JP2000171277A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JP2000171277A
JP2000171277A JP34401798A JP34401798A JP2000171277A JP 2000171277 A JP2000171277 A JP 2000171277A JP 34401798 A JP34401798 A JP 34401798A JP 34401798 A JP34401798 A JP 34401798A JP 2000171277 A JP2000171277 A JP 2000171277A
Authority
JP
Japan
Prior art keywords
flow rate
ultrasonic
flow
fluid
intermediate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34401798A
Other languages
Japanese (ja)
Inventor
Akio Tomita
明男 冨田
Takaomi Ikada
隆臣 筏
Akio Kono
明夫 河野
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP34401798A priority Critical patent/JP2000171277A/en
Publication of JP2000171277A publication Critical patent/JP2000171277A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measuring apparatus which can measure the flow rate over a wide range from a micro flow rate to a large flow rate while ensuring a sufficient accuracy. SOLUTION: The reflective part 7a of a current velocity measuring section 7 is formed to have parabolic inner surfaces arranged symmetrically on a same axis while matching the focal point and the central coupling part 7b of the current velocity measuring section 7 is formed to have a tubular surface of small inside diameter. Ultrasonic oscillators are disposed on the upstream side and the downstream side of fluid flowing through the current velocity measuring section 7 in order to measure the flow rate of fluid from an intermediate flow rate to a large flow rate. Furthermore, a flowmeter 9 measuring micro flow rate is disposed at the coupling part 7b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガスその他の流
体の流量を測定する流量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of a gas or other fluid.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ガスそ
の他の流体の流量を求めるに際し、まず流体の流速を連
続的ないし定期的に測定し、これに基いて流量を演算す
ることが行われている。そして、このような流体の流量
測定方法の一つとして、超音波を利用した方法が知られ
ている。
2. Description of the Related Art In determining the flow rate of a gas or other fluid, the flow rate of the fluid is first measured continuously or periodically, and the flow rate is calculated based on the measured flow rate. I have. As one of such fluid flow measuring methods, a method using ultrasonic waves is known.

【0003】かかる超音波を利用した方法の原理を、図
3に示される従来の装置により説明すると次のとおりで
ある。図3において、(1)は内部をガス等の流体が流
れる超音波流速測定管である。この超音波流速測定管
(1)内には、流れ方向の上流側及び下流側に、所定距
離を隔てて超音波振動子(2)(3)が配置されてい
る。 この超音波振動子(2)(3)は、パルス発生回
路(4)からの駆動パルスにより駆動されて振動し、超
音波を発生送信する一方、送信されてきた超音波を受信
するもので、その超音波振動子(2)(3)が振動した
ときの受信波が増幅回路(5)から電気信号として出力
されるものとなされている。
The principle of such a method using ultrasonic waves will be described below with reference to a conventional apparatus shown in FIG. In FIG. 3, (1) is an ultrasonic flow velocity measuring tube through which a fluid such as a gas flows. In the ultrasonic flow velocity measuring tube (1), ultrasonic vibrators (2) and (3) are arranged at a predetermined distance upstream and downstream in the flow direction. The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a pulse generation circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. Received waves when the ultrasonic transducers (2) and (3) vibrate are output as electric signals from the amplifier circuit (5).

【0004】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受波されるまでの伝搬時間と、下流側
の超音波振動子(3)から流れに対して逆方向に送信さ
れた超音波が上流側の超音波振動子(2)で受波される
までの伝搬時間との差は流速に関係することから、演算
回路(10)において前記伝搬時間差に基づいて流速を
測定し、さらに流速に基づいて流量を求める。なお、図
3において、(6)は各超音波振動子(2)(3)とパ
ルス発生回路(4)及び増幅回路(5)の接続を切替え
る切替回路であり、まずパルス発生回路(4)と上流側
の超音波振動子(2)、下流側の超音波振動子(3)と
増幅回路(5)を接続して、上流側から下流側への伝搬
時間を測定したのち、該切替回路(6)の作動によりパ
ルス発生回路(4)と下流側の超音波振動子(3)、上
流側の超音波振動子(2)と増幅回路(5)とが接続さ
れるように切替えて、下流側から上流側への伝搬時間を
測定するものとなされている。
Then, the propagation time until the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction to the flow is received by the downstream ultrasonic oscillator (3), The difference between the ultrasonic wave transmitted from the downstream ultrasonic oscillator (3) in the opposite direction to the flow and the propagation time until the ultrasonic wave is received by the upstream ultrasonic oscillator (2) is related to the flow velocity. Therefore, in the arithmetic circuit (10), the flow velocity is measured based on the propagation time difference, and the flow rate is further determined based on the flow velocity. In FIG. 3, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3) and the pulse generation circuit (4) and the amplification circuit (5). And the upstream ultrasonic transducer (2), the downstream ultrasonic transducer (3) and the amplifier circuit (5) are connected, and the propagation time from the upstream to the downstream is measured. By the operation of (6), the pulse generator circuit (4) and the downstream ultrasonic oscillator (3), and the upstream ultrasonic oscillator (2) and the amplifier circuit (5) are switched so as to be connected. It measures the propagation time from the downstream side to the upstream side.

