々の検討を行った結果、当初はクリンカーアッシュを多く配合すると、強度特性が低下することが懸念されていたが、実験を行った結果、圧縮強度は同等程度か低下する傾向が見られたものの、曲げ強度については大幅に増加する傾向を示すことを新たに知見した。   Later, as a result of various studies, it was feared that the strength characteristics would deteriorate when a large amount of clinker ash was initially added. However, as a result of experiments, the compressive strength tended to decrease to the same level or lower. However, it was newly found that the bending strength tends to increase greatly.

本発明は上記知見に基づき、骨材系材料として、クリンカーアッシュを主として、32〜46重量%の割合で配合するとともに、その他の粘土系材料および粉体系材料を本ブロックの所要特性を満たす最適な配合で混合することで、十分な保水性能を有するとともに、十分な圧縮強度及び曲げ強度を有するブロックを得るに至ったものである。   Based on the above findings, the present invention is an optimum aggregate material that contains clinker ash mainly in a proportion of 32 to 46% by weight, and that other clay-based materials and powder-based materials satisfy the required characteristics of this block. By mixing by blending, a block having sufficient water retention performance and sufficient compressive strength and bending strength has been obtained.

請求項2に係る本発明として、前記粉体系材料中に、高炉スラグ微粉末が前記粉体系材料100重量部に対して30重量部以下の割合で配合されている請求項1記載の保水性ブロックの製造方法が提供される。   As the present invention according to claim 2, the water retention block according to claim 1, wherein fine powder of blast furnace slag is blended in the powder material at a ratio of 30 parts by weight or less with respect to 100 parts by weight of the powder material. A manufacturing method is provided.

上記請求項2では、粉体系材料中に、高炉スラグ微粉末が前記粉体系材料100重量部に対して30重量部以下の割合で配合するものである。高炉スラグ微粉末を添加することにより、セメント由来の六価クロムを固定化し、その溶出を防止することができる。   In the second aspect of the present invention, the blast furnace slag fine powder is blended in the powder-based material at a ratio of 30 parts by weight or less with respect to 100 parts by weight of the powder-based material. By adding blast furnace slag fine powder, hexavalent chromium derived from cement can be fixed and its elution can be prevented.

請求項3に係る本発明として、前記骨材系材料中に、コンクリートがら、レンガ破片、ブロック破片、瓦破片の群から選ばれたB級品破砕屑が前記骨材系材料100重量部に対して10重量部以下の割合で配合されている請求項1、2いずれかに記載の保水性ブロックの製造方法が提供される。   As the present invention according to claim 3, in the aggregate-based material, Class B crushing waste selected from the group of concrete debris, brick fragments, block fragments, and tile debris is 100 parts by weight of the aggregate-based material. A method for producing a water-retaining block according to any one of claims 1 and 2 is provided at a ratio of 10 parts by weight or less.

上記請求項3記載の発明は、骨材系材料中にB級品破砕屑を骨材系材料100重量部に対して10重量部以下の割合で配合するものである。前記B級品破砕屑は、もちろん無添加でも良いが、破砕屑のリサイクルの観点から、諸特性に影響が出ない範囲で混合するのが望ましい。   In the invention according to the third aspect, the class B product crushing waste is blended in the aggregate-based material at a ratio of 10 parts by weight or less with respect to 100 parts by weight of the aggregate-based material. Of course, the Class B product crushed waste may be added without any addition, but from the viewpoint of recycling of the crushed waste, it is desirable to mix within a range in which various properties are not affected.

請求項4に係る本発明として、前記粘土系材料として浄水汚泥を含む1種以上の材料が選択され、かつ二水石膏が前記粉体系材料100重量部に対して5〜15重量部の割合で配合されている請求項1〜3いずれかに記載の保水性ブロックの製造方法が提供される。   As this invention which concerns on Claim 4, 1 or more types of materials containing purified water sludge are selected as said clay-type material, and dihydrate gypsum is 5-15 weight part with respect to 100 weight part of said powder-type material. The manufacturing method of the water retention block in any one of Claims 1-3 currently mix | blended is provided.

上記請求項4記載の発明は、浄水場から排出される浄水汚泥のリサイクルの観点から、その有効利用を図ったものである。なお、浄水汚泥は、フィルタープレス、ベルトプレス、ロールプレスなどの各種脱水装置により脱水を図りケーキ状としたものや天日乾燥したものなどが好適に使用される。   The invention according to claim 4 is intended to be effectively used from the viewpoint of recycling the purified water sludge discharged from the water purification plant. The purified water sludge is preferably used in the form of a cake or sun-dried by dehydration using various dehydrating devices such as a filter press, belt press, roll press and the like.

