JP2000173664A - Power source device - Google Patents

Power source device

Info

Publication number
JP2000173664A
JP2000173664A JP35116198A JP35116198A JP2000173664A JP 2000173664 A JP2000173664 A JP 2000173664A JP 35116198 A JP35116198 A JP 35116198A JP 35116198 A JP35116198 A JP 35116198A JP 2000173664 A JP2000173664 A JP 2000173664A
Authority
JP
Japan
Prior art keywords
battery
lithium
lithium ion
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35116198A
Other languages
Japanese (ja)
Inventor
Satoshi Yanase
聡 柳瀬
Tomoko Okuda
倫子 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP35116198A priority Critical patent/JP2000173664A/en
Publication of JP2000173664A publication Critical patent/JP2000173664A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cycle characteristic by arranging a cooling system in a nonaqueous secondary battery, having a negative electrode substance capable of storing/releasing a lithium ion, a positive electrode substance composed of lithium, containing composite oxide capable of storing/releasing a lithium ion and a lithium ion conductive nonaqueous electrolyte. SOLUTION: A cooling method does not cool a circuit inside a power source device, but selectively cools a battery can attached to the power source device, to thereby actively prevent a temperature rise in the battery can to effectively prevent the cycle degradation at high temperature time seen in a lithium ion secondary battery, particularly, a lithium ion secondary battery using lithium manganate as a positive electrode active material to maintain performance of the battery. For example, an aluminum cooling jacket 4 is installed on the periphery of the battery can, a refrigerant is sent into from a filler hole 5 of the refrigerant, and is discharged from a discharge port 6 of the refrigerant to cool battery can. When the temperature sensor is controlled by being installed in a cooler, energy can be reduced, and supercooling can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン2
次電池に該電池を冷却するための冷却装置を備えた電源
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a power supply device provided with a cooling device for cooling a secondary battery.

【0002】[0002]

【従来の技術】近年、電子携帯機器の発達に伴ない、そ
の駆動源となる電池の発達には著しいものがある。その
中でもリチウムイオン二次電池は高いエネルギー密度を
有することから特に注目を集めている。
2. Description of the Related Art In recent years, along with the development of electronic portable devices, there has been a remarkable progress in the development of batteries as driving sources thereof. Among them, lithium ion secondary batteries have attracted particular attention because of their high energy density.

【0003】現在、一般的に市販されているリチウムイ
オン二次電池は、負極活物質には炭素素材、アモルファ
ス合金、アモルファス金属酸化物などの可逆的にリチウ
ム吸蔵放出が可能な物質を、正極活物質にはコバルト、
ニッケル、マンガン等の遷移金属を含むリチウム複合酸
化物を用い、両極間をリチウムイオンが移動する事によ
って充放電を行う機構をとる。両極に使われる活物質は
エネルギー密度が高いため電池の小型化、軽量化が可能
となる。このためリチウムイオン二次電池は、小型化、
軽量化が望まれるカメラ一体型VTRあるいは携帯電話
等の携帯機器に多く使用されるようになってきている。
At present, commercially available lithium ion secondary batteries use a material capable of reversibly inserting and extracting lithium, such as a carbon material, an amorphous alloy, or an amorphous metal oxide, as a negative electrode active material. The substance is cobalt,
Using a lithium composite oxide containing a transition metal such as nickel or manganese, a mechanism is employed in which lithium ions move between the two electrodes to perform charging and discharging. The active material used for both electrodes has a high energy density, so that the battery can be reduced in size and weight. For this reason, lithium ion secondary batteries have been downsized,
It has been increasingly used for portable devices such as a camera-integrated VTR or a mobile phone for which weight reduction is desired.

【0004】さらに最近は、リチウムイオン二次電池
を、携帯機器だけでなく、中型、大型の電源装置に用い
ようとする試みがある。中型、大型の電源装置は、電気
自動車や電気モーター併用自転車の駆動モーター用電
源、家庭用のエネルギー備蓄装置であるロードレベラ
ー、通信機器やOA機器を大量に扱う事業所等のバック
アップ電源、電力を大量に消費する研究所、製造所の自
家発電機に付帯した電力貯蔵装置などその応用範囲は広
い。しかしながら現在実用化されているリチウムイオン
二次電池は、充放電を繰り返すにつれて電気容量が低下
していくという傾向を示す。サイクル劣化と呼ばれるこ
の現象は電池の寿命を縮め、そのコストパフォーマンス
を低下させる要因となる。
[0004] More recently, attempts have been made to use lithium ion secondary batteries not only in portable equipment but also in medium- and large-sized power supplies. Medium- and large-sized power supplies are used as power supplies for driving motors of electric vehicles and bicycles with electric motors, load levelers that are energy storage devices for home use, backup power supplies for offices that handle a large amount of communication equipment and OA equipment, etc. It has a wide range of applications, including large-volume laboratories and power storage devices attached to private power generators at factories. However, lithium ion secondary batteries currently in practical use show a tendency that the electric capacity decreases as charging and discharging are repeated. This phenomenon called cycle deterioration shortens the life of the battery and causes a reduction in cost performance.