【0005】そして、本出願人は、上述のような超音波
を利用した流量測定装置において、放物面に平行に入射
した超音波は放物面の焦点に集結することに着目し、図
4に示すような流量測定装置を提案した。この流量測定
装置は、流速測定部(7)の中間部(7b)を除く両側
部(7a)(7a)の内面が、互いに焦点位置が一致
し、かつ同一軸上に対称に配置せしめられた放物内面に
形成されている。これによれば、流体が流量測定部
(7)内をスムーズに流れることができると共に、送信
側の超音波振動子(2)から計測流体の流れに平行に送
信された超音波の大部分は、受信側の超音波振動子
(3)に受信されるという放物面の性質により、流体の
流速、ひいては流量を効率よく求めることができる。
The applicant of the present invention has paid attention to the fact that, in the above-described flow rate measuring device utilizing ultrasonic waves, the ultrasonic waves incident parallel to the paraboloid are focused on the focal point of the paraboloid, and FIG. A flow measurement device as shown in Fig. 1 was proposed. In this flow rate measuring device, the inner surfaces of both side portions (7a) and (7a) excluding the intermediate portion (7b) of the flow velocity measuring portion (7) have the same focal position and are symmetrically arranged on the same axis. It is formed on the inner surface of the parabola. According to this, the fluid can flow smoothly in the flow rate measuring unit (7), and most of the ultrasonic waves transmitted in parallel to the flow of the measurement fluid from the ultrasonic transducer (2) on the transmission side Due to the parabolic nature of reception by the ultrasonic transducer (3) on the receiving side, the flow velocity of the fluid, and thus the flow rate, can be efficiently obtained.

【0006】しかしながら、上述の超音波を利用して流
量を求める方法では、中流量ないし大流量の流体の流量
を精度よく求めることができるが、微少流量を精度良く
求めることは困難であった。
However, in the above-described method of obtaining the flow rate using the ultrasonic waves, the flow rate of the medium flow rate or the large flow rate can be determined accurately, but it is difficult to determine the minute flow rate accurately.

【0007】この発明は、上述のような技術背景に鑑み
てなされたもので、微少流量から大流量までの広範囲流
量の流体を精度良く求めることができ、ひいては十分な
測定精度を確保できる流量測定装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned technical background, and is capable of accurately obtaining a fluid having a wide flow rate from a very small flow rate to a large flow rate, and thus ensuring a sufficient flow rate measurement accuracy. It is intended to provide a device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、微少流量から大流量までの広範囲に亘
って流体を流すことができる流速測定部の所定部位に、
主に微少流量域を測定するのに最適な微少流量計を設け
たものである。
In order to achieve the above object, the present invention provides a method for measuring a flow rate in a predetermined portion of a flow velocity measuring section capable of flowing a fluid over a wide range from a small flow rate to a large flow rate.
It is equipped with a micro flow meter which is most suitable for measuring a micro flow area.

