JP2000178346A - Expandable resin composition having biodegradability - Google Patents

Expandable resin composition having biodegradability

Info

Publication number
JP2000178346A
JP2000178346A JP36064498A JP36064498A JP2000178346A JP 2000178346 A JP2000178346 A JP 2000178346A JP 36064498 A JP36064498 A JP 36064498A JP 36064498 A JP36064498 A JP 36064498A JP 2000178346 A JP2000178346 A JP 2000178346A
Authority
JP
Japan
Prior art keywords
resin composition
less
polylactic acid
foaming
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36064498A
Other languages
Japanese (ja)
Other versions
JP3787447B2 (en
Inventor
Takayoshi Kubo
孝敬 久保
Shinko Yama
真弘 山
Hiroshi Naito
寛 内藤
Tsunahiro Nakae
綱大 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP36064498A priority Critical patent/JP3787447B2/en
Publication of JP2000178346A publication Critical patent/JP2000178346A/en
Application granted granted Critical
Publication of JP3787447B2 publication Critical patent/JP3787447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expandable resin composition which has biodegradability and is excellent in productivity. SOLUTION: The resin composition, whose melt viscosity is 5 or less in terms of a melt index (MI), is prepared by blending 0.5-5 wt.% of a polyisocyanate having 2.0 equivalents/mol or more of isocyanate groups and 5-30 wt.% of particles selected from a substantially spherical metallic oxide or sulfate having an aspect ratio of 1.5 or less and an average particle size of 3 μm or less with a polylactic acid in which the molar ratio of the L to D bodies is 95/5-60/40 or 40/60-5/95, the wt.% being based on the polylactic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性を有する
梱包用緩衝材として用いられる発泡体用樹脂組成物に関
する。
The present invention relates to a resin composition for a foam used as a cushioning material for packing having biodegradability.

【0002】[0002]

【従来の技術】軽量性、緩衝性、成形加工性を生かした
プラスチック発泡体が包装、梱包材として多量に用いら
れており、その素材はポリスチレン(PS)、ポリオレ
フィンといった石油を原料とする化学製品であるため、
使用後の処分が困難で、焼却するにしても燃焼カロリー
が高く、焼却炉を傷めたり、埋め立てをしても分解しな
い上に容積が大きいために処分場のスペースを占有して
し、大きな社会問題となってきている。
2. Description of the Related Art Plastic foams utilizing light weight, cushioning properties, and moldability are widely used as packaging and packing materials, and are made of petroleum-based chemical products such as polystyrene (PS) and polyolefin. Because
It is difficult to dispose after use, burns high in calories even if incinerated, does not decompose even if incinerator is buried, and does not decompose even if it is landfilled. Is becoming a problem.

【0003】又、処分されずに投棄された発泡体が及ぼ
す、河川、海洋など、自然態系への影響も無視ではなく
なってきている。そこで、生態系の中で分解し、地球環
境への影響が少ない樹脂が開発された。例えば、微生物
の体内で合成されるポリヒドロキシブチレート系樹脂
や、脂肪族グリコールと脂肪族カルボン酸からなるポリ
エステル又は、カプロラクトンを主成分とするポリエス
テル系樹脂などが提案されているが、前者は微生物が作
り出すため純度が低く、生産性が悪く、利用は制限され
てしまう。
[0003] In addition, the effects of natural foams, such as rivers and oceans, caused by foams discarded without being disposed of are no longer ignored. Therefore, resins that decompose in the ecosystem and have less impact on the global environment have been developed. For example, polyhydroxybutyrate-based resins synthesized in the body of microorganisms, polyesters composed of aliphatic glycols and aliphatic carboxylic acids, or polyester-based resins containing caprolactone as a main component have been proposed. Produces low purity, low productivity and limited use.

【0004】そして後者は、原料が石油・天然ガスとい
った安価で多量に入手できるものであるから生産性は確
かに良いが、結晶性樹脂である上にガラス転移点が低い
ため、生分解性樹脂としては実用性に乏しいと共に原料
を石油・天然ガスとしているため、分解すると地球上に
存在する炭酸ガスに新たに炭酸ガスが加算され、炭酸ガ
スの増加抑制に寄与しない。又、長期的にみた場合石油
・天然ガスは有限であるため、やがて入手が困難とな
り、本当の意味での地球環境保全に資し得ない。
[0004] The latter is certainly good in productivity because the raw material is inexpensive and available in large quantities, such as petroleum and natural gas. However, since it is a crystalline resin and has a low glass transition point, the biodegradable resin is used. However, since it is not practically used and the raw materials are petroleum and natural gas, when it is decomposed, carbon dioxide is newly added to the carbon dioxide present on the earth, and does not contribute to suppressing an increase in carbon dioxide. In the long term, oil and natural gas are limited, so that it becomes difficult to obtain them eventually, and they cannot contribute to the real conservation of the global environment.

【0005】更に、生分解性の素材としてグリコール酸
や乳酸などもグリコリドやラクチドの開環重合によりポ
リマーが得られ、医療用等の繊維として利用されている
が、繊維形成性を持たせるため樹脂に結晶性を付与して
おり、そのままでは発泡体として、包装容器や緩衝材に
大量に使用されるに至っていない。
Further, as a biodegradable material, glycolic acid, lactic acid, and the like can be obtained as a polymer by ring-opening polymerization of glycolide or lactide and used as medical fibers. The crystallinity has been imparted, and as it is, it has not been used in a large amount as a foam in packaging containers and cushioning materials.

【0006】[0006]

【発明が解決しようとする課題】本発明は、生分解性を
有しながら、生産性に優れる発泡性樹脂組成物、即ち、
微生物による分解が可能で、且つ使用後処分するに際し
ても地球環境への負荷が少なく、しかも高い生産性を有
し、実用に耐えうる発泡性樹脂組成物を提供することに
ある。本発明者等は、ベースポリマー、それを高分子量
化するための添加剤、発泡させるための発泡剤及び発泡
助剤等の添加剤等について詳細に検討を重ねた結果、実
用上十分な生産性を有する生分解性樹脂組成物を見いだ
し、既に発明提案を行った。しかし、該発明で得られる
樹脂組成物は汎用の発泡成形物として使用されているポ
リスチレンに比較して成形物の寸法安定性(金型寸法に
対する成形物の寸法)が僅かながら劣ることが判明し
た。
DISCLOSURE OF THE INVENTION The present invention provides a foamable resin composition having biodegradability and excellent productivity, that is,
An object of the present invention is to provide a foamable resin composition which can be decomposed by microorganisms, has little impact on the global environment even when disposed after use, has high productivity, and can be put to practical use. The present inventors have conducted detailed studies on a base polymer, an additive for increasing the molecular weight of the base polymer, a foaming agent for foaming, and an additive such as a foaming aid. The present inventors have found a biodegradable resin composition having the following, and have already proposed the invention. However, it has been found that the resin composition obtained by the present invention is slightly inferior in the dimensional stability of the molded product (the size of the molded product with respect to the mold size) as compared with polystyrene used as a general-purpose foam molded product. .