前記浄水汚泥を混合した場合には、含有される有機物や活性炭などが影響して、初期の強度発現が低下する傾向が見られるため、二水石膏を配合することで強度低下の影響を抑制する。   When the purified water sludge is mixed, the initial strength development tends to decrease due to the influence of organic substances and activated carbon contained therein, and the effect of strength reduction is suppressed by blending dihydrate gypsum. .

以上詳説のとおり本発明によれば、焼成工程を経ることなく、真空押出し成形によって製造される保水性ブロックの製造方法によって、保水性ブロックとしての機能を満足すべく、十分な保水性能を有するとともに、舗装体としての機能を満足すべく、十分な圧縮強度及び曲げ強度特性を有するブロック体を得ることが可能となる。   As described above in detail, according to the present invention, the water retention block produced by vacuum extrusion molding without passing through the firing step has sufficient water retention performance to satisfy the function as the water retention block. Thus, it is possible to obtain a block body having sufficient compressive strength and bending strength characteristics to satisfy the function as a paving body.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る保水性ブロックの製造方法は、採石廃土、浄水汚泥、石砕スラッジ、窯業廃土、ケイソウ廃土の群から選ばれた1種以上を主とする粘土系材料、セメントを主とする粉体系材料およびクリンカーアッシュ又は石炭灰固化砕石を主とする骨材系材料からなり、
前記粘土系材料を30〜39重量%、前記粉体系材料を15〜38重量%、前記骨材系材料を32〜46重量%の配合で混練し、これらの混合物を真空吸引によって脱気しつつ、押出し成形した後、焼成することなく乾燥させてブロック体を得るものである。本製造方法では、セメント以外はすべて廃棄物を使用しており、産業廃棄物の有効利用度が高いことも特徴点の1つである。
The method for producing a water-retaining block according to the present invention mainly comprises a clay-based material mainly composed of one or more selected from the group of quarrying waste soil, purified water sludge, crushed sludge, ceramics waste soil, and diatom waste soil, and cement. Consisting of a powder-based material and an aggregate-based material mainly composed of clinker ash or coal ash solidified crushed stone,
The clay-based material is kneaded with a composition of 30 to 39% by weight, the powder-based material is 15 to 38% by weight, and the aggregate-based material is 32 to 46% by weight, and these mixtures are degassed by vacuum suction. After the extrusion molding, the block body is obtained by drying without firing. In this manufacturing method, waste is used except for cement, and one of the characteristics is that the effective utilization of industrial waste is high.

前記混練は、詳細には前記粘土系材料と骨材系材料とを自然含水の状態で一次混練し、その後に粉体系材料を加えて二次混練し、混合物のコンシステンシーに応じて水分を補充するようにするのが望ましい。   Specifically, the kneading is performed by first kneading the clay-based material and the aggregate-based material in a natural water-containing state, then adding a powder-based material, followed by secondary kneading, and replenishing moisture according to the consistency of the mixture. It is desirable to do so.

前記粘土系材料としては、採石廃土、石砕スラッジ、窯業廃土、ケイソウ廃土および浄水汚泥の群から選ばれた1種以上が主として使用される。前記粘土系材料としては、もちろん焼き物用粘土を使用することもできるが、本ブロック体は、リサイクル資源の活用の観点から代替粘性材料を使用するものであるため、砂利採取工程で排出され、凝集沈殿汚泥として分類される採石廃土又は石砕スラッジ、窯業で粘土くずとして分類される窯業廃土、廃土として分類されるケイソウ廃土、浄水場から排出される浄水汚泥などが粘土系材料として好適に使用される。   As the clay-based material, at least one selected from the group of quarrying waste soil, crushed sludge, ceramic industry waste soil, diatom waste soil and purified water sludge is mainly used. Of course, clay for pottery can also be used as the clay-based material, but since this block body uses an alternative viscous material from the viewpoint of utilization of recycled resources, it is discharged in the gravel collection process and agglomerated. Clay materials such as quarrying waste or crushed sludge classified as sedimentary sludge, ceramics waste classified as clay scrap in the ceramic industry, diatom waste classified as waste soil, purified water sludge discharged from water purification plants, etc. Preferably used.