【0005】サイクル劣化の原因については、充放電に
伴う正極活物質の変成に起因するという説、負極活物質
の変成に起因するという説、電解液の劣化によるという
説など様々な説が提唱されているが、その詳細について
は明らかになっていない。しかしながらリチウムイオン
二次電池全体に見られる傾向として、充放電時の温度が
高くなると、サイクル劣化が大きくなることが知られて
いる。これはサイクル劣化の原因が、何らかの化学反応
に基づくものであり、温度が高くなるに従って、反応の
頻度が大きくなっていくためと推定される。
Various theories have been proposed as to the cause of the cycle deterioration, such as the theory that it is caused by the transformation of the positive electrode active material due to charge and discharge, the theory that it is caused by the transformation of the negative electrode active material, and the theory that it is caused by the deterioration of the electrolytic solution. However, details have not been disclosed. However, as a tendency observed in the whole lithium ion secondary battery, it is known that when the temperature at the time of charging and discharging increases, the cycle deterioration increases. This is presumed to be due to a certain chemical reaction that causes the cycle deterioration, and that the frequency of the reaction increases as the temperature increases.

【0006】サイクル劣化の原因の1つとして考えられ
ている正極活物質の変成は特に温度の影響を受けやす
い。現行のリチウムイオン二次電池の正極には、主にコ
バルト、ニッケル、マンガン等の遷移金属を含むリチウ
ム複合酸化物が用いられている。これらのリチウム複合
酸化物は、非水電解液中で次第に溶解し、活物質の基本
骨格を形成するリチウムや遷移金属が溶出することが知
られており、これらは正極の容量を低下させる直接の原
因となる。またこの現象は、基本的に溶解現象であるた
め温度の効果を大きく受け、高温での充放電サイクルの
みならず、電池を高温で保存する際にも電池の電気容量
の低下を招く結果となる。
The transformation of the positive electrode active material, which is considered as one of the causes of cycle deterioration, is particularly susceptible to temperature. A lithium composite oxide containing a transition metal such as cobalt, nickel, and manganese is mainly used for a positive electrode of a current lithium ion secondary battery. It is known that these lithium composite oxides gradually dissolve in a non-aqueous electrolyte and elute lithium and transition metals forming the basic skeleton of the active material, which directly reduce the capacity of the positive electrode. Cause. Further, this phenomenon is largely affected by the temperature because it is basically a dissolution phenomenon, resulting in a decrease in the electric capacity of the battery not only when the battery is stored at a high temperature but also when the battery is stored at a high temperature. .

【0007】また上記の現象は、マンガンを含有したリ
チウム複合酸化物において特に顕著である。これは酸化
物結晶中におけるマンガンと酸素の結びつきが弱いため
と考えられており、高温下で非水電解液中への溶解が激
しくなることが実験的にも知られている。マンガンを含
有したリチウム複合酸化物は、他の遷移金属を含有した
リチウム複合酸化物と比べ安価であり、さらにマンガン
の埋蔵量はコバルトに比べて十分なものがあるため、リ
チウムイオン二次電池の正極活物質として、現行のコバ
ルト含有リチウム複合酸化物にとって代わることが期待
されている。
The above phenomenon is particularly remarkable in a lithium composite oxide containing manganese. It is considered that this is because the binding between manganese and oxygen in the oxide crystal is weak, and it is experimentally known that the dissolution in the non-aqueous electrolyte at high temperatures becomes severe. Lithium composite oxides containing manganese are less expensive than lithium composite oxides containing other transition metals, and the reserves of manganese are more sufficient than those of cobalt. It is expected to replace the current cobalt-containing lithium composite oxide as a positive electrode active material.

