JP2000200905A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2000200905A
JP2000200905A JP11001259A JP125999A JP2000200905A JP 2000200905 A JP2000200905 A JP 2000200905A JP 11001259 A JP11001259 A JP 11001259A JP 125999 A JP125999 A JP 125999A JP 2000200905 A JP2000200905 A JP 2000200905A
Authority
JP
Japan
Prior art keywords
power element
region
semiconductor device
integrated circuit
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001259A
Other languages
Japanese (ja)
Inventor
Toru Miyazaki
透 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11001259A priority Critical patent/JP2000200905A/en
Publication of JP2000200905A publication Critical patent/JP2000200905A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device with superior radiating characteristics which can be formed in a few manufacturing processes, and a semiconductor device in which the reliability of a circuit operation can be improved, by reducing effects of noise generated in the operation of a power element on the circuit operation. SOLUTION: In a semiconductor device 1 of an intelligent power device, pads 311-315, 321-325, etc., for an integrated circuit are arranged in addition to pads 212, 213, 222, 223, etc., for a power element in each power element area 21-24. Also, a shield layer is formed between each power element area 21-24 and each of pads 311-315, 321-325, etc., for the integrated circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に関
し、特にパワー素子が配設されたパワー素子領域と、パ
ワー素子を駆動制御する回路や保護回路が配設された集
積回路領域とを同一基板上に形成する半導体装置に関す
る。さらに詳細には、本発明は、基板としてSOI(Silic
on on Insulator)基板が使用され、パワー素子領域の
周囲がトレンチ構造体で囲まれた構造を有し、放熱性能
に優れた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to a semiconductor device in which a power element region provided with a power element and an integrated circuit region provided with a circuit for controlling and driving the power element and a protection circuit are provided on the same substrate. The present invention relates to a semiconductor device formed thereon. More particularly, the present invention is SOI (S Ilic as substrate
on o n I nsulator) substrate is used, the periphery of the power device region has a enclosed structure trench structure relates to a semiconductor device with excellent heat radiation performance.

【0002】[0002]

【従来の技術】パワー素子とこのパワー素子を駆動制御
する回路や保護回路とを同一基板上に形成したインテリ
ジェントパワーデバイスの開発が進められている。この
種の半導体装置においては、パワー素子の動作で発生す
る熱を外部に放出させ、漏洩電流を減少させることが重
要な技術的課題の1つになっている。
2. Description of the Related Art An intelligent power device in which a power element and a circuit for controlling and driving the power element and a protection circuit are formed on the same substrate has been developed. In this type of semiconductor device, it is one of the important technical issues to release heat generated by the operation of the power element to the outside and reduce leakage current.

【0003】一般的に、パワー素子が配設されたパワー
素子領域内にはパワー素子用パッド(ボンディングパッ
ド)が配設されており、パワー素子用パッドはワイヤー
を通して配線基板、他のデバイス等の外部装置に電気的
に接続される。このパワー素子用パッド及びワイヤーは
パワー素子からの熱を外部装置側に逃がす放熱経路とし
ても使用されていた。
Generally, a power element pad (bonding pad) is provided in a power element area in which a power element is provided, and the power element pad is connected to a wiring board, another device, or the like through a wire. It is electrically connected to an external device. These power element pads and wires have also been used as heat radiation paths for releasing heat from the power element to the external device side.

【0004】特開平8−236618号公報には、パワ
ー素子の動作で発生する熱を効率良く外部に放出できる
発明が開示されている。この公開公報に開示された半導
体装置は、パワー素子部上の最上層に新たに上層配線層
を配設し、この上層配線層をヒートシンクとして使用す
るものである。
Japanese Patent Laid-Open Publication No. Hei 8-236618 discloses an invention capable of efficiently releasing heat generated by the operation of a power element to the outside. In the semiconductor device disclosed in this publication, an upper wiring layer is newly provided in the uppermost layer on the power element section, and the upper wiring layer is used as a heat sink.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、公開公
報に開示された半導体装置においては、以下の点につい
て配慮がなされていない。 (1)ヒートシンクとして使用される最上層の上層配線
層とパワー素子との間には上下配線層間を絶縁分離する
層間絶縁膜が数多く介在されてしまう。例えば、2層配
線構造の半導体装置においては、基板と第1層目配線層
との間、第1層目配線層と第2層目配線層との間、そし
て第2層目配線層と新たに追加された上層配線層との間
にそれぞれ層間絶縁膜が形成され、少なくとも合計3枚
の層間絶縁膜が必要になる。層間絶縁膜には一般的にシ
リコン酸化膜やシリコン窒化膜が使用されており、これ
らの無機材料は熱伝導性が低い。従って、パワー素子で
発生した熱は層間絶縁膜が熱抵抗となって上層配線層ま
で伝わりにくく、充分な放熱特性を得ることができなか
った。
However, in the semiconductor device disclosed in the official gazette, the following points are not considered. (1) Many interlayer insulating films for insulating and separating the upper and lower wiring layers are interposed between the upper wiring layer and the power element used as the heat sink. For example, in a semiconductor device having a two-layer wiring structure, between a substrate and a first wiring layer, between a first wiring layer and a second wiring layer, and between a second wiring layer and a new wiring layer. An interlayer insulating film is formed between each of the layers and the additional upper wiring layer, and a total of at least three interlayer insulating films are required. Generally, a silicon oxide film or a silicon nitride film is used for the interlayer insulating film, and these inorganic materials have low thermal conductivity. Therefore, the heat generated by the power element is hardly transmitted to the upper wiring layer due to the thermal resistance of the interlayer insulating film, and sufficient heat radiation characteristics cannot be obtained.

【0006】(2)さらに、最上層の上層配線層の形成
工程を半導体装置の製造プロセスに新たに組み込む必要
があり、この上層配線層の形成工程に伴い、下地の層間
絶縁膜を形成する工程やこの層間絶縁膜に接続孔を形成
する工程を追加する必要があるので、製造工程数が増大
してしまう。本発明は上記課題を解決するためになされ
たものである。従って、本発明の目的は、少ない製造工
程で形成することができ、かつ放熱特性に優れた半導体
装置を提供することである。特に、本発明の目的は、配
線形成工程数を減少させ全体の製造工程数を減少させる
ことができ、かつパワー素子からの熱を効率良く外部に
放出させ、放熱特性を向上させることができるインテリ
ジェントパワーデバイスを提供することである。さら
に、本発明の目的は、上記目的に加えて、パワー素子の
動作で発生するノイズの回路動作に及ぼす影響を減少さ
せ、回路動作の信頼性を向上させることができる半導体
装置を提供することである。
(2) In addition, it is necessary to newly incorporate a step of forming an upper wiring layer on the uppermost layer into a manufacturing process of a semiconductor device. With the step of forming the upper wiring layer, a step of forming a base interlayer insulating film is required. It is necessary to add a step of forming a connection hole in the interlayer insulating film, and the number of manufacturing steps increases. The present invention has been made to solve the above problems. Therefore, an object of the present invention is to provide a semiconductor device which can be formed in a small number of manufacturing steps and has excellent heat dissipation characteristics. In particular, an object of the present invention is to reduce the number of wiring forming steps and the number of overall manufacturing steps, and to efficiently release heat from a power element to the outside to improve heat radiation characteristics. It is to provide a power device. Still another object of the present invention is to provide a semiconductor device capable of reducing the influence of noise generated by the operation of a power element on a circuit operation and improving the reliability of the circuit operation, in addition to the above objects. is there.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明の第1の特徴は、半導体装置において、同
一基板上のパワー素子領域及び集積回路領域と、パワー
素子領域の周囲を取り囲むトレンチ構造体と、パワー素
子領域内のパワー素子用パッドと、パワー素子領域内又
はトレンチ構造体上のパワー素子用パッドと同一配線層
の集積回路用パッドと、を備えたことである。このよう
に構成される半導体装置においては、パワー素子の動作
で発生した熱をパワー素子用パッドで外部に放出させる
ことができ、さらに加えてパワー素子領域内又はトレン
チ構造体上の集積回路用パッドを通して外部に熱を放出
させることができるので、放熱特性を向上させることが
できる。さらに、集積回路用パッドは、パワー素子用パ
ッドと同一配線層で形成されており、集積回路用パッド
の配置位置をパワー素子領域内又はトレンチ構造体上に
変えただけなので、新たに配線層を追加することなく、
少ない製造工程数で放熱特性を向上させることができ
る。さらに、新たに配線層を追加することがなく、パワ
ー素子用パッド及び集積回路用パッドが最上層となり、
パワー素子用パッド及び集積回路用パッドとパワー素子
領域との間の層間絶縁膜の枚数を減少させることができ
るので、パワー素子領域からパワー素子用パッド、集積
回路用パッドのそれぞれに至る放熱経路の熱抵抗を減少
させることができ、放熱特性をより一層向上させること
ができる。
In order to solve the above problems, a first feature of the present invention is to provide a semiconductor device which surrounds a power element region and an integrated circuit region on the same substrate and a periphery of the power element region. A trench structure, a power element pad in the power element region, and an integrated circuit pad in the same wiring layer as the power element pad in the power element region or on the trench structure are provided. In the semiconductor device configured as described above, the heat generated by the operation of the power element can be released to the outside by the power element pad. In addition, the integrated circuit pad in the power element region or on the trench structure Since heat can be released to the outside through the fin, heat radiation characteristics can be improved. Further, the integrated circuit pads are formed in the same wiring layer as the power element pads, and the arrangement position of the integrated circuit pads is merely changed in the power element area or on the trench structure. Without adding
The heat radiation characteristics can be improved with a small number of manufacturing steps. Furthermore, without adding a new wiring layer, the power element pad and the integrated circuit pad become the uppermost layer,
Since the number of interlayer insulating films between the power element pad and the integrated circuit pad and the power element area can be reduced, the heat radiation path from the power element area to the power element pad and the integrated circuit pad can be reduced. Thermal resistance can be reduced, and heat radiation characteristics can be further improved.