前記粘土系材料は、30〜39重量%の割合で配合される。30重量%未満の場合は、レンガ調の風合いが表出し難いとともに、ひび割れが発生するようになる。39重量%を超えると、ブロックの強度低下が問題となる。   The clay-based material is blended in a proportion of 30 to 39% by weight. When it is less than 30% by weight, it is difficult to reveal a brick-like texture and cracks are generated. When it exceeds 39% by weight, a decrease in the strength of the block becomes a problem.

前記粘土系材料として、浄水汚泥を含む1種以上の材料が選択される場合は、二水石膏を前記粉体系材料100重量部に対して5〜15重量部、好ましくは8〜13重量部の割合で配合するのが望ましい。前記浄水汚泥を混合した場合には、含有される有機物、活性炭、高含水比などの影響等により、初期の強度発現が低下する傾向が見られるため、二水石膏を配合することで強度低下の影響を抑制する。配合量が5重量部未満の場合は、強度低下抑制効果が小さく、15重量部を超える場合は、押出し成形が困難になる。最適値は10重量部前後である。前記浄水汚泥を混合する場合、粘土系材料内での配合割合は25〜50重量%とし、含水比(変動幅は概ね80〜170%)に応じて配合割合を調整するのが望ましい。   When one or more kinds of materials containing purified water sludge are selected as the clay-based material, 5 to 15 parts by weight, preferably 8 to 13 parts by weight of dihydrate gypsum with respect to 100 parts by weight of the powder-based material. It is desirable to mix in proportions. When the purified water sludge is mixed, there is a tendency for the initial strength expression to decrease due to the effects of the organic matter contained, activated carbon, high water content, etc., so adding dihydrate gypsum reduces the strength. Suppress the impact. When the blending amount is less than 5 parts by weight, the effect of suppressing the decrease in strength is small, and when it exceeds 15 parts by weight, extrusion molding becomes difficult. The optimum value is around 10 parts by weight. When mixing the purified water sludge, the blending ratio in the clay-based material is preferably 25 to 50% by weight, and the blending ratio is preferably adjusted according to the water content ratio (the fluctuation range is approximately 80 to 170%).

次いで、前記粉体系材料としては、セメントを主として使用し、保水性ブロックで一般に多用されているフライアッシュは使用しない。フライアッシュの粉末は保水性を有し、固体化においてはフライアッシュの粒子間に生成されたフライアッシュの水和生成物に保水性を有することが知られており、セメントの代替材料として混入することにより保水性を持たせることが可能である。しかし、後述する実験例で示されるように、ブロック材料100重量部に対して、フライアッシュを20重量部混入した比較例1、及び40重量部混入した比較例2では、真空押出し成形時に種々の問題が生じる結果となった。具体的には、前記比較例1では、押出し成形時に左右と中心部の抵抗がばらつき、ひびわれがやや多く発生し、型抜き時に粘性が少なく水が浮き出る結果となった。また、前記比較例2では、押出し成形時に左右と中心部の抵抗がばらつき、左右に大きく引っ張られひび割れが多く発生した。また、時間の経過と共に、状態は悪化し、口金から出た瞬間に左右2つに割れてしまうことが多かった。型抜き時に粘性が少なく水が浮き出る結果となった。   Next, as the powder-based material, cement is mainly used, and fly ash generally used in water retention blocks is not used. Fly ash powder has water retention, and in solidification, it is known to have water retention in the hydrated product of fly ash produced between fly ash particles, and is incorporated as an alternative to cement. It is possible to give water retention. However, as shown in an experimental example to be described later, in Comparative Example 1 in which 20 parts by weight of fly ash is mixed with 100 parts by weight of the block material, and in Comparative Example 2 in which 40 parts by weight are mixed, there are various types during vacuum extrusion molding. This resulted in problems. Specifically, in Comparative Example 1, the resistance between the left and right and the central portion varied during extrusion molding, cracks were slightly generated, and the viscosity was low and the water floated out during die cutting. Further, in Comparative Example 2, the resistance between the left and right and the center portion varied during extrusion molding, and was greatly pulled to the left and right to generate many cracks. In addition, the state deteriorated with the passage of time, and it was often broken into two left and right at the moment of coming out of the base. As a result, there was little viscosity at the time of die cutting, and water came out.

以上のように、有効であると予見されたフライアッシュの混合は、フライアッシュによって大きく粘性が失われることが露見し、予想に反して真空押出し成形との適合性が悪いことが判明したため、粉体系材料としてフライアッシュを使用しないこととする。   As described above, it was revealed that the mixing of fly ash, which was predicted to be effective, showed a significant loss of viscosity due to fly ash. Do not use fly ash as system material.