【0008】この困難を避けるために、これまでに様々
な方法が提案されている。とりわけマンガンを含有した
リチウム複合酸化物であるマンガン酸リチウムに対して
は、化学的量論組成のマンガン酸リチウムに対して、焼
成時の原料比を調整してリチウム過剰の組成にし、高温
特性を向上させる方法( 特開平5−205744号公
報)、マンガン以外の遷移金属元素を添加して活物質を
構成するスピネル結晶の安定性を増し、高温特性を向上
させる方法( 特開平3−219571号公報)などが提
案されている。
In order to avoid this difficulty, various methods have been proposed so far. In particular, for lithium manganate, which is a lithium composite oxide containing manganese, the raw material ratio at the time of calcination is adjusted to lithium manganate having a stoichiometric composition to make the composition excessive in lithium, thereby improving high-temperature characteristics. A method for improving the high-temperature characteristics by adding a transition metal element other than manganese to increase the stability of the spinel crystal constituting the active material (Japanese Patent Laid-Open No. 3-219571). ) Has been proposed.

【0009】しかしながらこれらの方法は、均一で副相
の生成のない活物質を得るために、原料の調整や焼成条
件の調整を精密にコントロールせねばならず、活物質の
製造工程が複雑になるうえ、電池の電気容量が低下する
という難点を有している。またこのようにして得られる
活物質は、化学的量論組成のマンガン酸リチウムに対し
ては優位な高温特性を示すものの、実用上十分な高温安
定性を有しているとは言えない。とりわけ中型、大型電
源のように電池の電気容量が大きい場合は、充放電に伴
う発熱が大きく、そのため外的環境は常温でも電池自体
は高温になることが避けられないため、これらの問題点
を解決する方法の開発が望まれていた。
However, in these methods, in order to obtain an active material that is uniform and does not generate a subphase, the adjustment of raw materials and the adjustment of firing conditions must be precisely controlled, and the production process of the active material becomes complicated. In addition, there is a disadvantage that the electric capacity of the battery is reduced. Further, the active material obtained in this way shows superior high-temperature characteristics to lithium manganate having a stoichiometric composition, but cannot be said to have practically sufficient high-temperature stability. In particular, when the battery has a large electric capacity such as a medium-sized or large-sized power supply, the heat generated by charging and discharging is large. The development of a solution was desired.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、サイクル特性に優れた電源装置を提供する
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a power supply having excellent cycle characteristics.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく検討を重ね、リチウムイオン二次電池を用
いた電源装置において、次のような構成の電源装置がサ
イクル特性に優れていることを見出したものである。す
なわち本発明は、(1) リチウムイオンの吸蔵放出が可能
な負極活物質と、リチウムイオンの吸蔵放出が可能なリ
チウム含有複合酸化物からなる正極活物質と、リチウム
イオン伝導性の非水電解液を備えた非水二次電池に、該
二次電池を冷却するための冷却装置が付帯していること
を特徴とする電源装置、(2) リチウムイオンの吸蔵放出
が可能なリチウム含有複合酸化物からなる正極活物質
が、マンガンを含有したリチウム複合酸化物であること
を特徴とする、(1)記載の電源装置、である。
Means for Solving the Problems The inventors of the present invention have been studying to solve the above problems, and in a power supply device using a lithium ion secondary battery, a power supply device having the following configuration has excellent cycle characteristics. It was found that. That is, the present invention provides (1) a negative electrode active material capable of inserting and extracting lithium ions, a positive electrode active material comprising a lithium-containing composite oxide capable of inserting and extracting lithium ions, and a lithium ion conductive nonaqueous electrolyte. A non-aqueous secondary battery provided with a cooling device for cooling the secondary battery, (2) a lithium-containing composite oxide capable of inserting and extracting lithium ions The power supply device according to (1), wherein the positive electrode active material is a lithium composite oxide containing manganese.

【0012】本発明はリチウムイオン二次電池と、該電
池の充放電時、および保存時に電池缶の温度を上昇させ
ないための冷却装置が付帯していることを特徴とする電
源装置に関するものである。これはリチウムイオン二次
電池において、高温時におけるサイクル劣化現象を、電
池内部の構成要素を改良することによって解決するので
はなく、電池の使用時に電池の温度を上昇させない工夫
をして防止した方が、効率的かつ確実であるとの発想に
基づいている。
The present invention relates to a power supply device comprising a lithium ion secondary battery and a cooling device for preventing the temperature of the battery can from increasing during charging / discharging and storage of the battery. . This is not to solve the cycle deterioration phenomenon at high temperature in lithium ion secondary batteries by improving the components inside the battery, but to prevent it by raising the battery temperature when using the battery. Is based on the idea that it is efficient and reliable.

【0013】本発明における冷却装置は、電池を用いた
一般の電源装置にみられるような電源装置内部の回路を
冷却するものではなく、電源装置に付帯した電池缶を選
択的に冷却するところに特徴がある。これによって電池
缶の温度が上昇するのを積極的に防止し、リチウムイオ
ン二次電池、とりわけマンガン酸リチウムを正極活物質
としたリチウムイオン二次電池に見られる高温における
サイクル劣化を効果的に防止し、電池の性能を維持する
ことができる。
The cooling device according to the present invention does not cool the circuit inside the power supply device as seen in a general power supply device using a battery, but selectively cools a battery can attached to the power supply device. There are features. This positively prevents the temperature of the battery can from rising, effectively preventing the cycle deterioration at high temperatures seen in lithium-ion secondary batteries, especially lithium-ion secondary batteries using lithium manganate as a positive electrode active material. Thus, the performance of the battery can be maintained.

【0014】本発明において、リチウムイオンの吸蔵放
出が可能な負極活物質とは、リチウム金属、リチウム合
金、金属酸化物、金属窒化物、合金、金属間化合物など
があげられる。特に炭素系の素材としてはコークス、天
然黒鉛、人造黒鉛、難黒鉛化炭素などのリチウムイオン
二次電池の負極として現在一般的に用いられている炭素
素材またはそれらの混合物があげられる。
In the present invention, examples of the negative electrode active material capable of inserting and extracting lithium ions include lithium metals, lithium alloys, metal oxides, metal nitrides, alloys, and intermetallic compounds. In particular, examples of the carbon-based material include carbon materials, such as coke, natural graphite, artificial graphite, and non-graphitizable carbon, which are currently generally used as a negative electrode of a lithium ion secondary battery or a mixture thereof.

【0015】リチウムイオンの吸蔵放出が可能なリチウ
ム含有複合酸化物からなる正極活物質とは、コバルト酸
リチウム、マンガン酸リチウム、ニッケル酸リチウム、
これらのリチウム複合酸化物に結晶構造を構成する主た
る金属元素とは異なる元素(例えばニッケル、クロム、
コバルト、銅、アルミニウム、バナジウム、マグネシウ
ム、ストロンチウム、鉄、ホウ素、塩素、フッ素、臭
素、ヨウ素など) を単一または複数種添加したもの、ま
たはそれらのリチウム複合酸化物の2種以上の混合物な
どがあげられる。また前述のように、これらのリチウム
含有複合酸化物のなかでも、マンガンを含有したリチウ
ム含有複合酸化物に対しては、本発明は特に有効であ
る。
The positive electrode active material comprising a lithium-containing composite oxide capable of inserting and extracting lithium ions includes lithium cobaltate, lithium manganate, lithium nickelate,
Elements different from the main metal elements constituting the crystal structure of these lithium composite oxides (for example, nickel, chromium,
Cobalt, copper, aluminum, vanadium, magnesium, strontium, iron, boron, chlorine, fluorine, bromine, iodine, etc.) or a mixture of two or more of these lithium composite oxides can give. Further, as described above, among these lithium-containing composite oxides, the present invention is particularly effective for lithium-containing composite oxides containing manganese.

【0016】リチウムイオン伝導性の非水電解液とは、
リチウム塩を非水溶媒に溶解したものを指す。ここでリ
チウム塩としては、LiClO4、LiAsF6、LiPF6 、LiBF4
ど、またはそれらの混合物などが用いられる。溶媒とし
ては前記リチウム塩を溶解する有機溶媒や無機溶媒を用
いることができ、特に好適には、エチレンカーボネー
ト、プロピレンカーボネート、ジエチルカーボネート、
ジメチルカーボネート、メチルエチルカーボネート、ガ
ンマブチルラクトンなどの溶媒を単独で、または混合し
て用いることが推奨される。溶媒に溶解されるリチウム
塩の濃度は0.5〜2.0モル/ リットルが適当な範囲
である。
The lithium ion conductive non-aqueous electrolyte is
It refers to a lithium salt dissolved in a non-aqueous solvent. Here, as the lithium salt, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 or the like, or a mixture thereof is used. As the solvent, an organic solvent or an inorganic solvent that dissolves the lithium salt can be used, and particularly preferably, ethylene carbonate, propylene carbonate, diethyl carbonate,
It is recommended to use a solvent such as dimethyl carbonate, methyl ethyl carbonate, gamma butyl lactone alone or in a mixture. The appropriate concentration of the lithium salt dissolved in the solvent is 0.5 to 2.0 mol / liter.