【0008】この発明の第2の特徴は、第1の特徴の半
導体装置において、パワー素子用パッド、集積回路用パ
ッドはいずれもワイヤーを通して外部装置に電気的に接
続されたことである。このように構成される半導体装置
においては、パワー素子用パッドからワイヤーを通して
外部に至る放熱経路と、集積回路用パッドからワイヤー
を通して外部に至る放熱経路との2系統の放熱経路を形
成し、しかもワイヤーは熱伝導に優れているので、効率
良く外部に熱を放出させることができ、より一層放熱特
性を向上させることができる。
A second feature of the present invention is that in the semiconductor device according to the first feature, both the power element pad and the integrated circuit pad are electrically connected to external devices through wires. In the semiconductor device thus configured, two heat radiation paths are formed: a heat radiation path from the power element pad to the outside through the wire, and a heat radiation path from the integrated circuit pad to the outside through the wire. Since is excellent in heat conduction, heat can be efficiently released to the outside, and the heat radiation characteristics can be further improved.

【0009】この発明の第3の特徴は、第1の特徴又は
第2の特徴の半導体装置において、パワー素子領域と集
積回路用パッドとの間にさらにシールド層を備えたこと
である。このように構成される半導体装置においては、
パワー素子の動作で発生するノイズをシールド層で遮蔽
し、集積回路用パッドに伝達される信号にノイズが乗る
ことを防止することができるので、動作信頼性を向上さ
せることができる。
A third feature of the present invention is that, in the semiconductor device according to the first feature or the second feature, a shield layer is further provided between the power element region and the integrated circuit pad. In the semiconductor device configured as described above,
Noise generated by the operation of the power element is shielded by the shield layer, and the noise transmitted to the signal transmitted to the integrated circuit pad can be prevented, so that the operation reliability can be improved.

【0010】[0010]

【発明の効果】本発明は、少ない製造工程で形成するこ
とができ、かつ放熱特性に優れた半導体装置を提供する
ことができる。さらに、本発明は、上記効果に加えて、
パワー素子の動作で発生するノイズの回路動作に及ぼす
影響を減少させ、回路動作の信頼性を向上させることが
できる半導体装置を提供することができる。
The present invention can provide a semiconductor device which can be formed in a small number of manufacturing steps and has excellent heat radiation characteristics. Furthermore, the present invention, in addition to the above effects,
It is possible to provide a semiconductor device capable of reducing the influence of noise generated by the operation of a power element on a circuit operation and improving the reliability of the circuit operation.

【0011】[0011]

【発明の実施の形態】(第1の実施の形態)以下、本発
明の実施の形態を図面を参照して説明する。図1は本発
明の第1の実施の形態に係る半導体装置の平面図、図2
は図1のF2−F2切断線で切った部分の半導体装置の
拡大断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present invention, and FIG.
FIG. 2 is an enlarged cross-sectional view of a portion of the semiconductor device taken along a line F2-F2 in FIG.

【0012】図1に示すように、第1の実施の形態に係
る半導体装置1はインテリジェントパワーデバイスであ
る。この半導体装置1は、図1中、中央部分に集積回路
(IC)領域3を配設し、図1中、左側にパワー素子領域
21及び22、図1中、右側にパワー素子領域23及び
24のそれぞれを配設する。パワー素子領域21の周囲
はトレンチ構造体41で取り囲まれ、同様に、パワー素
子領域22の周囲はトレンチ構造体42で、パワー素子
領域23の周囲はトレンチ構造体43で、パワー素子領
域24の周囲はトレンチ構造体44でそれぞれ取り囲ま
れる。
As shown in FIG. 1, a semiconductor device 1 according to the first embodiment is an intelligent power device. In this semiconductor device 1, an integrated circuit (IC) region 3 is provided at a central portion in FIG. 1, and power device regions 21 and 22 are provided on the left in FIG. 1, and power device regions 23 and 24 are provided on the right in FIG. Arrange each of the. The periphery of the power element region 21 is surrounded by a trench structure 41. Similarly, the periphery of the power element region 22 is a trench structure 42, the periphery of the power element region 23 is a trench structure 43, and the periphery of the power element region 24. Are each surrounded by a trench structure 44.

【0013】パワー素子領域21の中央部分にはパワー
素子211が配設される。パワー素子211はパワート
ランジスタ(パワートランジスタセル)を複数個電気的
に並列に接続して構成される。第1の実施の形態におい
て、パワートランジスタには、トレンチ(図2において
符号71で示す断面U字型の溝。)を利用し、このトレ
ンチ内にゲート電極(図2において符号73で示す。)
を埋設した絶縁ゲート型電界効果トランジスタ(一般的
にUMOSと呼ばれているが、本発明はゲート絶縁膜に単層
のSiO2膜以外の絶縁膜、例えばSiO2膜及びSi3N4膜から
なる複合膜やSiNO膜を使用するトランジスタも含む。)
が実用的に使用できる。
A power element 211 is provided at the center of the power element area 21. The power element 211 is configured by electrically connecting a plurality of power transistors (power transistor cells) electrically in parallel. In the first embodiment, a trench (a U-shaped cross section indicated by reference numeral 71 in FIG. 2) is used for the power transistor, and a gate electrode (indicated by reference numeral 73 in FIG. 2) is provided in the trench.
Embedded insulated gate field effect transistor (generally referred to as UMOS, but the present invention uses a gate insulating film made of an insulating film other than a single-layer SiO 2 film, such as an SiO 2 film and a Si 3 N 4 film. (Including transistors using composite films and SiNO films.)
Can be used practically.

【0014】同様に、パワー素子領域22の中央部分に
はパワー素子221が配設され、パワー素子領域23の
中央部分にはパワー素子231が配設され、パワー素子
領域24の中央部分にはパワー素子241が配設され
る。これらのパワー素子221、231、241はいず
れもパワー素子領域21のパワー素子211と同様の複
数個のパワートランジスタで構成される。
Similarly, a power element 221 is provided at the center of the power element area 22, a power element 231 is provided at the center of the power element area 23, and a power element is provided at the center of the power element area 24. An element 241 is provided. Each of these power elements 221, 231 and 241 is constituted by a plurality of power transistors similar to the power element 211 in the power element area 21.