前記セメントは、普通ポルトランドセメント、早強ポルトランドセメント、高炉セメントのいずれを使用することも可能であるが、これらセメント種類の内、クリンカーアッシュに含まれる重金属類(ホウ素、フッ素等)の溶出を押さえる意味で高炉セメントが望ましい。   As the cement, any of ordinary Portland cement, early-strength Portland cement, and blast furnace cement can be used. Among these cement types, elution of heavy metals (boron, fluorine, etc.) contained in clinker ash is suppressed. Blast furnace cement is desirable in the sense.

前記粉体系材料には、セメント由来の六価クロムの溶出を防止するために、高炉スラグ微粉末を粉体系材料100重量部に対して30重量部以下の割合で配合するのが望ましい。   In order to prevent elution of hexavalent chromium derived from cement, it is desirable that the powder-based material is blended with blast furnace slag fine powder in a proportion of 30 parts by weight or less with respect to 100 parts by weight of the powder-based material.

前記粉体系材料は、15〜38重量%の割合で配合される。配合が15重量%未満の場合は、舗装用ブロックとして強度低下が問題となる。また、38重量%を超える場合は、セメント質の質感が出過ぎて、レンガ調の風合いが低下するようになる。   The powder-based material is blended at a rate of 15 to 38% by weight. When the blending is less than 15% by weight, a decrease in strength becomes a problem as a paving block. On the other hand, if it exceeds 38% by weight, the cementitious texture will be excessive and the brick-like texture will be lowered.

一方、前記骨材系材料としては、クリンカーアッシュ又は石炭灰固化砕石を主として使用する。クリンカーアッシュは、周知のように、ボイラ内で燃焼によって石炭灰の粒子が相互に凝集し、多孔質の塊となってボイラ底部に落下体積したものを粉砕機で砂状に粉砕したものである。このクリンカーアッシュとしては、4.75mmふるいを通過させて粒度調整したものを使用するのが望ましい。   On the other hand, as the aggregate material, clinker ash or coal ash solidified crushed stone is mainly used. As is well known, the clinker ash is obtained by pulverizing coal ash particles that are agglomerated with each other by combustion in a boiler and falling into a porous mass at the bottom of the boiler, and then pulverizing them into sand. . As this clinker ash, it is desirable to use a clinker ash having a particle size adjusted by passing through a 4.75 mm sieve.

前記クリンカーアッシュは、それ自体の強度が弱いため、アーザンブリックスでは、全材料に対して10重量%程度に制限して添加していたが、クリンカーアッシュを主とする骨材系材料を32重量%以上の割合で配合すると、圧縮強度は同等程度か低下する傾向が見られたものの、曲げ強度は大幅に増加する傾向を示した。図1は、横軸を骨材系材料(%)とし、縦軸を曲げ強度/圧縮強度(強度比)として、グラフで示したものであるが、骨材系材料の添加率が32重量%を境界点として、下側領域の勾配と、上側領域の勾配とが明らかに相違する現象が知見された。   Since the clinker ash is weak in its own strength, Arzan Brix added it to a limit of about 10% by weight with respect to the total material. However, the aggregate material mainly composed of clinker ash is 32% by weight. When blended at a ratio of at least%, the compressive strength tended to be comparable or decreased, but the bending strength tended to increase significantly. FIG. 1 is a graph showing the aggregate material (%) on the horizontal axis and the bending strength / compressive strength (strength ratio) on the vertical axis. The addition rate of the aggregate material is 32% by weight. As a boundary point, a phenomenon in which the gradient in the lower region and the gradient in the upper region are clearly different was found.

そこで、本ブロックでは、上記知見に基づき、前記クリンカーアッシュを主とする骨材系材料を32〜46重量%の割合で配合するようにする。また、前記クリンカーアッシュの代替として、石炭灰固化砕石を使用することでもよい。   Therefore, in this block, based on the above knowledge, the aggregate material mainly including the clinker ash is blended at a ratio of 32 to 46% by weight. Moreover, as an alternative to the clinker ash, coal ash solidified crushed stone may be used.