【0007】[0007]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく鋭意研究の結果、本発明に使用されるポ
リ乳酸樹脂組成物に特定の金属酸化物または金属硫酸塩
を配合することにより、ポリスチレン発泡体と同レベル
の寸法安定性を保持することを見いだし本発明に到達し
たものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, a specific metal oxide or metal sulfate is added to the polylactic acid resin composition used in the present invention. As a result, they have found that the same level of dimensional stability as that of a polystyrene foam is maintained, and have reached the present invention.

【0008】即ち本発明は、L体とD体のモル比が95
/5〜64/40、又は40/60〜5/95であるポ
リ乳酸に、イソシアネート基≧2.0当量/モルのポリ
イソシアネートを該ポリ乳酸に対し0.5〜5重量%、
およびアスペクト比が1.5以下で平均粒径が3μm以
下の実質的に球状の金属酸化物又は金属硫酸塩から選ば
れた粒子を5〜30重量%配合してなる、溶融粘度がメ
ルトインデックス値(MI)で5以下であることを特徴
とする樹脂組成物である。
That is, according to the present invention, the molar ratio of L-form to D-form is 95
/ 5 to 64/40, or 40/60 to 5/95, a polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol is added to the polylactic acid in an amount of 0.5 to 5% by weight based on the polylactic acid.
And 5 to 30% by weight of particles selected from substantially spherical metal oxides or metal sulfates having an aspect ratio of 1.5 or less and an average particle size of 3 μm or less. (MI) is 5 or less.

【0009】[0009]

【発明の実施の形態】先ず、基本条件の一つである生分
解性を有し、自然界の炭酸ガス増加を最小限に抑制し、
且つ実用に耐えうる生産性、コストを考慮すると、とう
もろこし等、穀物の澱粉をスタート物質とする乳酸を原
料とするポリ乳酸樹脂が好ましい。しかし、通常繊維用
として使われるものは結晶性を有しないと機械物性、耐
熱性等が不足するため、光学異性体のL体がほぼ100
%のものを用いている。これに対し、発泡体を形成する
ためには少なくとも結晶性はできうる限り小さくする必
要がある。その理由は、結晶性樹脂は発泡剤を含浸する
工程で結晶化が進行し、発泡時に樹脂そのものが伸びな
いからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, it has biodegradability, which is one of the basic conditions, and minimizes the increase in carbon dioxide in nature.
In consideration of productivity and cost that can be put to practical use, a polylactic acid resin starting from lactic acid starting from cereal starch such as corn is preferred. However, those usually used for fibers lack mechanical properties, heat resistance, etc., unless they have crystallinity.
% Is used. On the other hand, in order to form a foam, at least the crystallinity must be as small as possible. The reason is that the crystallization of the crystalline resin proceeds in the step of impregnating the foaming agent, and the resin itself does not stretch during foaming.

【0010】従って、本発明でいうポリ乳酸とは、実質
的に非晶性のポリ乳酸であり、L体とD体のモル比が9
5/5〜60/40,又は40/60〜5/95の乳酸
を用いる。L体/D体のモル比が95/5を超えるも
の、あるいは5/95未満のものは結晶性が高く、発泡
倍率が上がらなかったり、発泡が不均一になり使用でき
ない。また、60/40未満〜40/60を超えるもの
は耐熱性が劣り使用できない。好ましくは90/10以
下〜70/30以上、又は30/70以下〜10/90
以上となるのが良い。
Therefore, the polylactic acid referred to in the present invention is a substantially amorphous polylactic acid, and the molar ratio of L-form to D-form is 9%.
Use 5/5 to 60/40 or 40/60 to 5/95 lactic acid. Those having a molar ratio of L-form / D-form of more than 95/5 or less than 5/95 have high crystallinity and cannot be used because the expansion ratio does not increase or the foaming becomes uneven. Those having a ratio of less than 60/40 to more than 40/60 have poor heat resistance and cannot be used. Preferably 90/10 or less to 70/30 or more, or 30/70 or less to 10/90
It is better to be above.

【0011】一方、発泡体に使用される樹脂は、含浸さ
れた発泡剤が貯蔵中に揮散するのを極力低減させるた
め、ガスバリア性の良好な樹脂が好ましいが、該性質を
向上させる手段として高ガラス転移点(Tg)を有する
樹脂を用いることである。生分解性樹脂の中で、ポリ乳
酸樹脂はガラス転移点が他の生分解性樹脂に比して高
く、本発明の目的に合致し好都合である。しかし、ポリ
乳酸のガラス転移点はL体とD体の割合に応じ僅かずつ
ではあるが低下し、50/50で極小となる。ガラス転
移点が低下すると、上記理由により発泡性が経時的に低
下し、また発泡体の耐熱性も低下し好ましくない。即
ち、ガラス転移点は、50℃以上が好ましく、そのため
に、D体の比率はできるだけ40モル以下又は60モル
%以上、好ましくは30モル以下又は70モル以上とし
ておくことが必要である。
On the other hand, the resin used for the foam is preferably a resin having good gas barrier properties in order to minimize volatilization of the impregnated foaming agent during storage. That is, a resin having a glass transition point (Tg) is used. Among the biodegradable resins, the polylactic acid resin has a higher glass transition point than other biodegradable resins, and thus is suitable for the purpose of the present invention. However, the glass transition point of polylactic acid decreases slightly but slightly according to the ratio of the L-form and the D-form, and reaches a minimum at 50/50. When the glass transition point is reduced, the foaming property is reduced with time for the above-mentioned reason, and the heat resistance of the foam is also undesirably reduced. That is, the glass transition point is preferably 50 ° C. or higher, and therefore, it is necessary that the ratio of the D-form is 40 mol or less or 60 mol% or more, preferably 30 mol or less or 70 mol or more.