【0017】また本発明おいて非水二次電池とは、上記
に説明されるようなリチウムイオンの吸蔵放出が可能な
負極活物質と、リチウムイオンの吸蔵放出が可能なリチ
ウム含有複合酸化物からなる正極活物質と、リチウムイ
オン伝導性の非水電解液の他に、正負極活物質を保持す
る金属製の集電体、導電のための電極タブ、正負極を電
気的に隔てるためのセパレーター、これら構成要素を収
納する電池缶、その他電流遮断弁などの電池部材から構
成される。また電池の形状としては、円筒型、角形、薄
角形、カード型、コイン型、シート型などがあげられる
が、本発明はどのような電池の形状に対しても有効であ
る。
In the present invention, the non-aqueous secondary battery is composed of a negative electrode active material capable of inserting and extracting lithium ions and a lithium-containing composite oxide capable of inserting and extracting lithium ions as described above. In addition to the positive electrode active material and the lithium ion conductive non-aqueous electrolyte, a metal current collector holding the positive and negative electrode active materials, an electrode tab for conductivity, and a separator for electrically separating the positive and negative electrodes , And a battery can containing these components, and other battery members such as a current cutoff valve. Examples of the shape of the battery include a cylindrical shape, a square shape, a thin square shape, a card shape, a coin shape, a sheet shape, and the like. The present invention is effective for any shape of the battery.

【0018】本発明において、該二次電池を冷却するた
めの冷却装置とは、電池の温度が、ある一定温度以上に
上がらないよう、電池を選択的に冷却するものである。
冷却の方法としては特に限定されないが、空気を強制的
に送り込んで冷却する空冷式、電池にジャケットを取り
付け、そこに水などの冷媒を通液して冷却する方式など
は簡便でかつ効果的な方法として推奨される。また適当
な冷媒と熱交換機を用いて、電気エネルギーによって熱
交換を行い、電池部分を強制的に冷却する方法は、コス
ト高となるが確実な方法として推奨される。またこれら
の冷却器に、電池の温度を感知して、冷却器を作動・停
止させるための温度センサーを取り付ければ、冷却に伴
う無駄なエネルギーの消費を抑えると共に、電池の過冷
却を防止する事が出来、特に推奨される。
In the present invention, the cooling device for cooling the secondary battery selectively cools the battery so that the battery temperature does not rise above a certain temperature.
The method of cooling is not particularly limited, but an air-cooling type in which air is forcibly fed and cooled, a method in which a jacket is attached to a battery, and a system in which a coolant such as water is passed therethrough for cooling are simple and effective. Recommended as a method. In addition, a method in which heat is exchanged by electric energy using a suitable refrigerant and a heat exchanger to forcibly cool the battery portion is expensive, but is recommended as a reliable method. In addition, if these coolers are equipped with temperature sensors that sense the temperature of the battery and start and stop the cooler, unnecessary energy consumption during cooling can be suppressed and the battery can be prevented from being overcooled. And is particularly recommended.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明の範囲はこれに限定されるものではな
い。 実施例1 マンガン酸リチウム、ポリフッ化ビニリデン、アセチレ
ンブラックを重量比で100部、4部、6.25部に混
合しN−メチルピロリドンに溶解してスラリー状とし
た。これを15ミクロン厚のアルミ箔に塗工用のダイコ
ーターを用いて塗布したあと乾燥し正極とした。グラフ
ァイト、カルボキシメチルセルロース、スチレン/ ブタ
ジエンラテックスを重量比で100部、1部、2部の割
合で混合し、水に溶解してスラリー状とした。これを1
5ミクロン厚の銅箔に正極と同様に塗布したあと乾燥し
負極とした。正極および負極を20センチ×30センチ
の長方形に裁断し、それぞれに集電用の電極端子を溶接
した。次にポリエチレン製多孔質セパレーターを22セ
ンチ×32センチに切断し、正極と負極の間に挟み込み
1ユニットとしたものを10層重ね、さらにこれを23
センチ×33センチ×2センチ大のアルミ製の電池缶ケ
ースに収納したあと、電解液( 電解質は1モル/ リット
ルのLiPF6 、溶媒はエチレンカーボネート、メチルエチ
ルカーボネートの体積比で1:1の混合液) を注液し、
注液口を溶接して電池缶を密閉した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the scope of the present invention is limited thereto. Example 1 Lithium manganate, polyvinylidene fluoride, and acetylene black were mixed in a weight ratio of 100 parts, 4 parts, and 6.25 parts, and dissolved in N-methylpyrrolidone to form a slurry. This was applied to a 15-micron thick aluminum foil using a coating die coater, and then dried to obtain a positive electrode. Graphite, carboxymethylcellulose, and styrene / butadiene latex were mixed at a weight ratio of 100 parts, 1 part, and 2 parts, and dissolved in water to form a slurry. This one
It was applied to a 5 μm thick copper foil in the same manner as the positive electrode and dried to obtain a negative electrode. The positive electrode and the negative electrode were cut into a rectangle of 20 cm × 30 cm, and an electrode terminal for current collection was welded to each. Next, the polyethylene porous separator was cut into 22 cm × 32 cm, and was sandwiched between a positive electrode and a negative electrode to form one unit, and 10 layers were stacked.
After being stored in an aluminum battery can case measuring 3 cm x 33 cm x 2 cm, the electrolyte was mixed with 1 mol / L LiPF 6 and the solvent was 1: 1 by volume ratio of ethylene carbonate and methyl ethyl carbonate. Liquid)
The injection port was welded to seal the battery can.

【0020】この電池の周囲に、アルミ製の冷却ジャケ
ットを取り付け、直流モーターに羽がついた送風機から
ジャケット内に送風出来るようにした。送風を開始した
あと電池を充電電圧4.2Vで8時間充電を行い、5.
0Aで2.7Vまで放電する充放電サイクルを100サ
イクル繰り返した。この時、充放電サイクルはじめと終
わりの電池の表面温度、およびサイクル劣化の度合いを
表す次の式で表される放電量維持率を算出したところ、
表1のようになり良好なサイクル特性を示した。 放電量維持率(%) = [ 1- ( 100サイクル目の放電量
/1サイクル目の放電量) ]×100 実施例2 実施例1と同様に電池を作製した。この電池缶の周囲に
水タンクとポンプを備えたアルミ製の水冷ジャケットを
取り付けた。ポンプを作動させ水を供給させながら、実
施例1と同様に充放電サイクルテストを行った。充放電
サイクルはじめと終わりの電池の表面温度、および放電
量維持率を算出したところ、表1のようになり良好なサ
イクル特性を示した。
An aluminum cooling jacket was attached to the periphery of the battery so that air could be blown into the jacket from a blower with wings attached to a DC motor. 4. After starting the ventilation, charge the battery at a charging voltage of 4.2 V for 8 hours.
A charge / discharge cycle of discharging to 2.7 V at 0 A was repeated 100 times. At this time, the surface temperature of the battery at the beginning and end of the charge / discharge cycle, and the discharge amount maintenance rate expressed by the following equation, which represents the degree of cycle deterioration, was calculated.
As shown in Table 1, good cycle characteristics were exhibited. Discharge rate maintenance rate (%) = [1- (100th cycle discharge rate)
/ Discharge amount in first cycle)] × 100 Example 2 A battery was produced in the same manner as in Example 1. An aluminum water-cooled jacket equipped with a water tank and a pump was attached around the battery can. A charge / discharge cycle test was performed in the same manner as in Example 1 while operating the pump to supply water. When the surface temperature of the battery at the beginning and end of the charge / discharge cycle and the discharge amount maintenance ratio were calculated, the results were as shown in Table 1, and excellent cycle characteristics were exhibited.

【0021】実施例3 実施例1と同様に電池を作製した。この電池缶の周囲に
水タンクとポンプを備えたアルミ製の水冷ジャケットを
取り付けた。この水タンクに液温計を備えた投げ込み式
の冷却器を取り付けた。水温を30度に設定し、冷却器
とポンプを作動させ、ジャケットに供給する水の温度を
30度に保ちながら、実施例1と同様に充放電サイクル
テストを行った。充放電サイクルはじめと終わりの電池
の表面温度、および放電量維持率を算出したところ、表
1のようになり良好なサイクル特性を示した。 実施例4 正極活物質として、マンガン酸リチウムの代わりに、コ
バルト酸リチウムを使う以外は実施例1と同様に電池を
作製した。送風を開始したあと電池を充電電圧4.2V
で8時間充電を行い、5.0Aで2.7Vまで放電する
充放電サイクルを100サイクル繰り返した。この時、
充放電サイクルはじめと終わりの電池の表面温度および
放電量維持率を算出したところ、表1のようになり良好
なサイクル特性を示した。
Example 3 A battery was manufactured in the same manner as in Example 1. An aluminum water-cooled jacket equipped with a water tank and a pump was attached around the battery can. A throw-in type cooler equipped with a thermometer was attached to the water tank. A charge / discharge cycle test was performed in the same manner as in Example 1 while setting the water temperature to 30 degrees, operating the cooler and the pump, and keeping the temperature of the water supplied to the jacket at 30 degrees. When the surface temperature of the battery at the beginning and end of the charge / discharge cycle and the discharge amount maintenance ratio were calculated, the results were as shown in Table 1, and favorable cycle characteristics were exhibited. Example 4 A battery was produced in the same manner as in Example 1, except that lithium cobaltate was used instead of lithium manganate as the positive electrode active material. After starting to blow air, charge the battery at 4.2V
For 8 hours, and a charge / discharge cycle of discharging at 5.0 A to 2.7 V was repeated 100 times. At this time,
When the surface temperature and the discharge amount maintenance rate of the battery at the beginning and end of the charge / discharge cycle were calculated, the results were as shown in Table 1, and excellent cycle characteristics were shown.