石炭灰固化砕石は、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、次いで混練物の養生を行った後、養生固化体を破砕して得た砕石状固化体である。なお、材料となる石炭灰は、石炭灰特性の変動などで品質がかなり変動するため、特許第3455184号公報に示されるように、上記変動に対応しながら安定品質の固化体を得るために、混練機のフルード数、混練物温度、成形体の嵩比重、養生における固化体の圧縮強度及び粒状固化体の粗粒率の制御・管理を行って製造されたものを好適に使用することができる。   Coal ash solidified crushed stone is a crushed stone solidified product obtained by adding lime and gypsum to coal ash as additives, kneading with water, molding, then curing the kneaded material, and then crushing the cured solidified product. is there. In addition, since the quality of the coal ash used as the material varies considerably due to fluctuations in the characteristics of the coal ash, as shown in Japanese Patent No. 3455184, in order to obtain a solidified body of stable quality while responding to the above-described fluctuations, A product produced by controlling and managing the fluid number of the kneader, the temperature of the kneaded product, the bulk specific gravity of the molded product, the compressive strength of the solidified body during curing, and the coarse particle ratio of the granular solidified body can be suitably used. .

本ブロックでは、上記粘土系材料、粉体系材料及び骨材系材料に加えて、EMセラミック(石粉や粘土とEM(有用微生物群)を混ぜて600℃-1000℃の低温で焼き上げて粉末にしたもの)、顔料、硬化促進剤、硬化剤、白華防止剤の少量づつ添加するのが望ましい。   In this block, in addition to the above clay-based materials, powder-based materials and aggregate-based materials, EM ceramics (stone powder, clay and EM (useful microorganisms)) are mixed and baked at a low temperature of 600 ° C to 1000 ° C to make powder. 1), pigments, curing accelerators, curing agents, and whitening agents are preferably added in small amounts.

前記粘土系材料、粉体系材料及び骨材系材料は、先ず前記粘土系材料と骨材系材料とを自然含水の状態で一次混練し、その後に前記粉体系材料を加え、混合物のコンシステンシーに応じて水分を補充しながら二次混練した後、真空押出し機に導入され、ここで真空吸引により脱気しつつ押出し成型され、所定長さで切断された後、それぞれが型抜きによってブロック形状に成型される。前記真空押出し機としては、例えば高浜工業株式会社の商品名「カジセキ SSE−330」を好適に用いることができる。   The clay-based material, the powder-based material, and the aggregate-based material are firstly kneaded with the clay-based material and the aggregate-based material in a natural water-containing state, and then the powder-based material is added to the consistency of the mixture. Then, after secondary kneading while replenishing moisture, it is introduced into a vacuum extruder, where it is extruded while being degassed by vacuum suction, cut into a predetermined length, and each is then cut into a block shape by die cutting Molded. As the vacuum extruder, for example, trade name “Kajiseki SSE-330” of Takahama Kogyo Co., Ltd. can be suitably used.

前記真空押出しの工程は、混合物の密度の高い圧縮強度の大きい固形物とするために重要である。真空押出し機によって真空吸引を行い脱気しつつ押出し成型することにより、真空吸引による脱気を行うことなく押出し成型したものに対して、圧縮強度を3倍程度増大させることができる。型抜きされた各ブロックは、焼成することなく、次の乾燥工程で乾燥されて、製品としての保水性ブロックとなる。   The vacuum extrusion process is important for obtaining a solid having a high density and a high compressive strength. By extruding while performing vacuum suction and degassing with a vacuum extruder, the compression strength can be increased by about three times that of the material molded by extrusion without performing degassing by vacuum suction. Each die-cut block is dried in the next drying step without firing, and becomes a water-retaining block as a product.

粘土系材料、粉体系材料及び骨材系材料の配合割合を種々変化させてブロックを製造し、圧縮強度、曲げ強度及び保水量を測定した。なお、参考としてアーザンブリックスについても同様の試験を行った。以上の結果を下表1に示す。なお、実施例1,2は車輌乗り入れ部用、実施例3は歩道用である。   Blocks were produced by varying the blending ratio of clay-based material, powder-based material and aggregate-based material, and the compressive strength, bending strength and water retention were measured. For reference, the same test was performed for Arzan Brix. The above results are shown in Table 1 below. Examples 1 and 2 are for vehicle entry, and Example 3 is for sidewalks.

Figure 0004962915
Figure 0004962915

比較例1及び比較例2は、粉体系材料としてフライアッシュを20重量%、40重量%配合したものであるが、この場合は、保水量の要求性能は満足する結果となったが、曲げ強度(車両乗り入れ部)の要求性能は満足することができない結果となった。   Comparative Example 1 and Comparative Example 2 were blended with 20% by weight and 40% by weight of fly ash as powder-based materials. The required performance of the (vehicle entry part) was not satisfied.