【0012】次に、本発明に使用されるベースポリマー
としてのポリ乳酸の溶融粘度は高い方が好ましく、その
溶融粘度はJIS K 7210(荷重2.16kg
f)に準拠したメルトインデックス値(MI)で1〜1
0の範囲であり、更に好ましくは1〜5の範囲である。
ポリ乳酸の溶融粘度度が1未満の樹脂は、通常用いられ
る後述の方法では製造することが困難であり、一方、1
0を超える溶融粘度を有するポリ乳酸を高粘度化して得
られる樹脂組成物は、発泡倍率の低い発泡体となり好ま
しい結果は得られない。その理由は、低溶融粘度のポリ
乳酸及び高溶融粘度のポリ乳酸をベースポリマーとして
使用し、以下に述べるポリイソシアネートと反応させて
同一の超高粘度樹脂を得たとき、出発が低溶融粘度のポ
リ乳酸からの樹脂組成物は高溶融粘度のそれより分岐密
度が高くなり過ぎ、架橋構造をとりやすくなって、発泡
を阻害すると考えられるからである。
Next, it is preferable that the melt viscosity of polylactic acid as the base polymer used in the present invention is higher, and the melt viscosity is JIS K 7210 (load 2.16 kg).
Melt index value (MI) according to f) 1 to 1
It is in the range of 0, more preferably in the range of 1-5.
A resin having a melt viscosity of polylactic acid of less than 1 is difficult to produce by a commonly used method described below.
A resin composition obtained by increasing the viscosity of polylactic acid having a melt viscosity exceeding 0 becomes a foam having a low expansion ratio, and a favorable result cannot be obtained. The reason is that when the same ultrahigh-viscosity resin is obtained by reacting polylactic acid with a low melt viscosity and polylactic acid with a high melt viscosity as a base polymer and reacting with the polyisocyanate described below, the starting material has a low melt viscosity. This is because the resin composition made of polylactic acid has too high a branch density than that of a high melt viscosity, and is likely to have a cross-linked structure, thereby inhibiting foaming.

【0013】一般に、高溶融粘度のポリ乳酸を得る手段
として、通常の反応釜での高真空下、攪拌効率の良好な
状態での溶融重合、二軸混練反応機による溶融重合、溶
融重合と固相重合との組み合わせがあるが、高粘度であ
るため反応が長くなり生産性が低下し、樹脂の熱分解に
よる品質低下に十分注意する事が必要となる。
In general, as means for obtaining polylactic acid having a high melt viscosity, melt polymerization under a high vacuum in a usual reactor, with good stirring efficiency, melt polymerization by a twin-screw kneader, melt polymerization and solidification Although there is a combination with phase polymerization, the reaction is prolonged due to the high viscosity, the productivity is reduced, and it is necessary to pay sufficient attention to the quality deterioration due to thermal decomposition of the resin.

【0014】この方法により、溶融粘度がJIS K
7210(荷重2.16kgf)に準拠したメルトイン
デックス値(MI)で1〜10の範囲のポリ乳酸を得る
ことが出来るが、こうして得られたポリ乳酸に発泡剤を
含浸、発泡させても発泡倍率は低く実用に耐えうるもの
ではない。高発泡倍率を得るには、更に高溶融粘度の樹
脂が必要であり、溶融重合のみでは限界がある。
According to this method, the melt viscosity becomes JIS K
Polylactic acid having a melt index value (MI) in the range of 1 to 10 in accordance with 7210 (load 2.16 kgf) can be obtained. Is low and not practical. In order to obtain a high expansion ratio, a resin having a higher melt viscosity is required, and there is a limit in melt polymerization alone.

【0015】本発明者等は鋭意検討の結果、イソシアネ
ート基≧2.0当量/モルのポリイソシアネートを該ポ
リ乳酸に対して0.5〜5重量%、好ましくは1〜3重
量%をポリ乳酸と溶融状態で混合、反応させることによ
り溶融粘度がJIS K 7210(荷重21.6kg
f)に準拠したメルトインデックス値(MI)が5以下
の発泡性の良好な樹脂組成物を得ることが出来た。ポリ
イソシアネートが5重量%未満では樹脂組成物の溶融粘
度があまり上昇せず、また5重量%を超えると樹脂組成
物の溶融粘度は上昇するものの未反応のポリイソシアネ
ートが残留したり、分岐密度が過大になり又架橋反応も
進行し、ゲル化物が多量に発生し、発泡性は逆に低下す
る。
The present inventors have conducted intensive studies and found that 0.5 to 5% by weight, preferably 1 to 3% by weight, of polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol relative to the polylactic acid was used. And melted in a molten state to make the melt viscosity JIS K 7210 (load 21.6 kg
A resin composition having a good foaming property having a melt index value (MI) based on f) of 5 or less could be obtained. When the polyisocyanate is less than 5% by weight, the melt viscosity of the resin composition does not increase so much. When the polyisocyanate exceeds 5% by weight, the melt viscosity of the resin composition increases but unreacted polyisocyanate remains or the branch density decreases. It becomes too large and the crosslinking reaction proceeds, so that a large amount of gelled matter is generated and the foaming property is conversely reduced.

【0016】ここで、ポリ乳酸とポリイソシアネートを
溶融状態で混合、反応させ超高分子量化させる方法は通
常の公知の方法が可能である。例えば、ペレツト化した
ポリ乳酸にポリイソシアネートを添加混合し単軸又は二
軸混練機等で溶融混合する方法、予めポリ乳酸を単軸又
は二軸混練機等で溶融した後ポリイソシアネートを添加
する方法、単軸又は二軸混練機等で溶融重合によりポリ
乳酸を製造又は製造中にポリイソシアネートを添加する
方法などにより目的物である樹脂組成物を得ることが出
来る。
Here, as a method of mixing and reacting polylactic acid and polyisocyanate in a molten state to make them ultra-high molecular weight, a usual known method is possible. For example, a method in which a polyisocyanate is added to a pelletized polylactic acid and mixed and melt-mixed with a single-screw or twin-screw kneader, or a method in which polylactic acid is previously melted with a single-screw or a twin-screw kneader or the like, and then the polyisocyanate is added. The target resin composition can be obtained by, for example, producing polylactic acid by melt polymerization using a single-screw or twin-screw kneader or adding a polyisocyanate during the production.

【0017】使用されるポリイソシアネートとしては芳
香族、脂環族、脂肪族系のポリイソシアネートがあり、
例えば、芳香族ポリイソシアネートとしてはトリレン、
ジフェニルメタン、ナフチレン、トリジン、キシレン、
トリフェニルメタンを骨格とするポリイソシアネート、
脂環族ポリイソシアネートとしてはイソホロン、水素化
ジフェニルメタンを骨格とするポリイソシアネート、脂
肪族ポリイソシアネートとしてはヘキサメチレン、リジ
ンを骨格とするポリイソシアネートがあり、いずれも使
用可能であるが汎用性、取り扱い性、耐候性等からトリ
レン、ジフェニルメタン、特にジフェニルメタンが好ま
しく使用される。
The polyisocyanates used include aromatic, alicyclic and aliphatic polyisocyanates.
For example, as the aromatic polyisocyanate, tolylene,
Diphenylmethane, naphthylene, tolidine, xylene,
A polyisocyanate having a triphenylmethane skeleton,
Examples of alicyclic polyisocyanates include isophorone and polyisocyanates having a skeleton of hydrogenated diphenylmethane, and examples of aliphatic polyisocyanates include polyisocyanates having a skeleton of hexamethylene and lysine. Tolylene, diphenylmethane, especially diphenylmethane is preferably used from the viewpoint of weather resistance and the like.