【0015】なお、詳細には説明しないが、集積回路領
域3には、パワー素子211、221、231、241
のそれぞれを駆動する駆動回路、駆動の制御を行う論理
回路、サージによる破壊を防止するための保護回路等が
配設される。
Although not described in detail, the power elements 211 221 231 241 and 241
Are provided, a driving circuit for driving each of them, a logic circuit for controlling the driving, a protection circuit for preventing destruction by a surge, and the like are provided.

【0016】図2に示すように、第1の実施の形態に係
る半導体装置1はSOI構造の基板10で構成される。す
なわち、基板10は、単結晶シリコンからなる低い不純
物密度のp型半導体基板101と、半導体基板101上
に形成された絶縁体層102と、絶縁体層102に張り
合わされた半導体層103とを備えて構成される。この
半導体層103は素子が形成されるアクティブ領域とし
て使用され、第1の実施の形態において半導体層103
の少なくともパワー素子領域21〜24には低い不純物
密度のn型ウエル領域が形成される。
As shown in FIG. 2, the semiconductor device 1 according to the first embodiment includes a substrate 10 having an SOI structure. That is, the substrate 10 includes a low-impurity-density p-type semiconductor substrate 101 made of single-crystal silicon, an insulator layer 102 formed over the semiconductor substrate 101, and a semiconductor layer 103 attached to the insulator layer 102. It is composed. This semiconductor layer 103 is used as an active region where an element is formed, and is used in the first embodiment.
In at least the power element regions 21 to 24, an n-type well region having a low impurity density is formed.

【0017】図2にはパワー素子領域22の一部の断面
構造を示しているが、基本的にはパワー素子領域21〜
24のそれぞれの断面構造は同一である。すなわち、ま
ずパワー素子領域21〜24のそれぞれの周囲を取り囲
むトレンチ構造体41〜44は、いずれもトレンチ40
1、埋込絶縁体402、埋込充填材403、キャップ材
404を備えて構築される。トレンチ401は、半導体
層103の表面から深さ方向に、底面が絶縁体層102
の表面に達するように形成され、パワー素子領域21〜
24のそれぞれと集積回路領域3との間を分離するよう
に構成される。通常、トレンチ401の形成には、微細
加工を目的として、反応性イオンエッチング(RIE)等
の異方性の強いエッチングが使用される。埋込絶縁体4
02はトレンチ401の側壁及び底面に沿って形成さ
れ、埋込絶縁体402には例えば熱酸化法や化学的気相
析出(VCD)法で成膜されたSiO2膜が実用的に使用でき
る。埋込充填材403はトレンチ401内部に埋込絶縁
体402を介在させて埋め込まれ、埋込充填材403に
は例えばCVD法で成膜された多結晶シリコン膜が実用的
に使用できる。通常、この多結晶シリコン膜はトレンチ
401内部に完全に埋め込むために、トレンチ401の
周囲の半導体層103上にも余分に成膜されるが、これ
らの余分に成膜された多結晶シリコン膜は全面エッチン
グにより取り除かれる。キャップ材404はトレンチ4
01上に配設され、このキャップ材404には例えば熱
酸化法で形成されたSiO2膜が実用的に使用できる。
FIG. 2 shows a partial cross-sectional structure of the power element region 22.
24 have the same sectional structure. That is, first, the trench structures 41 to 44 surrounding the periphery of each of the power element regions 21 to 24 are
1. A buried insulator 402, a buried filler 403, and a cap 404 are provided. The trench 401 has a bottom surface extending from the surface of the semiconductor
And the power element regions 21 to
24 and the integrated circuit region 3. Usually, in forming the trench 401, highly anisotropic etching such as reactive ion etching (RIE) is used for the purpose of fine processing. Embedded insulator 4
Numeral 02 is formed along the side wall and bottom surface of the trench 401, and for the buried insulator 402, for example, a SiO 2 film formed by a thermal oxidation method or a chemical vapor deposition (VCD) method can be practically used. The buried filler 403 is buried inside the trench 401 with a buried insulator 402 interposed therebetween. For the buried filler 403, for example, a polycrystalline silicon film formed by a CVD method can be used practically. Usually, this polycrystalline silicon film is additionally formed on the semiconductor layer 103 around the trench 401 to completely bury the inside of the trench 401. The entire surface is removed by etching. Cap material 404 is trench 4
For example, a SiO 2 film formed by a thermal oxidation method can be practically used as the cap material 404.

【0018】図1に示すトレンチ構造体41は、パワー
素子領域21と集積回路領域3との間を完全に絶縁分離
しており、双方の間で寄生トランジスタの発生を防止す
ることができる。同様に、トレンチ構造体42はパワー
素子領域22と集積回路領域3との間を完全に絶縁分離
し、トレンチ構造体43はパワー素子領域23と集積回
路領域3との間を完全に絶縁分離し、トレンチ構造体4
4はパワー素子領域24と集積回路領域3との間を完全
に絶縁分離することができる。
In the trench structure 41 shown in FIG. 1, the power element region 21 and the integrated circuit region 3 are completely insulated and separated from each other, so that a parasitic transistor can be prevented from being generated therebetween. Similarly, the trench structure 42 completely insulates the power device region 22 from the integrated circuit region 3, and the trench structure 43 completely insulates the power device region 23 from the integrated circuit region 3. , Trench structure 4
4 can completely insulate and isolate the power element region 24 and the integrated circuit region 3.

【0019】パワー素子領域21のパワー素子211、
パワー素子領域22のパワー素子221、パワー素子領
域23のパワー素子231、パワー素子領域24のパワ
ー素子241のそれぞれのパワートランジスタ(UMOS)
は、図2に示すように、いずれも、トレンチ71、ゲー
ト絶縁膜72、ゲート電極73、ドレイン領域、ソース
領域及びベース領域を主体として構築される。
The power element 211 in the power element area 21;
Each power transistor (UMOS) of the power element 221 in the power element area 22, the power element 231 in the power element area 23, and the power element 241 in the power element area 24
As shown in FIG. 2, each of them is constructed mainly of a trench 71, a gate insulating film 72, a gate electrode 73, a drain region, a source region, and a base region.

【0020】このパワートランジスタのドレイン領域は
半導体層103のn型ウエル領域を主体に形成される。
このドレイン領域には半導体層103の絶縁体層102
側に形成された高い不純物密度のn型埋込層5、半導体
層103の表面からn型埋込層5に達する高い不純物密
度のn型半導体領域6、n型半導体領域6の表面部分に形
成されコンタクト領域として使用される高い不純物密度
のn型半導体領域91のそれぞれが順次電気的に接続さ
れており、これらの領域を通してドレイン領域にドレイ
ン電流が供給される。
The drain region of the power transistor is formed mainly on the n-type well region of the semiconductor layer 103.
In this drain region, the insulator layer 102 of the semiconductor layer 103 is formed.
The n-type buried layer 5 having a high impurity density formed on the side, the n-type semiconductor region 6 having a high impurity density reaching the n-type buried layer 5 from the surface of the semiconductor layer 103, and the surface portion of the n-type semiconductor region 6 are formed. Each of the n-type semiconductor regions 91 having a high impurity density used as a contact region is electrically connected sequentially, and a drain current is supplied to the drain region through these regions.

【0021】ベース領域は、ドレイン領域の表面部分に
形成され、中間の不純物密度のp型半導体領域8で形成
される。このベース領域のゲート絶縁膜72に近接する
領域には、ゲート電極73に供給されるゲート電圧に応
じてドレイン領域とソース領域との間に主電流を流すた
めのチャネル領域が形成される。
The base region is formed on the surface of the drain region, and is formed of a p-type semiconductor region 8 having an intermediate impurity density. In a region of the base region adjacent to the gate insulating film 72, a channel region for flowing a main current between the drain region and the source region according to a gate voltage supplied to the gate electrode 73 is formed.