また、押出し成型性及び型抜き性に関して、比較例1では、押出し成形時に左右と中心部の抵抗がばらつき、ひびわれがやや多く発生し、型抜き時に粘性が少なく水が浮き出る結果となった。また、前記比較例2では、押出し成形時に左右と中心部の抵抗がばらつき、左右に大きく引っ張られひび割れが多く発生した。また、時間の経過と共に、状態は悪化し、口金から出た瞬間に左右2つに割れてしまうことが多かった。型抜き時に粘性が少なく水が浮き出る結果となった。   Further, with respect to extrusion moldability and mold release properties, in Comparative Example 1, the resistance of the left and right and the central part varied during extrusion molding, cracks were generated a little, and the viscosity was low during mold release, resulting in water floating. Further, in Comparative Example 2, the resistance between the left and right and the center portion varied during extrusion molding, and was greatly pulled to the left and right to generate many cracks. In addition, the state deteriorated with the passage of time, and it was often broken into two left and right at the moment of coming out of the base. As a result, there was little viscosity at the time of die cutting, and water came out.

一方、実施例1及び実施例2では、保水量の要求性能を満足するとともに、曲げ強度(車両乗り入れ部)の要求性能も満足することができた。また、押出し成型性及び型抜き性に関しても、何ら問題なく製造することができた。
また、実施例3も、保水量の要求性能を満足するとともに、曲げ強度(歩道)の要求性能も満足することができた。また、押出し成型性及び型抜き性に関しても、何ら問題なく製造することができたが、浄水汚泥を混合(粘土系材料内での置換率43%)すると初期の発現強度が低下する現象が見られたため、二水石膏を粉体系材料(セメント+高炉スラグ微粉末)に対する重量比で10重量%添加して初期強度の発現を改善するようにした。
On the other hand, in Example 1 and Example 2, while satisfying the required performance of the water retention amount, the required performance of the bending strength (vehicle entry portion) could also be satisfied. Moreover, it was able to be produced without any problems with respect to extrusion moldability and die-cutting property.
Moreover, Example 3 was able to satisfy the required performance of the water retention amount and the required performance of the bending strength (sidewalk). In addition, the extrusion moldability and die-cutting ability could be produced without any problem, but when the purified water sludge was mixed (substitution rate of 43% in the clay-based material), there was a phenomenon that the initial expression strength decreased. Therefore, dihydrate gypsum was added at a weight ratio of 10% by weight with respect to the powder-based material (cement + blast furnace slag fine powder) to improve the initial strength.

次に、実施例1,2では、圧縮強度が比較例1、2とほぼ同等程度か低下する傾向を示したものの、曲げ強度については大幅に増加する傾向を示したため、この点に着目し、骨材系材料の配合量(%)と、曲げ強度/圧縮強度(強度比)との関係を調べた。下表2に結果を示すとともに、図1にグラフ化した。   Next, in Examples 1 and 2, although the compressive strength showed a tendency to be approximately the same as or lower than Comparative Examples 1 and 2, the bending strength showed a tendency to increase significantly, so paying attention to this point, The relationship between the amount (%) of the aggregate material and the bending strength / compressive strength (strength ratio) was examined. The results are shown in Table 2 below and graphed in FIG.

Figure 0004962915
Figure 0004962915

図1より明らかなように、骨材系材料の添加率が32重量%を境界点として、下側領域の勾配と、上側領域の勾配とが明らかに相違する現象が知見された。これは、骨材系材料として、クリンカーアッシュ又は石炭灰固化砕石を主として用いたことと、その配合量が明らかに原因しているものと推察される。   As is apparent from FIG. 1, a phenomenon was found in which the gradient of the lower region and the gradient of the upper region were clearly different with the addition rate of the aggregate-based material being 32% by weight as a boundary point. This is presumably due to the fact that clinker ash or coal ash solidified crushed stone was mainly used as the aggregate material and the blending amount thereof was clearly caused.

更に、上記実施例1,2について、有害な重金属類の溶出試験を行った。その結果を下表3に示す。   Furthermore, about the said Examples 1 and 2, the elution test of harmful heavy metals was done. The results are shown in Table 3 below.

Figure 0004962915
Figure 0004962915

本発明に係る保水性ブロック体の場合には、重金属類について、土環境基準を満足することが確認され、安全に使用できることが確認できた。   In the case of the water-retaining block according to the present invention, it was confirmed that the heavy metals satisfy the earth environment standard and can be used safely.

骨材系材料(%)と曲げ強度/圧縮強度(強度比)との相関グラフである。It is a correlation graph of aggregate material (%) and bending strength / compressive strength (strength ratio).