【0018】かくして得られたポリ乳酸樹脂組成物は、
以下に述べる発泡剤、発泡助剤を含浸させ、発泡処理を
行うと高発泡倍率の発泡体が得られる。しかし、該発泡
体から成形される成形物は、金型から取り出したときポ
リスチレン成形物に比して寸法安定性が僅かながら劣る
(縮み代が大きい)ことが判明した。この原因について
は明らかでないが、ポリ乳酸のガラス転移点がポリスチ
レンのそれの比して低いことが要因の一つとして考えら
れる。
The polylactic acid resin composition thus obtained is
When a foaming agent and a foaming aid described below are impregnated and subjected to a foaming treatment, a foam having a high expansion ratio is obtained. However, it was found that the molded product molded from the foam had slightly smaller dimensional stability (larger shrinkage allowance) than the polystyrene molded product when removed from the mold. Although the cause is not clear, it is considered that one of the factors is that the glass transition point of polylactic acid is lower than that of polystyrene.

【0019】本発明者等は、この課題を克服するため種
々検討した結果、特定のアスペクト比及び粒子径を有す
る金属酸化物または金属硫酸塩を配合することにより、
寸法安定性が大幅に改善されることを見いだした。
The present inventors have conducted various studies to overcome this problem, and as a result, by adding a metal oxide or metal sulfate having a specific aspect ratio and a specific particle size,
It has been found that dimensional stability is greatly improved.

【0020】本発明に使用される金属酸化物または金属
硫酸塩の平均粒子径としては3μm以下が必要で、更に
は1μm以下が好ましい。平均粒子径が3μmを超える
と寸法安定化の効果が低下し、本発明の目的から逸脱す
る。一方、発泡体のセルの膜厚は凡そ1.5μm前後で
あり粒径の大きい粒子は膜の形成を阻害し、且つ、セル
の大きさに均一性を欠くこととなり、結果として発泡倍
率が大きくならない。平均粒子径が1μm以下である
と、セル膜形成への障害が小さくセルの大きさは均一
で、発泡倍率も高くより好ましい結果が得られる。
The average particle size of the metal oxide or metal sulfate used in the present invention is required to be 3 μm or less, more preferably 1 μm or less. If the average particle diameter exceeds 3 μm, the effect of dimensional stabilization is reduced, and this deviates from the object of the present invention. On the other hand, the thickness of the cell of the foam is about 1.5 μm, and particles having a large particle diameter inhibit the formation of the film, and lack the uniformity of the cell size. As a result, the expansion ratio is large. No. When the average particle diameter is 1 μm or less, the obstruction to cell membrane formation is small, the cell size is uniform, the foaming ratio is high, and more preferable results can be obtained.

【0021】また、本発明に使用される金属酸化物及び
金属硫酸塩粒子はそのアスペクト比が1.5以下が必要
である。アスペクト比が1.5を超えると樹脂組成物の
流動性を阻害するため発泡性が低下し好ましくない。ア
スペクト比が1.5以下では樹脂組成物の流動性を阻害
することは少なく、更に好ましくは1.2以下である。
即ち、配合する金属酸化物及び金属硫酸塩粒子は実質的
に球状であることが必要である。
The metal oxide and metal sulfate particles used in the present invention must have an aspect ratio of 1.5 or less. If the aspect ratio exceeds 1.5, the flowability of the resin composition is impaired, and the foamability is undesirably reduced. When the aspect ratio is 1.5 or less, the fluidity of the resin composition is hardly hindered, and more preferably 1.2 or less.
That is, the metal oxide and metal sulfate particles to be blended must be substantially spherical.

【0022】これら粒子の配合量は樹脂組成物に対して
5〜30重量%が有効で、更に好ましくは10〜20重
量%である。配合量が5重量%未満では寸法安定性の改
善にほとんど効果なく、30重量%を超えると配合され
た樹脂組成物が硬くなり寸法の安定性は向上するものの
発泡倍率は極端に低下する。
The content of these particles is preferably 5 to 30% by weight, more preferably 10 to 20% by weight, based on the resin composition. If the amount is less than 5% by weight, there is almost no effect on the improvement of dimensional stability. If the amount exceeds 30% by weight, the compounded resin composition becomes hard and the dimensional stability is improved, but the expansion ratio is extremely reduced.

【0023】配合する金属酸化物及び金属硫酸塩として
は、上記の粒子径、アスペクト比を有し、樹脂と反応し
ないものであればいずれでも良いが、金属酸化物として
は酸化アルミニウム、二酸化ケイ素、酸化チタンが好ま
しく使用される。また、金属硫酸塩としては硫酸バリウ
ムが好適である。
The metal oxide and the metal sulfate to be blended may be any as long as they have the above-mentioned particle diameter and aspect ratio and do not react with the resin. Examples of the metal oxide include aluminum oxide, silicon dioxide, and the like. Titanium oxide is preferably used. Barium sulfate is preferred as the metal sulfate.

【0024】本発明に使用する金属酸化物及び金属硫酸
塩の樹脂への配合は公知の方法が可能であり、既に記述
したごとく、ポリ乳酸、イソシアネートおよび金属酸化
物または金属硫酸塩を予め配合し単または二軸混練機で
溶融混練する方法、溶融したポリ乳酸にイソシアネート
および金属酸化物または金属硫酸塩を添加、混練する方
法等種々の方法があるが、粉末化したポリ乳酸にイソシ
アネートおよび金属酸化物または金属硫酸塩を所定量配
合し、二軸混練機で溶融混練する方法が三者の分散性が
よく好ましく使用される。
The compounding of the metal oxide and the metal sulfate used in the present invention with the resin can be carried out by a known method. As described above, polylactic acid, isocyanate and the metal oxide or the metal sulfate are previously compounded. There are various methods such as a method of melt-kneading with a single or twin screw kneader, a method of adding and kneading an isocyanate and a metal oxide or a metal sulfate to the molten polylactic acid. A method in which a predetermined amount of a substance or a metal sulfate is blended and melt-kneaded by a twin-screw kneader is preferably used because of good dispersibility of the three components.