【0022】実施例5 正極活物質として、マンガン酸リチウムの代わりに、コ
バルト酸リチウムを使う以外は実施例1と同様に電池を
作製した。実施例2と同様、この電池缶の周囲に水タン
クとポンプを備えたアルミ製の水冷ジャケットを取り付
けた。ポンプを作動させ水を供給させながら、実施例1
と同様に充放電サイクルテストを行った。充放電サイク
ルはじめと終わりの電池の表面温度、および放電量維持
率を算出したところ、表1のようになり良好なサイクル
特性を示した。 実施例6 正極活物質として、マンガン酸リチウムの代わりに、コ
バルト酸リチウムを使う以外は実施例1と同様に電池を
作製した。実施例3と同様、この電池缶の周囲に水タン
クとポンプを備えたアルミ製の水冷ジャケットを取り付
けた。この水タンクに液温計を備えた投げ込み式の冷却
器を取り付けた。水温を30度に設定し、冷却器とポン
プを作動させ、ジャケットに供給する水の温度を30度
に保ちながら、実施例1と同様に充放電サイクルテスト
を行った。充放電サイクルはじめと終わりの電池の表面
温度、および放電量維持率を算出したところ、表1のよ
うになり良好なサイクル特性を示した。
Example 5 A battery was fabricated in the same manner as in Example 1 except that lithium cobaltate was used instead of lithium manganate as the positive electrode active material. As in Example 2, an aluminum water-cooled jacket equipped with a water tank and a pump was attached around the battery can. Example 1 while operating the pump to supply water
A charge / discharge cycle test was performed in the same manner as described above. When the surface temperature of the battery at the beginning and end of the charge / discharge cycle and the discharge amount maintenance ratio were calculated, the results were as shown in Table 1, and excellent cycle characteristics were exhibited. Example 6 A battery was produced in the same manner as in Example 1, except that lithium cobaltate was used instead of lithium manganate as the positive electrode active material. As in Example 3, an aluminum water-cooled jacket equipped with a water tank and a pump was attached around the battery can. A throw-in type cooler equipped with a thermometer was attached to the water tank. A charge / discharge cycle test was performed in the same manner as in Example 1 while setting the water temperature to 30 degrees, operating the cooler and the pump, and keeping the temperature of the water supplied to the jacket at 30 degrees. When the surface temperature of the battery at the beginning and end of the charge / discharge cycle and the discharge amount maintenance ratio were calculated, the results were as shown in Table 1, and excellent cycle characteristics were exhibited.

【0023】比較例1 電池缶冷却用の冷却機をとりつけないで、実施例1と同
様に作製した電池の充放電サイクルテストを実施例1と
同様に行ない、充放電サイクルはじめと終わりの電池の
表面温度、および放電量維持率を算出したところ、表1
のようになった。冷却装置を取り付けた場合と比較し
て、電池缶の温度の上がりかたが大きく、放電容量維持
率は小さくなることがわかる。 比較例2 電池缶冷却用の冷却機をとりつけないで、実施例4と同
様に作製した電池の充放電サイクルテストを実施例4と
同様に行ない、充放電サイクルはじめと終わりの電池の
表面温度、および放電量維持率を算出したところ、表1
のようになった。冷却装置を取り付けた場合と比較し
て、電池缶の温度の上がりかたが大きく、放電容量維持
率は小さくなることがわかる。
COMPARATIVE EXAMPLE 1 A battery prepared in the same manner as in Example 1 was subjected to a charge / discharge cycle test in the same manner as in Example 1 without installing a cooler for cooling the battery can. When the surface temperature and the discharge amount maintenance ratio were calculated, Table 1 was obtained.
It became like. It can be seen that the temperature rise of the battery can is larger and the discharge capacity retention ratio is smaller than when the cooling device is attached. Comparative Example 2 A battery prepared in the same manner as in Example 4 was subjected to a charge / discharge cycle test in the same manner as in Example 4 without attaching a cooler for cooling the battery can, and the surface temperature of the battery at the beginning and end of the charge / discharge cycle, And the discharge maintenance rate was calculated.
It became like. It can be seen that the temperature rise of the battery can is larger and the discharge capacity retention ratio is smaller than in the case where the cooling device is attached.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】リチウムイオン二次電池を冷却するため
の冷却装置が付帯していることを特徴とする電源装置を
用いることによって、電池の温度上昇を防止し、良好な
サイクル特性を発揮することができる。
According to the present invention, by using a power supply device having a cooling device for cooling a lithium ion secondary battery, it is possible to prevent a temperature rise of the battery and exhibit good cycle characteristics. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電池缶を示す。FIG. 1 shows a battery can according to an embodiment of the present invention.