Claims (4)

採石廃土、石砕スラッジ、窯業廃土、ケイソウ廃土および浄水汚泥の群から選ばれた1種以上を主とする粘土系材料、セメントを主とする粉体系材料およびクリンカーアッシュ又は石炭灰固化砕石を主とする骨材系材料からなり、
前記粘土系材料を30〜39重量%、前記粉体系材料を15〜38重量%、前記骨材系材料を32〜46重量%の配合で混練し、これらの混合物を真空吸引によって脱気しつつ、押出し成形した後、焼成することなく乾燥させてブロック体を得ることを特徴とする保水性ブロックの製造方法。
Clay-based materials mainly composed of one or more selected from the group of quarrying waste, crushed sludge, ceramics waste, diatom waste and purified water sludge, powder-based materials mainly containing cement and clinker ash or coal ash solidification It consists of aggregate material mainly made of crushed stone
The clay-based material is kneaded with a composition of 30 to 39% by weight, the powder-based material is 15 to 38% by weight, and the aggregate-based material is 32 to 46% by weight, and these mixtures are degassed by vacuum suction. A method for producing a water-retaining block, wherein the block body is obtained by extruding and then drying without firing.
前記粉体系材料中に、高炉スラグ微粉末が前記粉体系材料100重量部に対して30重量部以下の割合で配合されている請求項1記載の保水性ブロックの製造方法。   The method for producing a water-retaining block according to claim 1, wherein fine powder of blast furnace slag is blended in the powder-based material at a ratio of 30 parts by weight or less with respect to 100 parts by weight of the powder-based material. 前記骨材系材料中に、コンクリートがら、レンガ破片、ブロック破片、瓦破片の群から選ばれたB級品破砕屑が前記骨材系材料100重量部に対して10重量部以下の割合で配合されている請求項1、2いずれかに記載の保水性ブロックの製造方法。   In the aggregate-based material, Class B crushing waste selected from the group of concrete litter, brick fragments, block fragments, and tile fragments is blended at a ratio of 10 parts by weight or less with respect to 100 parts by weight of the aggregate-based material. The manufacturing method of the water retention block in any one of Claims 1 and 2. 前記粘土系材料として浄水汚泥を含む1種以上の材料が選択され、かつ二水石膏が前記粉体系材料100重量部に対して5〜15重量部の割合で配合されている請求項1〜3いずれかに記載の保水性ブロックの製造方法。   One or more kinds of materials containing purified water sludge are selected as the clay-based material, and dihydrate gypsum is blended at a ratio of 5 to 15 parts by weight with respect to 100 parts by weight of the powder-based material. The manufacturing method of the water retention block in any one.
JP2007319122A 2007-03-06 2007-12-11 Manufacturing method of water retention block Active JP4962915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319122A JP4962915B2 (en) 2007-03-06 2007-12-11 Manufacturing method of water retention block

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007055643 2007-03-06
JP2007055643 2007-03-06
JP2007319122A JP4962915B2 (en) 2007-03-06 2007-12-11 Manufacturing method of water retention block

Publications (2)

Publication Number Publication Date
JP2008247728A JP2008247728A (en) 2008-10-16
JP4962915B2 true JP4962915B2 (en) 2012-06-27

Family

ID=39973124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319122A Active JP4962915B2 (en) 2007-03-06 2007-12-11 Manufacturing method of water retention block

Country Status (1)