【0022】ソース領域は、ベース領域の表面部分に形
成され、高い不純物密度のn型半導体領域90で形成さ
れる。
The source region is formed on the surface of the base region, and is formed of an n-type semiconductor region 90 having a high impurity density.

【0023】さらに、ソース領域の中央部分には半導体
層103(n型ウエル領域)の表面からベース領域に達
するバックゲート領域(又はベースコンタクト領域)が
形成され、このバックゲート領域は高い不純物密度のp
型半導体領域95で形成される。
Further, a back gate region (or a base contact region) extending from the surface of the semiconductor layer 103 (n-type well region) to the base region is formed at a central portion of the source region, and the back gate region has a high impurity density. p
It is formed in the type semiconductor region 95.

【0024】ゲート絶縁膜72は、ソース領域の周囲を
取り囲み、半導体層103の表面からベース領域を突き
抜けるように形成されたトレンチ71の内壁及び底面に
沿って形成される。ゲート絶縁膜72には、例えば熱酸
化法で成膜されたSiO2膜が実用的に使用できる。勿論、
前述のように、ゲート絶縁膜72はSiO2膜以外のものを
使用することができる。ゲート電極73はトレンチ71
内においてゲート絶縁膜72を介在して埋設される。ゲ
ート電極73には例えばCVD法で成膜された多結晶シリ
コン膜が実用的に使用できる。この多結晶シリコン膜に
は抵抗値を調節する不純物、例えばAs若しくはPのn型不
純物、又はB等のp型不純物が導入される。トレンチ71
上部にはゲート電極73とその上層の配線との短絡を防
止するためにキャップ材74が形成される。
The gate insulating film 72 is formed along the inner wall and the bottom of the trench 71 formed so as to surround the source region and penetrate the base region from the surface of the semiconductor layer 103. As the gate insulating film 72, for example, an SiO 2 film formed by a thermal oxidation method can be practically used. Of course,
As described above, a material other than the SiO 2 film can be used for the gate insulating film 72. The gate electrode 73 is a trench 71
Embedded in the inside with a gate insulating film 72 interposed therebetween. For the gate electrode 73, for example, a polycrystalline silicon film formed by a CVD method can be practically used. An impurity for adjusting the resistance value, for example, an n-type impurity such as As or P, or a p-type impurity such as B is introduced into the polycrystalline silicon film. Trench 71
A cap material 74 is formed on the upper portion to prevent a short circuit between the gate electrode 73 and the wiring above it.

【0025】同図2に示すように、パワートランジスタ
のドレイン領域に接続されたn型半導体領域91にはド
レイン電極201が電気的に接続される。第1の実施の
形態に係る半導体装置1は2層配線構造で構成されてお
り、ドレイン電極201は第1層目配線層(下層配線
層)に配置される。すなわち、ドレイン電極201は、
半導体層103表面上の層間絶縁膜11上に配設され、
この層間絶縁膜11に形成された接続孔(符号は付けな
い。)を通してn型半導体領域91に接続される。ドレ
イン電極201は例えばアルミニウムにSiやCuを数%添
加したアルミニウム合金膜を主体に形成される。
As shown in FIG. 2, a drain electrode 201 is electrically connected to an n-type semiconductor region 91 connected to the drain region of the power transistor. The semiconductor device 1 according to the first embodiment has a two-layer wiring structure, and the drain electrode 201 is disposed in a first wiring layer (lower wiring layer). That is, the drain electrode 201
Disposed on the interlayer insulating film 11 on the surface of the semiconductor layer 103;
It is connected to the n-type semiconductor region 91 through a connection hole (not numbered) formed in the interlayer insulating film 11. The drain electrode 201 is mainly formed of, for example, an aluminum alloy film obtained by adding several percent of Si or Cu to aluminum.

【0026】このドレイン電極201はさらに上層の第
2層目配線層(上層配線層)に配置された配線に電気的
に接続され、この配線には図2に示すパワー素子221
においては同一の第2層目配線層に配置されるパワー素
子用パッド(ボンディングパッド)223に電気的に接
続される。図1に示すパワー素子211のドレイン電極
201は同図1に示すパワー素子用パッド213に、同
様にパワー素子231のドレイン電極201はパワー素
子用パッド233に、パワー素子241のドレイン電極
201はパワー素子用パッド243にそれぞれ電気的に
接続される。パワー素子用パッド213はパワー素子領
域21内、好ましくはパワー素子211上に配置され
る。同様に、パワー素子用パッド223はパワー素子領
域22内において好ましくはパワー素子221上に配置
され、パワー素子用パッド233はパワー素子領域23
内において好ましくはパワー素子231上に配置され、
パワー素子用パッド243はパワー素子領域24内にお
いて好ましくはパワー素子241上に配置される。パワ
ー素子用パッド213、223、233、243は、い
ずれも第1層目配線層上の層間絶縁膜12上に配設さ
れ、ドレイン電極201と同様に例えばアルミニウム合
金膜を主体に形成される。さらに、パワー素子用パッド
213、223、233、243はいずれも例えば100
μm×100μm程度の平面寸法で形成される。なお、第
2層目配線層の上層には保護膜13が形成されるが、パ
ワー素子用パッド213、223、233、243のそ
れぞれの領域において保護膜13にはボンディング開口
が形成される。
The drain electrode 201 is electrically connected to a wiring disposed in a second upper wiring layer (upper wiring layer), and the wiring is connected to the power element 221 shown in FIG.
Is electrically connected to a power element pad (bonding pad) 223 disposed in the same second wiring layer. The drain electrode 201 of the power element 211 shown in FIG. 1 is the power element pad 213 shown in FIG. 1, the drain electrode 201 of the power element 231 is the power element pad 233, and the drain electrode 201 of the power element 241 is the power electrode. Each is electrically connected to the element pad 243. The power element pad 213 is disposed in the power element area 21, preferably on the power element 211. Similarly, the power element pad 223 is preferably disposed on the power element 221 in the power element area 22, and the power element pad 233 is
Is preferably arranged on the power element 231,
The power element pad 243 is preferably arranged on the power element 241 in the power element region 24. Each of the power element pads 213, 223, 233, and 243 is provided on the interlayer insulating film 12 on the first wiring layer, and is formed mainly of, for example, an aluminum alloy film like the drain electrode 201. Further, each of the power element pads 213, 223, 233, and 243 is, for example, 100
It is formed with a plane dimension of about μm × 100 μm. The protective film 13 is formed above the second wiring layer, and a bonding opening is formed in the protective film 13 in each region of the power element pads 213, 223, 233, and 243.

【0027】一方、図2に示すパワートランジスタのソ
ース領域として使用されるn型半導体領域90及びバッ
クゲート電極として使用されるp型半導体領域95には
ソース電極202が電気的に接続される。ソース電極2
02は、ドレイン電極201と同一の第1層目配線層に
配置され、層間絶縁膜11に形成された接続孔を通して
n型半導体領域90及びp型半導体領域95に接続され
る。
On the other hand, a source electrode 202 is electrically connected to an n-type semiconductor region 90 used as a source region and a p-type semiconductor region 95 used as a back gate electrode of the power transistor shown in FIG. Source electrode 2
Numeral 02 is disposed in the same first wiring layer as the drain electrode 201 and passes through a connection hole formed in the interlayer insulating film 11.
It is connected to the n-type semiconductor region 90 and the p-type semiconductor region 95.