【0025】また、均一で微細な発泡セルを形成させる
ためには発泡核剤を配合することが好ましい。使用する
発泡核剤としては、固体状の粒子状物、例えば、タル
ク、カオリン、ゼオライト、マイカ等の無機粒子が好適
である。この中でもタルクは本発明の樹脂組成物に対し
て好ましく使用される。
In order to form uniform and fine foam cells, it is preferable to add a foam nucleating agent. As the foam nucleating agent to be used, solid particulate matter, for example, inorganic particles such as talc, kaolin, zeolite, and mica are suitable. Among them, talc is preferably used for the resin composition of the present invention.

【0026】また、その他の添加剤についても、目的に
応じ、適宜添加することが出来、例えば熱安定剤、酸化
防止剤、難燃剤、紫外線吸収剤、可塑剤等がある。但
し、難燃剤等は塩素等のハロゲン化物であることが多
く、生分解性や焼却処分時の有害物質発生という観点か
ら最小限に留めておくのがよい。
Further, other additives can be appropriately added according to the purpose, and examples thereof include a heat stabilizer, an antioxidant, a flame retardant, an ultraviolet absorber, and a plasticizer. However, the flame retardant or the like is often a halide such as chlorine, and is preferably minimized from the viewpoint of biodegradability and generation of harmful substances during incineration.

【0027】こうして得られた樹脂組成物は、ペレット
又はビーズ状粒子とした後、発泡剤及び発泡助剤を含浸
させる。これら粒子は通常、加熱によって第1次の発泡
(予備発泡)をさせ、一旦、発泡倍率で数倍から30〜
50倍の発泡粒子とし、次いでこれらを金型に入れ、更
に加熱して2次発泡させ、所望の成形体を成形する。
The resin composition thus obtained is formed into pellets or bead-shaped particles and then impregnated with a foaming agent and a foaming aid. These particles are usually subjected to primary foaming (preliminary foaming) by heating, and the foaming ratio is temporarily increased from several times to 30 to 30 times.
These are expanded into 50-fold expanded particles, then placed in a mold, and further heated to secondary expansion to form a desired molded body.

【0028】ここで用いる発泡剤及び発泡助剤として
は、プロパン、n−ブタン、イソブタン、n−ペンタ
ン、ソペンタン、シクロペンタン、ヘキサン等の炭化水
素、塩化メチレン、塩化メチル、ジクロロジフルオロメ
タン等のハロゲン化炭化水素類、ジメチルエーテル、メ
チルエチルエーテル等のエーテル類が発泡剤として、
又、炭素数1〜4のアルコール、ケトン類、エーテル、
ベンゼン、トルエン等が発泡助剤として用いられる。
Examples of the foaming agent and foaming aid used herein include hydrocarbons such as propane, n-butane, isobutane, n-pentane, sopentane, cyclopentane and hexane, and halogens such as methylene chloride, methyl chloride and dichlorodifluoromethane. Hydrocarbons, dimethyl ether, ethers such as methyl ethyl ether as a foaming agent,
Also, alcohols having 1 to 4 carbon atoms, ketones, ethers,
Benzene, toluene and the like are used as foaming aids.

【0029】発泡剤と発泡助剤の組み合わせは、使用す
る樹脂によって適宜選択しなければならない。本発明に
使用するL体/D体共重合ポリ乳酸ポリマーの場合、発
泡剤として沸点の低いブタンやペンタンが好ましく用い
られる。又、これと組み合わせる発泡助剤としては炭素
数1〜4の1価のアルコールが好適である。その他の組
み合わせも種々あり、効果や経済性に鑑みて選択するこ
とができる。
The combination of a foaming agent and a foaming aid must be appropriately selected depending on the resin used. In the case of the L-form / D-form copolymerized polylactic acid polymer used in the present invention, butane or pentane having a low boiling point is preferably used as a blowing agent. Further, a monohydric alcohol having 1 to 4 carbon atoms is suitable as a foaming aid to be combined therewith. There are various other combinations, and they can be selected in consideration of effects and economics.

【0030】発泡剤と発泡助剤の使用比率は、体積比で
発泡剤/発泡助剤=1/2〜10/1が可能であるが、
発泡剤と発泡助剤の組み合わせによってこの比率は変わ
り、1/2〜2/1が一般的である。発泡剤及び発泡助
剤の含有量(率)は目的とする発泡倍率、ペレット又は
ビーズ粒子の保存期間によって異なるが発泡剤として通
常5〜15重量%である。発泡剤の含有量(率)は、発
泡倍率に応じて選択することができる。一般に、低発泡
品は含有量(率)を低く、高発泡品は含有量(率)を高
くすればよい。
The volume ratio of the foaming agent and the foaming assistant can be as follows: foaming agent / foaming assistant = 1/2 to 10/1.
This ratio varies depending on the combination of the foaming agent and the foaming auxiliary, and is generally 1/2 to 2/1. The content (ratio) of the foaming agent and the foaming auxiliary varies depending on the desired expansion ratio and the storage period of the pellets or bead particles, but is usually 5 to 15% by weight as the foaming agent. The content (rate) of the blowing agent can be selected according to the expansion ratio. Generally, the content (ratio) of a low-foamed product may be low, and the content (ratio) of a highly foamed product may be high.

【0031】発泡剤及び発泡助剤を含有させたペレット
又はビーズ粒子は、予備発泡させた後、所望の金型に入
れ、更に加熱して発泡を進め、セル同志を融着させて強
固な成形体を成形する。従来から行われているポリスチ
レン(PS)発泡体の成型方法と基本的には同一であ
る。即ち、予備発泡及び発泡成形共に熱容量の大きい水
蒸気が好ましく用いられる。
Pellets or bead particles containing a foaming agent and a foaming aid are pre-foamed, then put into a desired mold, further heated to promote foaming, and the cells are fused together to form a strong compact. Shape the body. It is basically the same as the conventional polystyrene (PS) foam molding method. That is, steam having a large heat capacity is preferably used for both prefoaming and foam molding.

【0032】得られる発泡成形体の寸法は金型の寸法に
近ければ近い程理想的である。実用的な判断からすると
収縮率は2%以下が好ましく、本発明に使用するポリ乳
酸は、単独ではその収縮率は6%前後でありポリスチレ
ンに比して大きな値である。しかし、本発明の粒子を配
合することにより、収縮率は大幅に低減し2%以下とな
った。
The dimensions of the obtained foam molded article are ideally closer to the dimensions of the mold. From a practical point of view, the shrinkage is preferably 2% or less, and the polylactic acid used in the present invention alone has a shrinkage of around 6%, which is a large value compared to polystyrene. However, by incorporating the particles of the present invention, the shrinkage was significantly reduced to 2% or less.