Country Link
JP (1) JP4962915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896525A (en) * 2014-03-12 2014-07-02 江苏绿威环保科技有限公司 Preparation method of environment-friendly brick by using sludge ash as main raw material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066194B1 (en) 2008-12-18 2011-09-20 한국건설기술연구원 A water-retentive bottom ash block and its process of manufacture
JP2010275155A (en) * 2009-05-29 2010-12-09 Zyuku Ltd Concrete composition, concrete structure and block for fish reef or spawning reef
CN102051943B (en) * 2009-11-09 2012-07-04 广东绿由环保科技股份有限公司 Sintered light environmental-friendly brick produced by using municipal sludge and manufacture method thereof
CN101857411B (en) * 2010-06-23 2012-05-23 湖南科技大学 Method for preparing baking-free bricks from high soil content construction waste
CN101913842B (en) * 2010-07-23 2012-07-11 广州绿由工业弃置废物回收处理有限公司 Baked light-weight environmental-friendly bricks prepared from paper mill sludge and manufacturing method thereof
CN101891434B (en) * 2010-07-23 2012-07-04 广州绿由工业弃置废物回收处理有限公司 Aerated concrete regenerative building block produced by using garbage clinkers and manufacturing method thereof
CN102211920B (en) * 2011-03-04 2012-10-03 济南大学 Lightweight brick produced by using papermaking sludge as raw material and preparation method thereof
CN102659335B (en) * 2012-04-11 2013-08-07 浙江大学宁波理工学院 Asphalt mixture anti-rut agent and preparation method thereof
CN104211429B (en) * 2013-09-28 2015-08-05 湖北省当阳豪山建材有限公司 A kind of combined light heat-insulating sound-insulating brick
CN108409250A (en) * 2018-04-25 2018-08-17 广西理工职业技术学院 The method for preparing green pervious concrete using tailing
CN113501702A (en) * 2021-07-30 2021-10-15 山东高速材料技术开发集团有限公司 Full-solid waste kerbstone and preparation method and application thereof
JP7454149B2 (en) 2021-09-30 2024-03-22 中村建設株式会社 Construction materials and construction material manufacturing methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102999A (en) * 1980-01-19 1981-08-17 Agency Of Ind Science & Technol Hardening method of sludge formed in purification plant
JP2003049401A (en) * 2001-08-03 2003-02-21 Fukui Prefecture Roadbed material
JP3861200B2 (en) * 2002-02-07 2006-12-20 電気化学工業株式会社 Quick setting cement concrete for prelining, method for producing the same, and prelining method using the same
JP2004036217A (en) * 2002-07-03 2004-02-05 Kamei Seito Kk Water permeable block material and manufacturing method therefor
JP2004066182A (en) * 2002-08-09 2004-03-04 Takao Harada Discharged sludge recycling method
JP2004090585A (en) * 2002-09-04 2004-03-25 Kamei Seito Kk Method for manufacturing block
JP2004099396A (en) * 2002-09-11 2004-04-02 Fukui Prefecture Concrete composition utilizing coal ash
JP2005035801A (en) * 2003-07-15 2005-02-10 Toa Doro Kogyo Co Ltd Porous block-like material and method of manufacturing the same
JP4255802B2 (en) * 2003-10-22 2009-04-15 大有建設株式会社 Pavement
JP4621949B2 (en) * 2005-02-03 2011-02-02 ショーボンド建設株式会社 Cement filler
JP2007161503A (en) * 2005-12-09 2007-06-28 National Institute Of Advanced Industrial & Technology Water retentive block and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896525A (en) * 2014-03-12 2014-07-02 江苏绿威环保科技有限公司 Preparation method of environment-friendly brick by using sludge ash as main raw material

Also Published As

Publication number Publication date
JP2008247728A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4962915B2 (en) Manufacturing method of water retention block
JP5544628B2 (en) Alkali active binder, alkali active mortar using the binder, concrete, concrete product and loess wet pavement
CN102838378B (en) Complete harmless and resourceful treatment process of building solid waste
KR101214596B1 (en) Permeable concrete composition using cement and geopolymer binder, and bottom ash aggregate and making method of the same
KR100592781B1 (en) Water-permeable concrete composition using bottom ash
KR101518443B1 (en) Compositions of pervious concrete products by using the aggregates from industrial wastes and method for the same
KR20140148001A (en) Soil Concrete Composition
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
JP2010180094A (en) Method for manufacturing water-retentive block
EP2738148B1 (en) Interlocking block
KR101896251B1 (en) Lightweight sidewalk block with water permeability and water holding capacity
JP2012193079A (en) High strength porous concrete composition and high strength porous concrete cured body
JP2005060159A (en) Water retentive and water-permeable ceramic block obtained by utilizing inorganic waste material, and producing method therefor
JP2008075270A (en) Water-retentive block
JPH1059756A (en) Water permeation rate and water retention value control material formed by using recycled aggregate and its production
KR101451501B1 (en) Composition of artificial aggregate and making method using inorganic sludge particle
JP3446409B2 (en) Method for producing water-permeable ceramic block
JP2007008733A (en) Water retentivity controllable concrete product capable of controlling water retentivity and water permeability
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
RU2382010C2 (en) Raw mix for production of sulfur concrete
KR101222212B1 (en) Composition for concrete using bottom ash and manufacturing method thereof
KR101631276B1 (en) Manufacturing method of recycled aggregates using bauxite residue
JP2003306361A (en) Strength improving agent for cement hardened body and cement hardened body obtained by blending the strength improving agent
RU84407U1 (en) SULFUR CONCRETE CONSTRUCTION
JP4225798B2 (en) Cement-based insulation and repair method for breakwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4962915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350