【図2】図1の電池缶の周囲に冷却ジャケットを取り付
けた状態を示す。
FIG. 2 shows a state where a cooling jacket is attached around the battery can of FIG.

【符号の説明】[Explanation of symbols]

1 電池缶 2,3 集電端子 4 冷却ジャケット 5 冷媒の注入口 6 冷媒の排出口 DESCRIPTION OF SYMBOLS 1 Battery can 2, 3 Current collecting terminal 4 Cooling jacket 5 Refrigerant inlet 6 Refrigerant outlet

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL01 AL02 AL06 AL07 AL12 AM03 AM05 AM07 BJ03 BJ04 BJ22 5H031 AA00 CC05 EE01 EE02 EE03 KK00 KK03 KK08  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 5H029 AJ03 AJ05 AK03 AL01 AL02 AL06 AL07 AL12 AM03 AM05 AM07 BJ03 BJ04 BJ22 5H031 AA00 CC05 EE01 EE02 EE03 KK00 KK03 KK08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンの吸蔵放出が可能な負極
活物質と、リチウムイオンの吸蔵放出が可能なリチウム
含有複合酸化物からなる正極活物質と、リチウムイオン
伝導性の非水電解液を備えた非水二次電池に、該二次電
池を冷却するための冷却装置が付帯していることを特徴
とする電源装置。
1. A negative electrode active material capable of inserting and extracting lithium ions, a positive electrode active material comprising a lithium-containing composite oxide capable of inserting and extracting lithium ions, and a lithium ion conductive nonaqueous electrolyte. A power supply device, wherein a cooling device for cooling the non-aqueous secondary battery is attached to the non-aqueous secondary battery.
【請求項2】 リチウムイオンの吸蔵放出が可能なリチ
ウム含有複合酸化物からなる正極活物質が、マンガンを
含有したリチウム複合酸化物であることを特徴とする、
請求項1記載の電源装置。
2. The positive electrode active material comprising a lithium-containing composite oxide capable of inserting and extracting lithium ions is a manganese-containing lithium composite oxide.
The power supply device according to claim 1.
JP35116198A 1998-12-10 1998-12-10 Power source device Withdrawn JP2000173664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35116198A JP2000173664A (en) 1998-12-10 1998-12-10 Power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35116198A JP2000173664A (en) 1998-12-10 1998-12-10 Power source device

Publications (1)

Publication Number Publication Date
JP2000173664A true JP2000173664A (en) 2000-06-23

Family

ID=18415471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35116198A Withdrawn JP2000173664A (en) 1998-12-10 1998-12-10 Power source device

Country Status (1)

Country Link
JP (1) JP2000173664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099243A (en) * 2016-07-04 2016-11-09 蔚来汽车有限公司 Heat-exchange device for electrokinetic cell
CN106099242A (en) * 2016-07-04 2016-11-09 蔚来汽车有限公司 Battery cooling heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099243A (en) * 2016-07-04 2016-11-09 蔚来汽车有限公司 Heat-exchange device for electrokinetic cell
CN106099242A (en) * 2016-07-04 2016-11-09 蔚来汽车有限公司 Battery cooling heat exchanger
CN106099242B (en) * 2016-07-04 2019-06-14 上海蔚来汽车有限公司 Battery cooling heat exchanger
US10553918B2 (en) 2016-07-04 2020-02-04 Nio Nextev Limited Heat exchanger for battery cooling

Similar Documents

Publication Publication Date Title
JP4314223B2 (en) Regenerative power storage system, storage battery system and automobile
US6277521B1 (en) Lithium metal oxide containing multiple dopants and method of preparing same
US7927740B2 (en) Battery pack and vehicle
US9350043B2 (en) Nonaqueous electrolyte secondary battery
JP3866740B2 (en) Non-aqueous electrolyte secondary battery, assembled battery and battery pack
US20160126546A1 (en) Power supply system and motor car
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
JP3813001B2 (en) Non-aqueous secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP6441125B2 (en) Nonaqueous electrolyte battery and battery pack
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
WO2022198651A1 (en) Positive electrode plate, and electrochemical device and electronic device containing positive electrode plate
JP2003068302A (en) Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material
CN100424925C (en) Non-aqueous electrolyte secondary cell
JP2003297354A (en) Lithium secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP4120771B2 (en) Non-aqueous secondary battery
WO2022198662A1 (en) Positive electrode lithium supplementing material, positive electrode plate containing same, and electrochemical device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307