【0009】即ち、この発明は、流体流通方向の中間部
を除く両側部の内面が、一端から前記中間部にかけて内
径が緩やかに小さくなり、かつ前記中間部の内面は内径
小に形成された超音波流速測定部と、該流速測定部を流
れる流体の上流側と下流側に配置された超音波振動子と
を備え、前記各超音波振動子から相互に超音波を発生送
信すると共に、送信された超音波を相互に受信し、超音
波の伝搬時間差に基づいて流速測定し、さらに流体の流
量を測定する流量測定装置であって、前記超音波流速測
定部の前記中間部に、微少流量計が配置されていること
を特徴とする。
That is, according to the present invention, the inner surfaces of both sides except for the intermediate portion in the fluid flow direction gradually decrease in inner diameter from one end to the intermediate portion, and the inner surface of the intermediate portion has a small inner diameter. An ultrasonic flow velocity measuring unit, comprising an ultrasonic vibrator arranged on the upstream side and the downstream side of the fluid flowing through the flow velocity measuring unit, mutually generating and transmitting ultrasonic waves from each of the ultrasonic vibrators, and transmitted. Flow rate measuring device for receiving the ultrasonic waves mutually, measuring the flow velocity based on the propagation time difference of the ultrasonic waves, and further measuring the flow rate of the fluid, wherein the micro flow meter is provided at the intermediate part of the ultrasonic flow velocity measuring section. Are arranged.

【0010】こうして、流速測定部の開口部から中央部
にかけて横断面積が小さくなるように緩やかに傾斜する
ことによって、流体が流速測定部内をスムーズに流れる
と共に、中間部の内面が内径小に形成されることによっ
て、流体の流速が大きくなる。
In this way, the fluid smoothly flows in the flow velocity measuring section by gently inclining so that the cross-sectional area decreases from the opening of the flow velocity measuring section to the central section, and the inner surface of the intermediate section has a small inner diameter. This increases the flow velocity of the fluid.

【0011】このため、超音波を利用して中流量ないし
大流量の流体の流量を精度良く求めることができる一
方、前記微少流量計を用いて、前記中間部を流れて流速
が大きくなっている微少流量の流体の流量を精度良く求
めることができる。
For this reason, while the flow rate of the medium flow rate or the large flow rate fluid can be accurately determined by using the ultrasonic wave, the flow rate is increased by flowing through the intermediate portion using the micro flow meter. The flow rate of the minute flow rate fluid can be accurately determined.

【0012】また、前記流速測定部の中間部を除く両側
部の内面が、互いに焦点位置が一致し、かつ同一軸上に
対称に配置せしめられた放物内面に形成されると共に、
前記中間部の内面が、内径小の円筒内面に形成されてい
る場合、放物面の性質により、送信側の超音波振動子か
ら計測流体の流れに平行に送信された超音波の大部分は
受信側の超音波振動子に受信されため、超音波を利用し
て中流量ないし大流量の流体の流量をより効率よく求め
ることができる。
In addition, the inner surfaces of both sides of the flow rate measuring unit except for the intermediate portion are formed as parabolic inner surfaces whose focal positions coincide with each other and are symmetrically arranged on the same axis.
When the inner surface of the intermediate portion is formed on a cylindrical inner surface having a small inner diameter, most of the ultrasonic waves transmitted in parallel with the flow of the measurement fluid from the ultrasonic transducer on the transmission side due to the properties of the paraboloid. Since the ultrasonic wave is received by the ultrasonic transducer on the receiving side, the flow rate of the medium flow rate or the large flow rate fluid can be obtained more efficiently using the ultrasonic waves.

【0013】また、前記微少流量計が熱式流量計である
場合、微少流量の流体の流量をより精度良く求めること
ができる。なお、この熱式流量計としては、マイクロブ
リッジを用いたいものなどが挙げられる。
Further, when the micro flow meter is a thermal flow meter, the flow rate of a micro flow rate fluid can be determined with higher accuracy. In addition, as this thermal type flow meter, there is a type in which a microbridge is to be used.

【0014】[0014]

【発明の実施の形態】図1ないし図2は、この発明に係
る流量測定装置を、ガスの流量を測定する装置に適用し
た状態を示す図である。
1 and 2 show a state in which a flow rate measuring device according to the present invention is applied to a device for measuring a gas flow rate.