【0028】このソース電極202はさらに上層の第2
層目配線層に配置された配線に電気的に接続され、この
配線には図2に示すパワー素子221においては図1に
示す同一の第2層目配線層に配置されるパワー素子用パ
ッド222に電気的に接続される。図1に示すパワー素
子211のソース電極202は同図1に示すパワー素子
用パッド212に、同様にパワー素子231のソース電
極202はパワー素子用パッド232に、パワー素子2
41のソース電極202はパワー素子用パッド242に
それぞれ電気的に接続される。パワー素子用パッド21
2はパワー素子領域21内、好ましくはパワー素子21
1上に配置される。同様に、パワー素子用パッド222
はパワー素子領域22内において好ましくはパワー素子
221上に配置され、パワー素子用パッド232はパワ
ー素子領域23内において好ましくはパワー素子231
上に配置され、パワー素子用パッド242はパワー素子
領域24内において好ましくはパワー素子241上に配
置される。パワー素子用パッド212、222、23
2、242は、いずれもパワー素子用パッド213、2
23、233又は243と同等の平面寸法で形成され
る。また、パワー素子用パッド212、222、23
2、242のそれぞれの領域において保護膜13にはボ
ンディング開口が形成される。
The source electrode 202 is formed on a second upper layer.
The power element 221 shown in FIG. 2 is electrically connected to the wiring arranged in the first wiring layer. The power element pad 222 arranged in the same second wiring layer shown in FIG. Is electrically connected to The source electrode 202 of the power element 211 shown in FIG. 1 is connected to the power element pad 212 shown in FIG. 1, and the source electrode 202 of the power element 231 is connected to the power element pad 232.
The 41 source electrodes 202 are electrically connected to the power element pads 242, respectively. Power element pad 21
2 is within the power element region 21, preferably the power element 21
1 above. Similarly, the power element pad 222
Is preferably arranged on the power element 221 in the power element area 22, and the power element pad 232 is preferably arranged in the power element area 23.
The power element pad 242 is disposed on the power element 241 in the power element region 24. Power element pads 212, 222, 23
2, 242 are power element pads 213, 2
23, 233 or 243. In addition, the power element pads 212, 222, 23
Bonding openings are formed in the protective film 13 in the respective regions 2 and 242.

【0029】図2に示すように、パワー素子領域22に
おいてはパワー素子221とトレンチ構造体42との間
に放熱領域225が配設される。同様に、図1に示すパ
ワー素子領域21においてはパワー素子211とトレン
チ構造体41との間に放熱領域215が配設され、パワ
ー素子領域23においてはパワー素子231とトレンチ
構造体43との間に放熱領域235が配設され、パワー
素子領域24においてはパワー素子241とトレンチ構
造体44との間に放熱領域245が配設される。放熱領
域215は、サージ等の発生で短時間にパワー素子21
1が発熱し温度が上昇する場合において、SOI構造の基
板10の絶縁体層102でパワー素子領域21の底面
を、トレンチ構造体41でパワー素子領域21の側面を
完全に覆い、放熱経路を遮断してしまうと、漏洩電流が
増加する恐れがあるので、放熱性を高めるために放熱面
積を稼ぐことを主目的として配設される。例えば、パワ
ー素子211の面積を30000μm2に設定した場合、パワ
ー素子211の面積に放熱領域215の面積を加えたパ
ワー素子領域21の全体の面積は約4倍の120000μm2
設定することが、SOI構造の基板1及びトレンチ構造体
41を採用しない場合と同等の放熱性を確保する上で好
ましい。この場合、パワー素子領域21は縦横の長さで
約180μmは大きくなる。他の放熱領域225、23
5、245のそれぞれにおいても同様である。
As shown in FIG. 2, in the power element region 22, a heat radiation region 225 is provided between the power element 221 and the trench structure 42. Similarly, in the power element region 21 shown in FIG. 1, a heat dissipation region 215 is provided between the power element 211 and the trench structure 41, and in the power element region 23, between the power element 231 and the trench structure 43. In the power element region 24, a heat radiation region 235 is provided between the power element 241 and the trench structure 44. The heat dissipating region 215 is provided with the power element 21
In the case where the temperature rises due to the heat generation of 1, the bottom surface of the power element region 21 is completely covered with the insulator layer 102 of the SOI structure substrate 10, and the side surface of the power element region 21 is completely covered with the trench structure 41, and the heat radiation path is cut off. In such a case, the leakage current may be increased. Therefore, the antenna is mainly provided to increase a heat radiation area in order to enhance heat radiation. For example, when the area of the power element 211 is set to 30,000 μm 2 , the total area of the power element area 21 obtained by adding the area of the heat dissipation area 215 to the area of the power element 211 can be set to about 40000 × 120,000 μm 2 . It is preferable to ensure the same heat dissipation as when the SOI structure substrate 1 and the trench structure 41 are not used. In this case, the length of the power element region 21 is about 180 μm in length and width. Other heat dissipation areas 225, 23
The same applies to each of 5, 245.

【0030】そして、第1の実施の形態に係る半導体装
置1においては、図1及び図2に示すように、パワー素
子領域21の放熱領域215、パワー素子領域22の放
熱領域225、パワー素子領域23の放熱領域235、
パワー素子領域24の放熱領域245のそれぞれのデッ
ドスペースを空間的に有効に活用し、この放熱領域21
5に集積回路用パッド(ボンディングパッド)311〜
315が配設され、放熱領域225に集積回路用パッド
321〜325が配設され、放熱領域235に集積回路
用パッド331〜335が配設され、さらに放熱領域2
45に集積回路用パッド341〜345が配設される。
集積回路用パッド311〜315、321〜325、3
31〜335、341〜345はいずれもパワー素子用
パッド212、213、222、223、232、23
3、242、243のそれぞれと同一配線層の第2層目
配線層に配置されており、第1層目配線層に配置される
配線301又は第2層目配線層に配置される配線を通し
て集積回路領域3との間で信号の入出力が行われる。
In the semiconductor device 1 according to the first embodiment, as shown in FIGS. 1 and 2, the heat dissipation area 215 of the power element area 21, the heat dissipation area 225 of the power element area 22, and the power element area 23 heat dissipation areas 235,
The dead space of each heat dissipation area 245 of the power element area 24 is effectively utilized spatially, and the heat dissipation area 21
5 shows integrated circuit pads (bonding pads) 311 to 31.
315 are provided, the integrated circuit pads 321 to 325 are provided in the heat dissipation area 225, the integrated circuit pads 331 to 335 are provided in the heat dissipation area 235, and the heat dissipation area 2 is provided.
At 45, integrated circuit pads 341 to 345 are provided.
Integrated circuit pads 311 to 315, 321 to 325, 3
Reference numerals 31 to 335 and 341 to 345 denote power element pads 212, 213, 222, 223, 232, and 23, respectively.
3, 242 and 243, are arranged in the second wiring layer of the same wiring layer, and are integrated through the wiring 301 arranged in the first wiring layer or the wiring arranged in the second wiring layer. Signal input / output is performed with the circuit area 3.

【0031】集積回路用パッド311〜315は発熱源
となるパワー素子211に近接したパワー素子領域21
内に配設されることが放熱効率を高める点で好ましい
が、集積回路用パッド311〜315の一部がトレンチ
構造体41上に配置されていても充分な放熱効率の向上
が期待できる。その他の集積回路用パッド321〜32
5、331〜335、341〜345のそれぞれも同様
である。
The integrated circuit pads 311 to 315 are located in the power element region 21 close to the power element 211 serving as a heat source.
Although it is preferable to dispose it in the inside in order to enhance the heat radiation efficiency, even if a part of the integrated circuit pads 311 to 315 are arranged on the trench structure 41, a sufficient improvement in the heat radiation efficiency can be expected. Other integrated circuit pads 321 to 32
5, 331 to 335, and 341 to 345 are the same.

【0032】図3は半導体装置1を実装した配線基板の
概略断面図(図1に示すF3−F3切断線部分で切った
概略断面図)である。図3に示すように、半導体装置1
は配線基板15上に実装される。配線基板15にはエポ
キシ系樹脂配線基板、セラミックス配線基板のいずれか
が実用的に使用できる。配線基板15の表面上には配線
161、162のそれぞれが配設される。配線161、
162のそれぞれは、例えばエポキシ系樹脂配線基板に
おいてはCu配線やAl配線で形成され、セラミックス配線
基板においてはMoペーストやWペーストを焼き固めたメ
タライズ配線で形成される。
FIG. 3 is a schematic sectional view (schematic sectional view taken along the line F3-F3 shown in FIG. 1) of the wiring board on which the semiconductor device 1 is mounted. As shown in FIG.
Are mounted on the wiring board 15. Either an epoxy-based resin wiring board or a ceramic wiring board can be practically used for the wiring board 15. On the surface of the wiring board 15, each of the wirings 161 and 162 is provided. Wiring 161,
Each of the reference numerals 162 is formed of, for example, a Cu wiring or an Al wiring on an epoxy resin wiring substrate, and is formed of a metallized wiring obtained by sintering a Mo paste or a W paste on a ceramic wiring substrate.