【0033】[0033]

【実施例】以下に実施例及び比較例により、本発明を更
に具体的に説明する。尚、評価は下記の方法で行った。 (評価方法) (1)ベースポリマーとしてのポリ乳酸のMI:JIS
K 7210に準拠した方法で測定。(測定温度10
0℃、オリフィス径2mm、2.16kg荷重の条件) (2)樹脂組成物のMI:JIS K 7210に準拠
した方法で測定。(測定温度100℃、オリフィス径2
mm、21.6kg荷重の条件) (3)発泡倍率:メスシリンダーを用いて、発泡前の発
泡剤含浸ペレツトの体積及び予備発泡粒子の体積を測定
し、発泡倍率を次のように求めた。 発泡倍率(倍)=予備発泡粒子の体積/発泡剤含浸ペレ
ットの体積 (4)寸法安定性:発泡成形機に300×300×30
mmの金型を設置し、予備発泡した発泡体を充填し、ス
チーム圧0.2kgf/cm2で処理し成形加工した。
得られた成形体を30分間室温で放冷した後、寸法を測
定し、以下の計算式により寸法安定性を算出した。 寸法安定性(収縮率%)=(1−(成形体の寸法/30
0))×100 (5)生分解性:予備発泡粒子をコンポストに1ケ月間
入れ、外観状態で次のように評価した。 ◎:原形をとどめない状態まで分解 ○:元の形状はとどめているがぼろぼろまで分解 △:変化は認められるが変化は僅か ×:全く変化なし ―:未測定
The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, evaluation was performed by the following method. (Evaluation method) (1) MI of polylactic acid as base polymer: JIS
Measured by a method according to K7210. (Measurement temperature 10
(0 ° C., orifice diameter 2 mm, load of 2.16 kg) (2) MI of the resin composition: Measured by a method in accordance with JIS K 7210. (Measurement temperature 100 ° C, orifice diameter 2
(3) Expansion ratio: The volume of the foaming agent-impregnated pellet before foaming and the volume of the pre-expanded particles were measured using a measuring cylinder, and the expansion ratio was determined as follows. Expansion ratio (times) = volume of pre-expanded particles / volume of pellets impregnated with blowing agent (4) Dimensional stability: 300 × 300 × 30
A mold having a diameter of 2 mm was set, and the pre-foamed foam was filled, processed at a steam pressure of 0.2 kgf / cm 2 , and molded.
After allowing the obtained molded body to cool at room temperature for 30 minutes, the dimensions were measured, and the dimensional stability was calculated by the following formula. Dimensional stability (% shrinkage) = (1- (dimension of molded product / 30)
0)) × 100 (5) Biodegradability: The pre-expanded particles were put into compost for one month, and the appearance was evaluated as follows. :: Decomposed to the state where the original shape is not stopped.

【0034】製造例 市販のL−ラクチド、D−ラクチドをそれぞれ酢酸エチ
ルを用いて再結晶して精製した。精製したL−ラクチ
ド、D−ラクチド及び触媒としてオクチル酸スズを表1
の組成になるように攪拌機付きオートクレーブに仕込
み、減圧脱気した後、N2雰囲気下で各々の重合条件で
開環重合した。反応終了後、オートクレーブよりポリマ
ーを取り出し、粘度(ηr)を測定し、ηrが3.2〜
3.5のポリマーを得た。
Production Example Commercially available L-lactide and D-lactide were each purified by recrystallization using ethyl acetate. Table 1 shows purified L-lactide, D-lactide and tin octylate as a catalyst.
It was charged into an autoclave equipped with a stirrer so as to composition, after vacuum degassing, and ring-opening polymerization in each polymerization conditions under N 2. After completion of the reaction, the polymer was taken out of the autoclave, and the viscosity (ηr) was measured.
A polymer of 3.5 was obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】実施例1〜11、比較例1〜6 P1〜P11のポリ乳酸にイソシアネート化合物「ミリ
オネートMR―200」(イソシアネート基2.7〜
2.8当量/モル、日本ポリウレタン工業(株))、酸
化チタン(アスペクト比1.2)及びタルク「LMP―
100」(富士タルク工業(株))1.0重量%を表2
の組成となるように二軸混練機(PCM―30,池貝鉄
工(株))にてシリンダー温度180℃で混練し、ペレ
ット状の樹脂組成物を得た。
Examples 1 to 11 and Comparative Examples 1 to 6 The isocyanate compound "Millionate MR-200" (isocyanate group 2.7 to
2.8 equivalents / mole, Nippon Polyurethane Industry Co., Ltd.), titanium oxide (aspect ratio 1.2) and talc “LMP-
100 "(Fuji Talc Kogyo) 1.0% by weight
Was kneaded at a cylinder temperature of 180 ° C. with a twin-screw kneader (PCM-30, Ikegai Iron Works, Ltd.) to obtain a pellet-shaped resin composition.

【0037】これらの樹脂組成物のMIを測定した後、
オートクレーブに各々2000部、発泡剤としてイソペ
ンタン1200部、発泡助剤としてメタノール240部
を仕込み、密封し、20℃/Hrの速度で昇温し、70
℃に1時間保持した。その後、25℃間で冷却してから
樹脂を取り出し、風乾後、重量を測定し、含浸率を求め
た。次いで得られた発泡剤含浸ペレツトを水蒸気(92
℃、1分)で予備発泡させ、発泡倍率及び生分解性を評
価した。
After measuring the MI of these resin compositions,
Into an autoclave were charged 2000 parts each, 1200 parts of isopentane as a foaming agent, and 240 parts of methanol as a foaming aid, sealed, and heated at a rate of 20 ° C./Hr.
C. for 1 hour. Thereafter, the resin was taken out after cooling at 25 ° C., air-dried, weighed, and the impregnation rate was determined. Then, the obtained foaming agent impregnated pellets were steamed (92%).
At 1 ° C. for 1 minute) to evaluate the expansion ratio and biodegradability.