【0015】図1において、(1)はガスが流れる上向
きに開口するコ字形状の超音波流速測定管であり、該超
音波流速測定管(1)の下部水平部が直管状の流速測定
部(7)となされている。(2)(3)は超音波を発信
送信する超音波振動子で、前記流速測定部(7)の中心
線上の超音波流速測定管(1)の内面壁に対向して配置
されている。(4)は超音波振動子(2)(3)を駆動
するためのパルスを発生する発生回路、(5)は超音波
振動子(2)(3)で受信した受信波を出力する増幅回
路、(6)は超音波振動子(2)(3)とパルス発生回
路(4)および増幅回路(5)の接続を切り替える切替
回路、(10)は超音波の伝搬時間差に基づいて流体の
流速、さらには流量を求める演算回路である。
In FIG. 1, (1) is a U-shaped ultrasonic flow velocity measuring tube which is open upward and through which gas flows, and a lower horizontal portion of the ultrasonic flow velocity measuring tube (1) has a straight tubular flow velocity measuring section. (7). (2) and (3) are ultrasonic transducers for transmitting and transmitting ultrasonic waves, which are disposed opposite to the inner wall of the ultrasonic flow velocity measuring tube (1) on the center line of the flow velocity measuring section (7). (4) is a generation circuit for generating pulses for driving the ultrasonic transducers (2) and (3), and (5) is an amplifier circuit for outputting a reception wave received by the ultrasonic transducers (2) and (3). , (6) is a switching circuit for switching the connection between the ultrasonic transducers (2) and (3) and the pulse generating circuit (4) and the amplifying circuit (5), and (10) is the flow velocity of the fluid based on the propagation time difference of the ultrasonic waves. And an arithmetic circuit for determining the flow rate.

【0016】そして、流速測定部(7)は、連結部(7
b)の左右両側に反射部(7a)(7a)が形成されて
なり、また反射部(7a)(7a)の一端開口部の内径
が前記超音波振動子の外径とほぼ同一に形成されてい
る。
The flow rate measuring section (7) is connected to the connecting section (7).
Reflecting portions (7a) and (7a) are formed on both left and right sides of b), and the inner diameter of one end opening of the reflecting portions (7a) and (7a) is formed to be substantially the same as the outer diameter of the ultrasonic transducer. ing.

【0017】前記反射部(7a)は、いずれも一端開口
部から連結連結部(7b)にかけて次第に径小になる放
物内面を有しており、両放物内面は互いに流速測定部中
央で焦点位置が一致し、かつ同一軸上に配置せしめられ
ている。このため、中流量ないし大流量のガスの流量を
超音波を利用して求める場合において、送信側の超音波
振動子(2)(3)から計測流体の流れに平行に送信さ
れた超音波の大部分は、送信側の反射部(7a)の放物
内面で1回だけ反射した後、放物内面の焦点(8)を通
過する。そして、その焦点(8)を通過した超音波は、
そのまま受信側の反射部(7a)の放物内面で1回だけ
反射し、計測流体の流れに平行になった後、受信側の超
音波振動子(3)(2)に受信される。従って、計測流
体に平行に送信される超音波の大部分は流速測定に用い
られ、受信波の利得を最大限に増大させことができる。
Each of the reflecting portions (7a) has a parabolic inner surface whose diameter gradually decreases from the one end opening to the connecting and connecting portion (7b). The positions coincide and are arranged on the same axis. For this reason, when the flow rate of a medium flow rate gas or a large flow rate gas is determined using ultrasonic waves, the ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) on the transmission side in parallel to the flow of the measurement fluid are measured. Most of the light is reflected only once on the inner surface of the paraboloid of the reflecting section (7a) on the transmitting side, and then passes through the focal point (8) of the inner surface of the paraboloid. And the ultrasonic wave that passed through the focal point (8)
The light is reflected only once on the inner surface of the paraboloid of the reflector (7a) on the receiving side, becomes parallel to the flow of the measurement fluid, and is received by the ultrasonic transducers (3) and (2) on the receiving side. Therefore, most of the ultrasonic waves transmitted in parallel to the measurement fluid are used for measuring the flow velocity, and the gain of the received wave can be maximized.

【0018】また、前記連結部(7b)は、前記両反射
部(7a)(7a)の放物内面を連結する部分であっ
て、内径小の円筒内面に形成されており、流体の流速が
大きくなるようになっている。このため、中流量ないし
大流量のガスの流量を超音波を利用して求める場合にお
いて、上流側の超音波振動子(2)から流れに対し順方
向に送信された超音波が下流側の超音波振動子(3)で
受信されるまでの伝搬時間が短くなる一方、下流側の超
音波振動子(3)から流れに対して逆方向に送信された
超音波が上流側の超音波振動子(2)で受信されるまで
の伝搬時間が長くなるので、超音波の伝搬時間差を確実
に求めることができる。
The connecting portion (7b) is a portion connecting the inner surfaces of the paraboloids of the two reflecting portions (7a) and (7a), and is formed on the inner surface of the cylinder having a small inner diameter. It is getting bigger. For this reason, when the flow rate of the medium flow rate or the large flow rate gas is obtained by using the ultrasonic waves, the ultrasonic waves transmitted in the forward direction from the upstream ultrasonic vibrator (2) with respect to the flow are converted to the ultrasonic waves on the downstream side. While the propagation time until reception by the ultrasonic vibrator (3) is shortened, the ultrasonic wave transmitted from the downstream ultrasonic vibrator (3) in the opposite direction to the flow is the upstream ultrasonic vibrator. Since the propagation time until reception in (2) becomes long, the propagation time difference of the ultrasonic wave can be reliably obtained.

【0019】そして、前記連結部(7b)には微少流量
計(9)が設けられており、連結部(7b)を流れて流
速が大きくなっている微少流量のガスの流量を、精度よ
く測定することができるようになっている。この微少流
量計(9)はマイクロブリッジが用いて構成されてお
り、微少流量域をこのマイクロブリッジで精度良く測定
するものとなされている。
The connecting portion (7b) is provided with a minute flow meter (9), which accurately measures the flow rate of the gas having a small flow rate flowing through the connecting portion (7b) and having a large flow velocity. You can do it. The micro flow meter (9) is configured using a micro bridge, and measures a micro flow rate region with high accuracy using the micro bridge.

【0020】次に、図1に示す超音波流速測定装置を用
いた超音波流速測定の原理を説明する。
Next, the principle of ultrasonic flow velocity measurement using the ultrasonic flow velocity measuring device shown in FIG. 1 will be described.

【0021】まず、図1の白抜矢印に示すように、超音
波流速測定管(1)にガス等の流体を流すと、その流体
は流速測定部(7)の左端部から流速測定部(7)内に
流入し、該流速測定部(7)の左側の反射部(7a)、
連結部(7b)、右側の反射部(7a)を順に流れた
後、流速測定部(7)の右端部から流出する。このと
き、流速測定部(7)の左部及び右部が、該流速測定部
(7)の開口部から中央部にかけて、横断面積が小さく
なるように緩やかに傾斜する放物内面を有することによ
って、ガスは流速測定部(7)内をスムーズに流れると
共に、流速測定部(7)の連結部(7b)が内径小の円
筒面に形成されていることによって、ガスの流速が大き
くなる。
First, as shown by a white arrow in FIG. 1, when a fluid such as a gas flows through the ultrasonic flow velocity measuring tube (1), the fluid flows from the left end of the flow velocity measuring section (7) to the flow velocity measuring section (1). 7), the reflection part (7a) on the left side of the flow velocity measurement part (7),
After flowing sequentially through the connecting part (7b) and the right reflecting part (7a), it flows out from the right end of the flow velocity measuring part (7). At this time, the left and right portions of the flow velocity measuring section (7) have a parabolic inner surface that is gently inclined from the opening to the center of the flow velocity measuring section (7) so that the cross-sectional area decreases. The gas flows smoothly in the flow rate measuring section (7), and the connecting section (7b) of the flow rate measuring section (7) is formed on a cylindrical surface having a small inner diameter, so that the gas flow rate increases.

【0022】そして、ガスが中流量ないし大流量の場
合、パルス発生回路(4)からガスの上流側の超音波振
動子(2)を駆動するためのパルスを出力すると、その
超音波振動子(2)の振動に応じて超音波が送信され
る。このうち、上流側の超音波振動子(2)からガスの
流れに平行に送信された超音波の大部分は、上流側の反
射部(7a)の放物内面で1回だけ反射した後、その放
物内面の焦点(8)を通過する。そして、その焦点
(8)を通過した超音波は、そのまま下流側の反射部
(7a)の放物内面で1回だけ反射し、ガスの流れに平
行になった後、下流側の超音波振動子(3)に受信され
る。次に、切替回路により接続を切り替え、ガスの下流
側の超音波振動子(3)から超音波を送信すると、上記
と同様にして、ガスの流れに平行に送信された超音波は
すべて、上流側の超音波振動子(2)に受信される。
When the gas has a medium flow rate or a large flow rate, a pulse for driving the ultrasonic vibrator (2) on the upstream side of the gas is output from the pulse generation circuit (4). Ultrasonic waves are transmitted according to the vibration of 2). Among these, most of the ultrasonic waves transmitted in parallel to the gas flow from the upstream ultrasonic transducer (2) are reflected only once on the parabolic inner surface of the upstream reflecting portion (7a), It passes through the focal point (8) on the inner surface of the parabola. Then, the ultrasonic wave passing through the focal point (8) is reflected once only on the inner surface of the paraboloid of the downstream reflecting portion (7a), becomes parallel to the gas flow, and is then subjected to the downstream ultrasonic vibration. Received by child (3). Next, when the connection is switched by the switching circuit and the ultrasonic waves are transmitted from the ultrasonic transducer (3) on the downstream side of the gas, all the ultrasonic waves transmitted in parallel with the gas flow are transmitted upstream in the same manner as described above. Received by the ultrasonic transducer (2) on the side.

【0023】しかして、演算回路(10)において、上
記で得られた、上流側の超音波振動子(2)から流れに
対し順方向に送信された超音波が下流側の超音波振動子
(3)で受信されるまでの伝播時間と、下流側(3)の
超音波振動子から流れに対して逆方向に送信された超音
波が上流側の超音波振動子(2)で受信されるまでの伝
播時間との差からガスの流速を測定し、中流量ないし大
流量のガスの流量を求める。
In the arithmetic circuit (10), the ultrasonic wave obtained in the above and transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow is applied to the downstream ultrasonic oscillator (2). The ultrasonic wave transmitted in the opposite direction to the flow from the ultrasonic transducer on the downstream side (3) and the propagation time until it is received in 3) is received by the ultrasonic transducer on the upstream side (2). The flow velocity of the gas is measured from the difference with the propagation time until the flow rate of the gas at the medium or large flow rate.

【0024】一方、ガスが微少流量の場合、前記流速測
定部(7)の連結部(7b)に設けられた微少流量計に
よって、前記連結部(7b)を流れて流速が大きくなっ
ている微少流量のガスの流量を求める。
On the other hand, when the gas has a very small flow rate, a very small flow meter provided at the connecting part (7b) of the flow velocity measuring part (7) increases the flow velocity through the connecting part (7b). Find the gas flow rate.

【0025】このように、ガスが中流量ないし大流量の
場合は、従来のように超音波を利用して流量を求めるこ
とができる一方、ガスが微少流量の場合は、前記連結部
(7b)に設けられた前記ガス流量計(9)を用いてガ
スの流量を精度よく求めることができる。
As described above, when the gas has a medium flow rate or a large flow rate, the flow rate can be obtained by using an ultrasonic wave as in the conventional case. On the other hand, when the gas has a small flow rate, the connecting portion (7b) is used. The gas flow rate can be accurately determined using the gas flow meter (9) provided in the apparatus.

【0026】なお、以上の実施形態では、この流速測定
部(7)を超音波流速測定管(1)の内面に直接形成す
るものとしたが、これに限られず、流速測定部(7)を
超音波流速測定管(1)に別体に設けるものとしてよ
い。
In the above embodiment, the flow velocity measuring section (7) is formed directly on the inner surface of the ultrasonic flow velocity measuring pipe (1). However, the present invention is not limited to this. The ultrasonic flow velocity measuring tube (1) may be provided separately.

【0027】また、流速測定部(7)の反射部(7a)
の内面を放物内面に形成し、流速測定部(7)中央の連
結部(7b)の内面を内径小の円筒内面にそれぞれ形成
したが、これらの内面形状に限らず、反射部(7a)の
内面は、流速測定部(7)の開口部から中央部にかけて
横断面積が小さくなるように緩やかに傾斜する内面であ
ってもよいし、連結部(7b)の内面は、円筒内面以外
の内径小の内面であってもよい。
Further, the reflecting part (7a) of the flow velocity measuring part (7)
Was formed on the inner surface of the parabola, and the inner surface of the connecting portion (7b) at the center of the flow velocity measuring section (7) was formed on the inner surface of the cylinder having a small inner diameter. However, the reflecting portion (7a) was not limited to these inner surface shapes. May be an inner surface that is gently inclined so as to reduce the cross-sectional area from the opening of the flow velocity measuring part (7) to the central part, and the inner surface of the connecting part (7b) may have an inner diameter other than the inner surface of the cylinder. It may be a small inner surface.

【0028】[0028]

【発明の効果】この発明は、前記超音波流速測定部の前
記中間部に、微少流量計が配置されていることを特徴と
するので、超音波を利用して中流量ないし大流量の流体
の流量を精度良く求めることができる一方、前記中間部
に設けられた微少流量計を用いて、前記中間部を流れて
流速が大きくなっている微少流量の流体の流量を精度良
く求めることができる。このため、微少流量から大流量
までの広範囲流量の流体を精度良く求めることができ、
ひいては十分な測定精度を確保できる超音波流速測定装
置を提供することが可能となる。また、前記流速測定部
の中間部を除く両側部の内面が、互いに焦点位置が一致
し、かつ同一軸上に対称に配置せしめられた放物内面に
形成されると共に、前記中間部の内面が、内径小の円筒
内面に形成されている場合、超音波を利用して中流量な
いし大流量の流体の流量をより効率よく求めることがで
きる。
The present invention is characterized in that a minute flow meter is disposed at the intermediate portion of the ultrasonic flow velocity measuring section, so that a medium flow rate or a large flow rate of a fluid can be measured using ultrasonic waves. While the flow rate can be determined accurately, the flow rate of a fluid having a small flow rate flowing through the intermediate portion and having a large flow rate can be determined accurately using a micro flow meter provided in the intermediate portion. Therefore, it is possible to accurately obtain a fluid having a wide flow rate from a very small flow rate to a large flow rate,
As a result, it is possible to provide an ultrasonic flow velocity measuring device that can ensure sufficient measurement accuracy. In addition, the inner surfaces of both sides except for the intermediate portion of the flow velocity measuring unit are formed on a parabolic inner surface whose focal positions coincide with each other and are arranged symmetrically on the same axis, and the inner surface of the intermediate portion is formed. When formed on the inner surface of a cylinder having a small inner diameter, the flow rate of a medium flow rate or a large flow rate fluid can be obtained more efficiently using ultrasonic waves.

【0029】また、前記流量計が熱式流量計である場
合、微少流量の流体の流量をより精度良く求めることが
できる。
When the flow meter is a thermal type flow meter, the flow rate of a minute flow rate of the fluid can be determined more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態に係る流量測定装置を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a flow measurement device according to an embodiment of the present invention.

【図2】図1の流量測定装置I−I線矢視断面図であ
る。
FIG. 2 is a sectional view taken along line II of FIG. 1;

【図3】従来の内径大の流量測定装置の概略構成図であ
る。
FIG. 3 is a schematic configuration diagram of a conventional flow measuring device having a large inner diameter.

【図4】従来の放物内面を有する流量測定装置の概略構
成図である。
FIG. 4 is a schematic configuration diagram of a conventional flow measurement device having a parabolic inner surface.

【符号の説明】[Explanation of symbols]

1・・・超音波流速測定管 2、3・・・超音波振動子 7・・・流速測定部 7a・・・反射部 7b・・・連結部 8・・・焦点 9・・・微少流量計 DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 7 ... Flow velocity measuring part 7a ... Reflecting part 7b ... Connecting part 8 ... Focus 9 ... Micro flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筏 隆臣 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 河野 明夫 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 保田 哲也 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 Fターム(参考) 2F035 DA19 DA22 EA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takaomi Raft 4-1-2 Hirano-cho, Chuo-ku, Osaka City Inside Osaka Gas Co., Ltd. Kansai Gas Meter Co., Ltd. (72) Inventor Tetsuya Yasuda 2-10-16 Higashikobashi, Higashinari-ku, Osaka City Kansai Gas Meter Co., Ltd. F-term (reference) 2F035 DA19 DA22 EA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流体流通方向の中間部を除く両側部の内
面が、一端から前記中間部にかけて内径が緩やかに小さ
くなり、かつ前記中間部の内面は内径小に形成された超
音波流速測定部と、該流速測定部を流れる流体の上流側
と下流側に配置された超音波振動子とを備え、前記各超
音波振動子から相互に超音波を発生送信すると共に、送
信された超音波を相互に受信し、超音波の伝搬時間差に
基づいて流速測定し、さらに流体の流量を測定する流量
測定装置であって、 前記超音波流速測定部の前記中間部に、微少流量計が配
置されていることを特徴とする流量測定装置。
1. An ultrasonic flow rate measuring section in which the inner surfaces of both sides except the intermediate portion in the fluid flow direction gradually decrease in inner diameter from one end to the intermediate portion, and the inner surface of the intermediate portion has a smaller inner diameter. And an ultrasonic vibrator disposed on the upstream side and the downstream side of the fluid flowing through the flow velocity measuring unit.The ultrasonic vibrators generate and transmit each other ultrasonic waves, and transmit the transmitted ultrasonic waves. Mutually received, the flow rate is measured based on the propagation time difference of the ultrasonic wave, a flow rate measuring device for further measuring the flow rate of the fluid, in the intermediate portion of the ultrasonic flow rate measuring unit, a micro flow meter is arranged A flow measurement device.
【請求項2】 前記流速測定部の中間部を除く両側部の
内面が、互いに焦点位置が一致し、かつ同一軸上に対称
に配置せしめられた放物内面に形成されると共に、前記
中間部の内面が、内径小の円筒内面に形成されている請
求項1に記載の流量測定装置。
2. An inner surface of both sides of the flow rate measuring unit except for an intermediate portion is formed on a parabolic inner surface whose focal positions coincide with each other and are symmetrically arranged on the same axis, and the intermediate portion is formed. 2. The flow measuring device according to claim 1, wherein an inner surface of the cylinder is formed on a cylindrical inner surface having a small inner diameter.
【請求項3】 前記微少流量計が熱式流量計である請求
項1または請求項2に記載の流量測定装置。
3. The flow measuring device according to claim 1, wherein the micro flow meter is a thermal flow meter.
JP34401798A 1998-12-03 1998-12-03 Flow rate measuring apparatus Pending JP2000171277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34401798A JP2000171277A (en) 1998-12-03 1998-12-03 Flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34401798A JP2000171277A (en) 1998-12-03 1998-12-03 Flow rate measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000171277A true JP2000171277A (en) 2000-06-23

Family

ID=18366022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34401798A Pending JP2000171277A (en) 1998-12-03 1998-12-03 Flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000171277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263796A (en) * 2006-03-29 2007-10-11 Smc Corp Flow measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263796A (en) * 2006-03-29 2007-10-11 Smc Corp Flow measuring device
JP4702668B2 (en) * 2006-03-29 2011-06-15 Smc株式会社 Flow measuring device

Similar Documents

Publication Publication Date Title
TW577978B (en) Doppler-type ultrasonic flowmeter
JPH10122923A (en) Ultrasonic flow meter
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
JPH109914A (en) Ultrasonic flowmeter
JP4939907B2 (en) Ultrasonic flow meter for gas
JP2000171277A (en) Flow rate measuring apparatus
JP2000171478A (en) Ultrasonic flow velocity-measuring apparatus
JP3535625B2 (en) Ultrasonic current meter
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
JPH09287989A (en) Ultrasonic flowmeter
JP2003177042A (en) Ultrasonic flowmeter
JP2002131104A (en) Ultrasonic flow rate measuring system
JPH09287990A (en) Ultrasonic flowmeter
JPH11271117A (en) Ultrasonic flowmeter
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JP2001083170A (en) Ultrasonic flow velocity-measuring device
JP2002214011A (en) Ultrasonic flow velocity measuring apparatus
JP2001050786A (en) Measuring device
JPH0921665A (en) Ultrasonic flow meter
JP2006234754A (en) Ultrasonic flowmeter
JPH11271113A (en) Ultrasonic vortex flowmeter
JP2003121223A (en) Ultrasonic flow velocity-measuring instrument