【0033】図3に示すように、半導体装置1のパワー
素子用パッド223、243のそれぞれ(212、21
3、222、232、233、242のそれぞれも同
様)は、ワイヤー(ボンディングワイヤー)141を通
して配線161に電気的に接続される。一方、集積回路
用パッド322、342のそれぞれ(311〜315、
321、323〜325、331〜335、341、3
43〜345のそれぞれも同様)は、ワイヤー142を
通して配線162に電気的に接続される。ワイヤー14
1、142は、いずれも、電気伝導性を有し、かつ熱伝
導性に優れた例えばCuワイヤー、Alワイヤー、Auワイヤ
ーのいずれかが実用的に使用できる。
As shown in FIG. 3, each of the power element pads 223 and 243 of the semiconductor device 1 (212 and 21)
3, 222, 232, 233, and 242) are electrically connected to the wiring 161 through wires (bonding wires) 141. On the other hand, each of the integrated circuit pads 322 and 342 (311 to 315,
321, 323-325, 331-335, 341, 3
43 to 345) are electrically connected to the wiring 162 through the wires 142. Wire 14
As for Nos. 1 and 142, any of Cu wire, Al wire, and Au wire having electric conductivity and excellent heat conductivity can be practically used.

【0034】このように構成される半導体装置1におい
ては、パワー素子211、221、231、241のそ
れぞれの動作で発生した熱をパワー素子用パッド21
2、213、222、223、232、233、24
2、243のそれぞれで外部に放出させることができ、
さらに加えてパワー素子領域21〜24内又はトレンチ
構造体41〜44上の集積回路用パッド311〜31
5、321〜325、331〜335、341〜345
のそれぞれを通して外部に放出させることができるの
で、放熱特性を向上させることができる。さらに、集積
回路用パッド311〜315、321〜325、331
〜335、341〜345のそれぞれは、パワー素子用
パッド212、213、222、223、232、23
3、242、243のそれぞれと同一配線層で形成され
ており、集積回路用パッド311〜315、321〜3
25、331〜335、341〜345のそれぞれの配
置位置をパワー素子領域21〜24内又はトレンチ構造
体41〜44上に変えただけなので、新たに配線層を追
加することなく、少ない製造工程数で形成することがで
き、かつ放熱特性を向上させることができる。さらに、
新たに配線層を追加することがなく、パワー素子用パッ
ド212、213、222、223、232、233、
242、243のそれぞれ及び集積回路用パッド311
〜315、321〜325、331〜335、341〜
345のそれぞれが最上層となり、パワー素子用パッド
212、213、222、223、232、233、2
42、243のそれぞれ及び集積回路用パッド311〜
315、321〜325、331〜335、341〜3
45のそれぞれとパワー素子領域21〜24との間を層
間絶縁膜11及び12の2層に減少させることができる
ので、パワー素子領域21〜24からパワー素子用パッ
ド212、213、222、223、232、233、
242、243のそれぞれ及び集積回路用パッド311
〜315、321〜325、331〜335、341〜
345のそれぞれに至る放熱経路の熱抵抗を減少させる
ことができ、放熱特性をより一層向上させることができ
る。
In the semiconductor device 1 thus configured, the heat generated by the operation of each of the power elements 211, 221, 231 and 241 is transferred to the power element pad 21.
2,213,222,223,232,233,24
2, 243 can be released to the outside,
In addition, integrated circuit pads 311 to 31 in power element regions 21 to 24 or on trench structures 41 to 44
5, 321-325, 331-335, 341-345
Can be released to the outside through each of them, so that the heat radiation characteristics can be improved. Further, integrated circuit pads 311 to 315, 321 to 325, 331
To 335, 341 to 345 are the power element pads 212, 213, 222, 223, 232, 23, respectively.
3, 242, and 243, and are formed in the same wiring layer as the integrated circuit pads 311 to 315 and 321 to 3
25, 331 to 335, and 341 to 345 are merely arranged in the power element regions 21 to 24 or on the trench structures 41 to 44. Therefore, the number of manufacturing steps is small without adding a new wiring layer. And heat dissipation characteristics can be improved. further,
The power element pads 212, 213, 222, 223, 232, 233,
242, 243 and integrated circuit pad 311
315, 321-325, 331-335, 341-
345 is the uppermost layer, and the power element pads 212, 213, 222, 223, 232, 233, 2
42, 243 and the integrated circuit pads 311-
315, 321-325, 331-335, 341-3
45 and the power element regions 21 to 24 can be reduced to two layers of the interlayer insulating films 11 and 12, so that the power element pads 212, 213, 222, 223, 232, 233,
242, 243 and integrated circuit pad 311
315, 321-325, 331-335, 341-
345, the heat resistance of the heat radiation path leading to each of them can be reduced, and the heat radiation characteristics can be further improved.

【0035】さらに、このように構成される半導体装置
1においては、パワー素子用パッド212、213、2
22、223、232、233、242、243のそれ
ぞれからワイヤー141を通して外部に至る放熱経路
と、集積回路用パッド311〜315、321〜32
5、331〜335、341〜345のそれぞれからワ
イヤー142を通して外部に至る放熱経路との2系統の
放熱経路を形成し、しかもワイヤー141、142のそ
れぞれは熱伝導に優れているので、効率良く外部に熱を
放出させることができ、より一層放熱特性を向上させる
ことができる。
Further, in the semiconductor device 1 thus configured, the power element pads 212, 213, and 2
22, 223, 232, 233, 242, and 243, a heat radiation path from the respective wires to the outside through the wire 141, and the integrated circuit pads 311 to 315 and 321 to 32
5, 331 to 335, and 341 to 345 form two systems of heat radiating paths including a heat radiating path extending to the outside through the wire 142. Further, since each of the wires 141 and 142 is excellent in heat conduction, it is efficiently connected to the outside. Heat can be released, and the heat radiation characteristics can be further improved.

【0036】さらに、このように構成される半導体装置
1においては、パワー素子領域21〜24のそれぞれの
面積を実質的に変化させない場合には、集積回路用パッ
ド311〜315、321〜325、331〜335、
341〜345のそれぞれの占有面積をパワー素子領域
21〜24のそれぞれの占有面積に重複させ減少させる
ことができるので、全体面積(チップ面積)を減少させ
ることができる。
Furthermore, in the semiconductor device 1 thus configured, when the respective areas of the power element regions 21 to 24 are not substantially changed, the integrated circuit pads 311 to 315, 321 to 325, 331 ~ 335,
Since the occupied area of each of the power element regions 21 to 24 can be reduced by overlapping the occupied area of each of the power element regions 21 to 24, the entire area (chip area) can be reduced.

【0037】さらに、このように構成される半導体装置
1においては、全体面積(チップ面積)を実質的に変化
させない場合には、集積回路用パッド311〜315、
321〜325、331〜335、341〜345のそ
れぞれの配置でパワー素子領域21〜24のそれぞれの
面積を増加させることができるので、その分放熱面積が
増加でき、放熱特性を向上させることができる。
Furthermore, in the semiconductor device 1 thus configured, when the entire area (chip area) is not substantially changed, the integrated circuit pads 311 to 315,
Since the respective areas of the power element regions 21 to 24 can be increased by the respective arrangements of 321 to 325, 331 to 335, and 341 to 345, the heat radiation area can be increased accordingly, and the heat radiation characteristics can be improved. .

【0038】(第2の実施の形態)第2の実施の形態
は、第1の実施の形態に係る半導体装置1において、さ
らにパワー素子から集積回路用パッドへのノイズの影響
を減少させる場合を説明するものである。図4は本発明
の第2の実施の形態に係る半導体装置の拡大断面図であ
る。
(Second Embodiment) The second embodiment is directed to a case where the influence of noise from a power element to a pad for an integrated circuit is further reduced in the semiconductor device 1 according to the first embodiment. It is for explanation. FIG. 4 is an enlarged sectional view of a semiconductor device according to the second embodiment of the present invention.

【0039】図4に示すように、第2の実施の形態に係
る半導体装置1は、パワー素子領域22において、パワ
ー素子221と集積回路用パッド322との間にシール
ド層302を備える。シールド層302は、第2の実施
の形態において第1層目配線層に配置され、例えばアル
ミニウム合金膜で形成される。シールド層302には固
定電位、例えばグランド電位が供給される。
As shown in FIG. 4, the semiconductor device 1 according to the second embodiment includes a shield layer 302 between the power element 221 and the integrated circuit pad 322 in the power element region 22. The shield layer 302 is disposed on the first wiring layer in the second embodiment, and is formed of, for example, an aluminum alloy film. A fixed potential, for example, a ground potential is supplied to the shield layer 302.

【0040】図示しないが、このようなシールド層30
2は、パワー素子領域22において、パワー素子221
と他の集積回路用パッド321、323〜325のそれ
ぞれとの間に、さらには他のパワー素子領域21、2
3、24のそれぞれにおいても同様に配設される。
Although not shown, such a shield layer 30
2 denotes a power element 221 in the power element region 22.
And each of the other integrated circuit pads 321, 323 to 325, and the other power element regions 21, 2
Also in each of 3 and 24, it is arrange | positioned similarly.

【0041】このように構成される半導体装置1におい
ては、第1の実施の形態に係る半導体装置1で得られる
効果に加えて、パワー素子211、221、231、2
41のそれぞれの動作で発生するノイズをシールド層3
02で遮蔽し、ノイズが集積回路用パッド311〜31
5、321〜325、331〜335、341〜345
のそれぞれに伝達される信号に乗ることを防止すること
ができるので、動作信頼性を向上させることができる。
In the semiconductor device 1 thus configured, in addition to the effects obtained by the semiconductor device 1 according to the first embodiment, the power elements 211, 221, 231, 2
The noise generated by each operation of the shield layer 3
02, and the noise is reduced to the integrated circuit pads 311 to 31.
5, 321-325, 331-335, 341-345
Can be prevented from riding on the signal transmitted to each of them, so that the operation reliability can be improved.

【0042】(第3の実施の形態)第3の実施の形態
は、第2の実施の形態に係る半導体装置1のシールド層
の変形例を説明するものである。図5は本発明の第3の
実施の形態に係る半導体装置の拡大断面図である。
(Third Embodiment) A third embodiment describes a modification of the shield layer of the semiconductor device 1 according to the second embodiment. FIG. 5 is an enlarged sectional view of a semiconductor device according to the third embodiment of the present invention.

【0043】図5に示すように、第3の実施の形態に係
る半導体装置1は、パワー素子領域22において、パワ
ー素子221と集積回路用パッド322との間にシール
ド層106を備える。シールド層106は、第3の実施
の形態において半導体層103に形成された低い不純物
密度のp型ウエル領域(p型半導体領域)で形成される。
このシールド層106の表面部分にはコンタクト領域と
して形成された高い不純物密度のp型半導体領域96が
形成されており、このp型半導体領域96を通してシー
ルド層106には固定電位、例えばグランド電位が供給
される。
As shown in FIG. 5, the semiconductor device 1 according to the third embodiment includes a shield layer 106 between the power element 221 and the integrated circuit pad 322 in the power element region 22. The shield layer 106 is formed of a low impurity density p-type well region (p-type semiconductor region) formed in the semiconductor layer 103 in the third embodiment.
A high impurity density p-type semiconductor region 96 formed as a contact region is formed on a surface portion of the shield layer 106, and a fixed potential, for example, a ground potential is supplied to the shield layer 106 through the p-type semiconductor region 96. Is done.

【0044】図示しないが、このようなシールド層10
6は、パワー素子領域22において、パワー素子221
と他の集積回路用パッド321、323〜325のそれ
ぞれとの間に、さらには他のパワー素子領域21、2
3、24のそれぞれにおいても同様に配設される。
Although not shown, such a shield layer 10
6 denotes a power element 221 in the power element region 22.
And each of the other integrated circuit pads 321, 323 to 325, and the other power element regions 21, 2
Also in each of 3 and 24, it is arrange | positioned similarly.

【0045】このように構成される半導体装置1におい
ては、前述の第2の実施の形態に係る半導体装置1と同
様の効果を得ることができ、さらにシールド層106は
第1層目配線層とは異なる半導体層103に形成されて
いるので、第1層目配線層の配線レイアウト、特に集積
回路用パッド311〜315、321〜325、331
〜335、341〜345のそれぞれの下層の配線レイ
アウトの自由度を向上させることができる。
In the semiconductor device 1 configured as described above, the same effects as those of the semiconductor device 1 according to the above-described second embodiment can be obtained. Further, the shield layer 106 is formed with the first wiring layer. Are formed in different semiconductor layers 103, so that the wiring layout of the first wiring layer, in particular, the integrated circuit pads 311 to 315, 321 to 325, 331
To 335 and 341 to 345 can be improved in the degree of freedom of the wiring layout of the lower layer.

【0046】(第4の実施の形態)第4の実施の形態
は、第1の実施の形態に係る半導体装置1のパワー素子
の変形例を説明するものである。図6は本発明の第4の
実施の形態に係る半導体装置の拡大断面図である。
(Fourth Embodiment) The fourth embodiment describes a modification of the power element of the semiconductor device 1 according to the first embodiment. FIG. 6 is an enlarged sectional view of a semiconductor device according to the fourth embodiment of the present invention.

【0047】図6に示すように、第4の実施の形態に係
る半導体装置1においては、パワー素子211、22
1、231、241のそれぞれのパワートランジスタが
横型2重拡散構造の絶縁ゲート型電界効果トランジスタ
で構成される。すなわち、このパワートランジスタは、
n型ウエル領域(半導体層103)で形成されるドレイ
ン領域と、p型半導体領域8で形成されるベース領域
と、n型半導体領域90で形成されたソース領域と、半
導体層103上のゲート絶縁膜17と、ゲート絶縁膜1
7上のゲート電極18とを備えて構成される。
As shown in FIG. 6, in the semiconductor device 1 according to the fourth embodiment, the power devices 211 and 22
Each of the power transistors 1, 231, and 241 is constituted by an insulated gate field effect transistor having a lateral double diffusion structure. That is, this power transistor
a drain region formed by an n-type well region (semiconductor layer 103); a base region formed by a p-type semiconductor region 8; a source region formed by an n-type semiconductor region 90; Film 17 and gate insulating film 1
7 on the gate electrode 18.

【0048】ゲート絶縁膜17は例えば熱酸化法で成膜
したSiO2膜で形成される。ゲート電極18には例えば多
結晶シリコン膜が実用的に使用できる。この多結晶シリ
コン膜には抵抗値を調節する不純物、例えばAs、P、Bの
いずれかが導入される。ベース領域、ソース領域のそれ
ぞれはゲート電極18を同一の不純物導入のマスクとし
て使用する2重拡散法で形成される。
The gate insulating film 17 is formed of, for example, an SiO 2 film formed by a thermal oxidation method. For the gate electrode 18, for example, a polycrystalline silicon film can be practically used. Impurities for adjusting the resistance value, for example, any of As, P, and B are introduced into the polycrystalline silicon film. Each of the base region and the source region is formed by a double diffusion method using the gate electrode 18 as a mask for introducing the same impurity.

【0049】このように構成される半導体装置1におい
ては、前述の第1の実施の形態に係る半導体装置1と同
様の効果を得ることができる。
In the semiconductor device 1 thus configured, the same effects as those of the semiconductor device 1 according to the first embodiment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る半導体装置の
平面図である。
FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る半導体装置の
拡大断面図(図1のF2−F2切断線で切った拡大断面
図)である。
FIG. 2 is an enlarged cross-sectional view (an enlarged cross-sectional view taken along a line F2-F2 in FIG. 1) of the semiconductor device according to the first embodiment of the present invention;

【図3】本発明の第1の実施の形態に係る半導体装置1
を実装した配線基板の概略断面図(図1に示すF3−F
3切断線部分で切った概略断面図)である。
FIG. 3 is a semiconductor device 1 according to the first embodiment of the present invention.
1 is a schematic cross-sectional view of a wiring board on which is mounted (F3-F shown in FIG. 1).
FIG. 3 is a schematic cross-sectional view taken along a line 3.

【図4】本発明の第2の実施の形態に係る半導体装置の
拡大断面図である。
FIG. 4 is an enlarged cross-sectional view of a semiconductor device according to a second embodiment of the present invention.

【図5】本発明の第3の実施の形態に係る半導体装置の
拡大断面図である。
FIG. 5 is an enlarged sectional view of a semiconductor device according to a third embodiment of the present invention.

【図6】本発明の第4の実施の形態に係る半導体装置の
拡大断面図である。
FIG. 6 is an enlarged sectional view of a semiconductor device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体装置 3 集積回路領域 5 埋込層 6,8,90,91,95 半導体領域 10 基板 15 配線基板 21〜24 パワー素子領域 41〜44 トレンチ構造体 71,401 トレンチ 72,17 ゲート絶縁膜 73,18 ゲート電極 201 ドレイン電極 202 ソース電極 211,221,231,241 パワー素子 215,225,235,245 放熱領域 212,213,222,223,232,233,2
42,243 パワー素子用パッド 311〜315,321〜325,331〜335,3
41〜345 集積回路用パッド 141,142 ワイヤー 106,302 シールド層 402 埋込絶縁体 403 埋込充填材
REFERENCE SIGNS LIST 1 semiconductor device 3 integrated circuit area 5 buried layer 6, 8, 90, 91, 95 semiconductor area 10 substrate 15 wiring board 21 to 24 power element area 41 to 44 trench structure 71, 401 trench 72, 17 gate insulating film 73 , 18 Gate electrode 201 Drain electrode 202 Source electrode 211, 221, 231, 241 Power element 215, 225, 235, 245 Heat dissipation area 212, 213, 222, 223, 232, 233, 2
42,243 Power element pads 311 to 315,321 to 325,331 to 335,3
41 to 345 Pad for integrated circuit 141, 142 Wire 106, 302 Shield layer 402 Embedded insulator 403 Embedded filler

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/78 653D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 29/78 653D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一基板上のパワー素子領域及び集積回
路領域と、 前記パワー素子領域の周囲を取り囲むトレンチ構造体
と、 前記パワー素子領域内のパワー素子用パッドと、 前記パワー素子領域内又は前記トレンチ構造体上の前記
パワー素子用パッドと同一配線層の集積回路用パッド
と、 を備えたことを特徴とする半導体装置。
A power element region and an integrated circuit region on the same substrate; a trench structure surrounding a periphery of the power element region; a power element pad in the power element region; And a pad for an integrated circuit in the same wiring layer as the pad for the power element on the trench structure.
【請求項2】 前記パワー素子用パッド、集積回路用パ
ッドはいずれもワイヤーを通して外部装置に電気的に接
続されることを特徴とする請求項1に記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein both the power element pad and the integrated circuit pad are electrically connected to an external device through a wire.
【請求項3】 前記パワー素子領域と前記集積回路用パ
ッドとの間にはさらにシールド層を備えたことを特徴と
する請求項1又は請求項2に記載の半導体装置。
3. The semiconductor device according to claim 1, further comprising a shield layer between the power element region and the integrated circuit pad.
JP11001259A 1999-01-06 1999-01-06 Semiconductor device Pending JP2000200905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001259A JP2000200905A (en) 1999-01-06 1999-01-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001259A JP2000200905A (en) 1999-01-06 1999-01-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2000200905A true JP2000200905A (en) 2000-07-18

Family

ID=11496472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001259A Pending JP2000200905A (en) 1999-01-06 1999-01-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2000200905A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228172A (en) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2007048853A (en) * 2005-08-09 2007-02-22 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008053313A (en) * 2006-08-22 2008-03-06 Denso Corp Semiconductor integrated circuit device
CN100463153C (en) * 2005-01-05 2009-02-18 国际商业机器公司 On-chip circuit pad structure and method of manufacture
JP2011109074A (en) * 2009-10-22 2011-06-02 Seiko Epson Corp Integrated circuit device and electronic apparatus
JP2011187650A (en) * 2010-03-08 2011-09-22 Renesas Electronics Corp Semiconductor device
US8164197B2 (en) 2007-08-07 2012-04-24 Rohm Co., Ltd. Semiconductor device having multilayer interconnection structure
JP2014191854A (en) * 2013-03-28 2014-10-06 Rohm Co Ltd Motor drive device
WO2018051749A1 (en) * 2016-09-16 2018-03-22 株式会社村田製作所 Semiconductor device and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228172A (en) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd Semiconductor device
JP4529355B2 (en) * 2003-01-20 2010-08-25 富士電機システムズ株式会社 Semiconductor device
CN100463153C (en) * 2005-01-05 2009-02-18 国际商业机器公司 On-chip circuit pad structure and method of manufacture
JP2007048853A (en) * 2005-08-09 2007-02-22 Matsushita Electric Ind Co Ltd Semiconductor device
US7944059B2 (en) 2005-08-09 2011-05-17 Panasonic Corporation Semiconductor device having a probing region
JP2008053313A (en) * 2006-08-22 2008-03-06 Denso Corp Semiconductor integrated circuit device
US8164197B2 (en) 2007-08-07 2012-04-24 Rohm Co., Ltd. Semiconductor device having multilayer interconnection structure
JP2011109074A (en) * 2009-10-22 2011-06-02 Seiko Epson Corp Integrated circuit device and electronic apparatus
JP2011187650A (en) * 2010-03-08 2011-09-22 Renesas Electronics Corp Semiconductor device
JP2014191854A (en) * 2013-03-28 2014-10-06 Rohm Co Ltd Motor drive device
WO2018051749A1 (en) * 2016-09-16 2018-03-22 株式会社村田製作所 Semiconductor device and method for manufacturing same
JP6314295B1 (en) * 2016-09-16 2018-04-18 株式会社村田製作所 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4955384B2 (en) Semiconductor device
US8466054B2 (en) Thermal conduction paths for semiconductor structures
JP6841634B2 (en) Electronic components
JP3047986B2 (en) Semiconductor device
US8907473B2 (en) Semiconductor device having a diamond substrate heat spreader
JP3905580B2 (en) High density CMOS integrated circuit with heat transfer structure for improved cooling
JPWO2018198990A1 (en) Electronic components and semiconductor devices
US20120202342A1 (en) Semiconductor device and manufacturing method thereof
JPWO2012121255A1 (en) Semiconductor device
US8664759B2 (en) Integrated circuit with heat conducting structures for localized thermal control
JP2000200905A (en) Semiconductor device
JP2755131B2 (en) Semiconductor device
US6248657B1 (en) Semiconductor device and method for manufacturing the same
JP4687066B2 (en) Power IC
US11594502B2 (en) Semiconductor device having conductive film
JP2007165693A (en) Semiconductor device
JPH11204799A (en) High frequency mosfet and manufacture thereof
JP4292595B2 (en) Semiconductor device
JP4995364B2 (en) Semiconductor integrated circuit device
JP2009164288A (en) Semiconductor element and semiconductor device
JP2020202313A (en) Semiconductor device and manufacturing method of the same
JPH09213696A (en) Semiconductor device
US6432809B1 (en) Method for improved passive thermal flow in silicon on insulator devices
JP4432332B2 (en) Semiconductor device and manufacturing method thereof
TW202322341A (en) Integrated isolation capacitor with enhanced bottom plate