【0038】更に、1日熟成後、この予備発泡粒子を密
閉金型に充填してスチーム成形機で水蒸気圧0.2kg
/cm2、30秒間加熱して成形を行い、各300×3
00×30mmの成形体を得た。この成形体を室内に3
0分以上放置したのちそれぞれの寸法を測定し、寸法安
定性(収縮率)を評価した。各々の評価の対照として市
販の発泡ポリスチレン「リューパール55KSY―31
71」(大日本インキ製、但し成形加工は水蒸気圧0.
7kg/cm2で実施)を用いた。評価結果は表3の通
りであった。
Further, after aging for one day, the pre-expanded particles were filled in a closed mold, and steam pressure was set at 0.2 kg with a steam molding machine.
/ Cm 2 , heating for 30 seconds to form
A molded body of 00 × 30 mm was obtained. Put this molded body in the room
After leaving for 0 minutes or more, the respective dimensions were measured, and the dimensional stability (shrinkage ratio) was evaluated. As a control for each evaluation, a commercially available expanded polystyrene “Lyupearl 55KSY-31” was used.
71 "(manufactured by Dainippon Ink Co., Ltd.
7 kg / cm 2 ). Table 3 shows the evaluation results.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】評価結果 ポリ乳酸のL/D体比率の変化したP1〜P11の樹脂
に、それぞれ架橋剤、寸法安定向上剤を同一組成となる
ように配合、混練した樹脂組成物のMI、発泡倍率、分
解性、寸法安定性を比較すると、P1、P11は発泡倍
率が小で好ましくなく、P6は発泡倍率、分解性は良好
であるが寸法安定性が不良である。一方、寸法安定向上
剤の添加量を変化させると、5重量%未満では寸法安定
性が悪く、30重量%を超えると発泡倍率が低下するの
で好ましくない。
Evaluation Results The crosslinking agent and the dimensional stability improver were mixed and kneaded with the P1 to P11 resins in which the L / D ratio of polylactic acid was changed so as to have the same composition, and the MI and foaming ratio of the resin composition were kneaded. When P1, P11 have a low expansion ratio, P1 and P11 are not preferable, and P6 has good expansion ratio and decomposability but poor dimensional stability. On the other hand, when the amount of the dimensional stability improver is changed, if the amount is less than 5% by weight, the dimensional stability is poor, and if it exceeds 30% by weight, the expansion ratio is undesirably reduced.

【0042】実施例12〜18比較例7〜12 P3のポリ乳酸にイソシアネート化合物「ミリオネート
MR−200」(イソシアネート基2.7〜2.8当量
/モル、日本ポリウレタン工業(株))、寸法安定向上
剤として二酸化ケイ素または硫酸バリウムをそれぞれ所
定量及びタルク1重量%を表4の組成となるように配合
し、実施例1〜11、比較例1〜6と同様の混練機、混
練条件で処理し、ペレット状樹脂組成物を得、引き続
き、同様の処理を行い評価を行った。結果を表5に示し
た。
Examples 12 to 18 Comparative Examples 7 to 12 P3 polylactic acid isocyanate compound "Millionate MR-200" (2.7 to 2.8 equivalents / mole of isocyanate group, Nippon Polyurethane Industry Co., Ltd.), dimensionally stable A predetermined amount of silicon dioxide or barium sulfate and 1% by weight of talc were blended so as to have the composition shown in Table 4 as an enhancer, and the mixture was treated in the same kneading machine and kneading conditions as in Examples 1 to 11 and Comparative Examples 1 to 6. Then, a pellet-shaped resin composition was obtained, and subsequently, the same treatment was performed and evaluated. Table 5 shows the results.

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】評価結果 寸法安定向上剤として二酸化ケイ素を使用した場合、酸
化チタンと同様に添加量が5重量%〜30重量%の範囲
は発泡倍率、寸法安定性ともに良好であった。添加量が
5重量%未満では収縮率が大きく寸法安定性が不良であ
り、40重量%を超えると発泡性が極端に低下した。酸
化アルミニウムにおいても、二酸化ケイ素とほぼ同一の
結果を示した。また、硫酸バリウムにおいて添加量を一
定とし、アスペクト比を変化させるとアスペクト比の増
大と共に発泡倍率が低下し、1.5を超えると樹脂への
拘束性が増大し発泡倍率が低下した。また、平均粒子径
を変化させると、平均粒子径が3μmを超えると、発泡
倍率が低下し且つ寸法安定性も低下した。
Evaluation Results When silicon dioxide was used as the dimensional stability improver, the expansion ratio and the dimensional stability were good in the range of 5% by weight to 30% by weight as in the case of titanium oxide. When the addition amount is less than 5% by weight, the shrinkage ratio is large and the dimensional stability is poor, and when it exceeds 40% by weight, the foaming property is extremely reduced. Aluminum oxide showed almost the same results as silicon dioxide. Further, when the addition amount of barium sulfate was kept constant and the aspect ratio was changed, the expansion ratio was reduced along with the increase in the aspect ratio, and when it exceeded 1.5, the restraint on the resin was increased and the expansion ratio was lowered. When the average particle diameter was changed, when the average particle diameter exceeded 3 μm, the expansion ratio was reduced and the dimensional stability was also reduced.

【0046】実施例19〜25、比較例13〜15 P3のポリ乳酸に種々の官能基数を持つイソシアネート
を所定量及び寸法安定向上剤として酸化チタン(平均粒
子径0.2μm、アスペクト比1.2)を8重量%添
加、配合し、表6に記載の組成で、実施例1〜11、比
較例1〜6と同様の混練機、混練条件で処理し、ペレッ
ト状樹脂組成物を得、引き続き、同様の処理を行い評価
を行った。結果を表7に示した。
Examples 19 to 25, Comparative Examples 13 to 15 Titanium oxide (average particle diameter 0.2 μm, aspect ratio 1.2) was used as a dimensional stability improver with a predetermined amount of isocyanate having various functional groups in the polylactic acid of P3. ) Was added and blended, and the composition shown in Table 6 was treated with the same kneading machine and kneading conditions as in Examples 1 to 11 and Comparative Examples 1 to 6, to obtain a pellet-shaped resin composition. The same processing was performed and evaluation was performed. The results are shown in Table 7.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】評価結果 実施例13〜25及び比較例13〜15よりイソシアネ
ートの添加量が0.5重量%未満の場合は混練して得ら
れる樹脂組成物のMIが5を超え、発泡倍率が小さく、
また、イソシアネートの添加量が5重量%を超えるもの
はMIは適正範囲にあるものの、分岐、架橋度が大にな
るため発泡倍率は極端に低下するので好ましくない。一
方、イソシアネートの官能基数が2.0未満の場合は、
混練して得られる樹脂組成物のMIが5を超え発泡倍率
が小さく本発明の目的からはずれている。
Evaluation Results From Examples 13 to 25 and Comparative Examples 13 to 15, when the amount of isocyanate added was less than 0.5% by weight, the MI of the resin composition obtained by kneading exceeded 5 and the expansion ratio was small. ,
If the amount of the isocyanate exceeds 5% by weight, the MI is in an appropriate range, but the degree of branching and crosslinking is increased, and the expansion ratio is extremely lowered. On the other hand, when the number of functional groups of the isocyanate is less than 2.0,
The MI of the resin composition obtained by kneading exceeds 5 and the expansion ratio is small, deviating from the object of the present invention.

【0050】[0050]

【発明の効果】以上、本発明の樹脂組成物は発泡性、耐
熱性、機械物性は従来から用いられてきた発泡ポリスチ
レン(PS)と同程度のものが得られ、さらには制電性
に優れ且つ生分解性が著しく優れており、地球環境保全
に資する樹脂組成物である。
As described above, the resin composition of the present invention has foaming properties, heat resistance and mechanical properties comparable to those of the conventionally used expanded polystyrene (PS), and furthermore has excellent antistatic properties. The resin composition has excellent biodegradability and contributes to global environmental protection.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 真弘 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 内藤 寛 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 中江 綱大 山口県防府市大字大崎276−516 Fターム(参考) 4J029 AA02 AB05 AB07 AC01 AD01 AD10 AE18 EA05 JA093 JA203 JA293 JC152 JF163 JF223 JF323 KE05 KE12 KH01 KH08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Yama, 4-1 Kanebo-cho, Hofu City, Yamaguchi Prefecture Inside (72) Inventor Hiroshi Naito 4-1 Kanebo-cho, Hofu City, Yamaguchi Prefecture, Kanebo God Co., Ltd. (72) Inventor Nakae Tsunahiro 276-516 Osaki, Hofu-shi, Yamaguchi F-term (reference) 4J029 AA02 AB05 AB07 AC01 AD01 AD10 AE18 EA05 JA093 JA203 JA293 JC152 JF163 JF223 JF323 KE05 KE12 KH01 KH08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 L体とD体のモル比が95/5〜64/
40、又は40/60〜5/95であるポリ乳酸に、イ
ソシアネート基≧2.0当量/モルのポリイソシアネー
トを該ポリ乳酸に対し0.5〜5重量%、およびアスペ
クト比が1.5以下で平均粒径が3μm以下の実質的に
球状の金属酸化物又は金属硫酸塩から選ばれた粒子を5
〜30重量%配合してなる、溶融粘度がメルトインデッ
クス値(MI)で5以下であることを特徴とする樹脂組
成物。
1. The molar ratio of L-form to D-form is 95/5 to 64 /
40, or 40/60 to 5/95, a polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol is added to polylactic acid having a ratio of 0.5 to 5% by weight based on the polylactic acid, and an aspect ratio of 1.5 or less. A particle selected from substantially spherical metal oxides or metal sulfates having an average particle size of 3 μm or less
A resin composition characterized by having a melt viscosity of 5 or less in melt index value (MI), which is blended in an amount of from 30 to 30% by weight.
【請求項2】 金属酸化物が酸化アルミニウム、二酸化
ケイ素、酸化チタンの群から選ばれた化合物である請求
項1に記載の樹脂組成物。
2. The resin composition according to claim 1, wherein the metal oxide is a compound selected from the group consisting of aluminum oxide, silicon dioxide, and titanium oxide.
【請求項3】 金属硫酸塩が硫酸バリウムである請求項
1に記載の樹脂組成物。
3. The resin composition according to claim 1, wherein the metal sulfate is barium sulfate.
【請求項4】 金属酸化物及び金属硫酸塩のアスペクト
比が1.2以下である請求項1に記載の樹脂組成物。
4. The resin composition according to claim 1, wherein the aspect ratio of the metal oxide and the metal sulfate is 1.2 or less.
【請求項5】 金属酸化物及び金属硫酸塩の平均粒子径
が1μm以下である請求項1に記載の樹脂組成物。
5. The resin composition according to claim 1, wherein the metal oxide and the metal sulfate have an average particle size of 1 μm or less.
JP36064498A 1998-12-18 1998-12-18 Expandable resin composition having biodegradability Expired - Fee Related JP3787447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36064498A JP3787447B2 (en) 1998-12-18 1998-12-18 Expandable resin composition having biodegradability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36064498A JP3787447B2 (en) 1998-12-18 1998-12-18 Expandable resin composition having biodegradability

Publications (2)

Publication Number Publication Date
JP2000178346A true JP2000178346A (en) 2000-06-27
JP3787447B2 JP3787447B2 (en) 2006-06-21

Family

ID=18470303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36064498A Expired - Fee Related JP3787447B2 (en) 1998-12-18 1998-12-18 Expandable resin composition having biodegradability

Country Status (1)

Country Link
JP (1) JP3787447B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293979A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Porous para-oriented aromatic polyamide film, its prepreg and substrate using prepreg and used for printed circuit
JP2002322808A (en) * 2001-04-27 2002-11-08 Nkk Corp Plastic composite panel
JP2013189656A (en) * 2013-07-05 2013-09-26 Mitsui Chemicals Inc Thermoformed article
CN108659484A (en) * 2015-10-30 2018-10-16 天津大学 Application of silica during reducing polylactic acid melt-processed in melt viscosity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293979A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Porous para-oriented aromatic polyamide film, its prepreg and substrate using prepreg and used for printed circuit
JP2002322808A (en) * 2001-04-27 2002-11-08 Nkk Corp Plastic composite panel
JP2013189656A (en) * 2013-07-05 2013-09-26 Mitsui Chemicals Inc Thermoformed article
CN108659484A (en) * 2015-10-30 2018-10-16 天津大学 Application of silica during reducing polylactic acid melt-processed in melt viscosity
CN108659484B (en) * 2015-10-30 2020-04-17 天津大学 Application of silicon dioxide in reduction of melt viscosity in polylactic acid melt processing process

Also Published As

Publication number Publication date
JP3787447B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP3937727B2 (en) Resin composition for foam having biodegradability
JP3802680B2 (en) Expandable resin composition having biodegradability
US5314927A (en) Polyester foamed articles and method for producing the same
WO2006103970A1 (en) Foamed polyhydroxyalkanoate resin particles and method of producing the foamed particles
JP3871822B2 (en) Expandable resin composition having biodegradability
JP2000230029A (en) Anti-static resin composition
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP2005264166A (en) Foamed particle and molded product
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3802681B2 (en) Expandable resin composition having biodegradability
JP4954461B2 (en) POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
JP2002020526A (en) Expandable resin beads
JP2000178346A (en) Expandable resin composition having biodegradability
JP3737396B2 (en) Expanded particles and molded bodies
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP3907047B2 (en) Method for producing foamed molding
JP4293489B2 (en) Method for producing foamed molded article having biodegradation
JP4038673B2 (en) Polylactic acid-based expandable resin particles and foamed molded products
JP3879433B2 (en) Polyester resin composition
JP2001164027A (en) Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JPH06248106A (en) Foamable polyester particle and foam
JP2001098104A (en) Expanded particle having biodegradability and mold thereof
JP2007138097A (en) Polylactic acid-based resin composition
JP2000086802A (en) Electrically conductive resin composition for biodegradable foamed article
JP2001098044A (en) Polylactic acid resin composition having biodegradability and expandability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050509

A711 Notification of change in applicant

Effective date: 20050530

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20050530

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Effective date: 20050627

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20050627

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees