JP2001083170A - Ultrasonic flow velocity-measuring device - Google Patents

Ultrasonic flow velocity-measuring device

Info

Publication number
JP2001083170A
JP2001083170A JP26234999A JP26234999A JP2001083170A JP 2001083170 A JP2001083170 A JP 2001083170A JP 26234999 A JP26234999 A JP 26234999A JP 26234999 A JP26234999 A JP 26234999A JP 2001083170 A JP2001083170 A JP 2001083170A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow velocity
fluid
connecting member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26234999A
Other languages
Japanese (ja)
Inventor
Akio Kono
明夫 河野
Tetsuya Yasuda
哲也 保田
Masaru Yamazaki
優 山▲崎▼
Toshifumi Matsuda
年史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Gas Meter Co Ltd
Original Assignee
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Gas Meter Co Ltd filed Critical Kansai Gas Meter Co Ltd
Priority to JP26234999A priority Critical patent/JP2001083170A/en
Publication of JP2001083170A publication Critical patent/JP2001083170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an ultrasonic flow velocity-measuring device for equally maintaining the temperature of an ultrasonic vibrator and accurately measuring the flow velocity of fluid for a temperature change around a connection member. SOLUTION: Ultrasonic vibrators 2 and 3 are arranged at the upstream and downstream sides of measurement fluid flowing in the ultrasonic flow velocity-measuring device and are connected by a connection part 7 being formed by a substance with high thermal conductivity, thus efficiently conducting heat entirely through the connection member 7 even if temperature around the connection member 7 differs in the longitudinal direction. Therefore, regardless of the temperature distribution around the connection member 7, the temperature of entire part of the connection member 7 becomes nearly equal, and the temperature of both the ultrasonic vibrators 2 and 3 being connected to the connection member 7 can be maintained nearly equally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring device for measuring the flow velocity of a gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ガスそ
の他の流体の流量を求めるに際し、まず流体の流速を連
続的ないし定期的に測定し、これに基づいて流量を演算
することが行われている。そして、このような流体の流
速測定方法の一つとして、超音波を利用した方法が知ら
れている。
2. Description of the Related Art In determining the flow rate of a gas or other fluid, the flow rate of the fluid is continuously or periodically measured, and the flow rate is calculated based on the measured flow rate. I have. As one of such fluid flow velocity measuring methods, a method utilizing ultrasonic waves is known.

【0003】かかる超音波流速測定方法の原理を、図4
に示される従来の装置により説明すると次のとおりであ
る。図4において、(31)はガスが流れる上向きに開
口するコ字形状の超音波流速測定管であり、該超音波測
定管(31)の下部水平部が直管状の連結部材(32)
となされている。また、前記連結部材(32)の両側に
は、流体を連結部材(32)に流入せしめる流体流入管
(33)と、流体を連結部材(34)から流出せしめる
流体流出管とが設けられている。
FIG. 4 shows the principle of such an ultrasonic flow velocity measuring method.
The following is a description of the conventional device shown in FIG. In FIG. 4, reference numeral (31) denotes a U-shaped ultrasonic flow velocity measuring tube which is open upward and through which gas flows, and a lower horizontal portion of the ultrasonic measuring tube (31) has a straight tubular connecting member (32).
It has been done. Further, on both sides of the connecting member (32), there are provided a fluid inflow pipe (33) for allowing a fluid to flow into the connecting member (32) and a fluid outflow pipe for allowing the fluid to flow out of the connecting member (34). .

【0004】また、前記超音波流速測定管(1)内に
は、流れ方向の上流側と下流側に、互いに所定距離を隔
てて超音波振動子(2)(3)が配置されている。この
超音波振動子(2)(3)は、パルス発生回路(4)か
らの駆動パルスにより駆動されて振動し、超音波を発生
送信する一方、送信されてきた超音波を受信するもの
で、それら超音波振動子(2)(3)が振動したときの
受信波が増幅回路(5)から電気信号として出力される
ものとなされている。
In the ultrasonic flow velocity measuring tube (1), ultrasonic vibrators (2) and (3) are arranged at a predetermined distance from each other on the upstream side and the downstream side in the flow direction. The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a pulse generation circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. Received waves when the ultrasonic vibrators (2) and (3) vibrate are output as electric signals from the amplifier circuit (5).

【0005】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受信されるまでの超音波の伝搬時間
と、下流側の超音波振動子(3)から流れに対して逆方
向に送信された超音波が上流側の超音波振動子(2)で
受信されるまでの超音波の伝搬時間との差は流速に関係
することから、この伝搬時間差を求めることにより流体
の流速を測定するものとなされている。なお、図4にお
いて、(6)は各超音波振動子(2)(3)とパルス発
生回路(4)および増幅回路(5)の接続を切り替える
切替回路であり、まずパルス発生回路(4)と上流側の
超音波振動子(2)、下流側の超音波振動子(3)と増
幅回路(5)を接続して、上流側から下流側への伝搬時
間を測定した後、該切替回路(6)によりパルス発生回
路(4)と下流側の超音波振動子(3)、上流側の超音
波振動子(2)と増幅回路(5)とが接続されるように
切り替えて、下流側から上流側への伝搬時間を測定する
ものとなされている。
[0005] The propagation time of the ultrasonic wave until the ultrasonic wave transmitted in the forward direction from the upstream ultrasonic oscillator (2) with respect to the flow is received by the downstream ultrasonic oscillator (3). And the propagation time of the ultrasonic wave until the ultrasonic wave transmitted in the opposite direction to the flow from the downstream ultrasonic oscillator (3) is received by the upstream ultrasonic oscillator (2). Since this is related to the flow velocity, the flow velocity of the fluid is measured by calculating the propagation time difference. In FIG. 4, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3), the pulse generation circuit (4), and the amplification circuit (5). And the upstream ultrasonic vibrator (2), the downstream ultrasonic vibrator (3) and the amplifier circuit (5) are connected, and the propagation time from the upstream side to the downstream side is measured. According to (6), the pulse generator circuit (4) and the downstream ultrasonic oscillator (3) are switched so that the upstream ultrasonic oscillator (2) and the amplifier circuit (5) are connected to each other, and the downstream ultrasonic oscillator (2) and the amplifier circuit (5) are connected. It measures the propagation time from the upstream side to the upstream side.

【0006】ところで、超音波の伝搬時間は、増幅回路
(5)から出力される受信波に基づいて求められるが、
この受信波の周期は超音波振動子(2)(3)の共振周
波数の影響を受ける。そして、これら超音波振動子の共
振周波数は、超音波振動子の構成部品のバネ定数に影響
され、バネ定数は温度変化の影響を受けて変化する。つ
まり、温度が変化するとバネ定数が変化し、それに伴っ
て超音波振動子(2)(3)の共振周波数が変化する。
従って、超音波振動子(2)(3)間の共振周波数のズ
レを防止するためには、超音波振動子(2)(3)の温
度を流速測定の際に同一に保つ必要がある。特に流体が
小流量の場合は、超音波の伝搬時間差が小さく、超音波
振動子(2)(3)の共振周波数の影響が大きいので、
超音波振動子(2)(3)の温度を同一に保つことは重
要である。
[0006] The propagation time of the ultrasonic wave is obtained based on the received wave output from the amplifier circuit (5).
The period of the received wave is affected by the resonance frequency of the ultrasonic transducers (2) and (3). The resonance frequencies of these ultrasonic vibrators are affected by the spring constants of the components of the ultrasonic vibrator, and the spring constants change under the influence of temperature changes. That is, when the temperature changes, the spring constant changes, and the resonance frequency of the ultrasonic transducers (2) and (3) changes accordingly.
Therefore, in order to prevent deviation of the resonance frequency between the ultrasonic vibrators (2) and (3), it is necessary to keep the temperature of the ultrasonic vibrators (2) and (3) the same when measuring the flow velocity. In particular, when the fluid has a small flow rate, the propagation time difference of the ultrasonic waves is small, and the influence of the resonance frequency of the ultrasonic vibrators (2) and (3) is large.
It is important to keep the temperature of the ultrasonic transducers (2) and (3) the same.

【0007】しかしながら、従来の超音波流速測定装置
は、超音波振動子(2)(3)を連結している連結部材
(32)について、温度変化に対する工夫がなされてい
なかった。このため、連結部材(32)の周囲の温度が
連結部材の長さ方向において異なると、超音波振動子
(2)(3)に温度差が生じ、その結果、超音波振動子
(2)(3)間の共振周波数にズレが生じて、流体の流
速を精度良く測定することが困難であるという問題があ
った。
However, in the conventional ultrasonic flow velocity measuring device, the connecting member (32) connecting the ultrasonic vibrators (2) and (3) has not been devised with respect to the temperature change. For this reason, if the temperature around the connecting member (32) is different in the longitudinal direction of the connecting member, a temperature difference occurs between the ultrasonic vibrators (2) and (3), and as a result, the ultrasonic vibrators (2) and (3) There is a problem in that a deviation occurs in the resonance frequency between 3) and it is difficult to accurately measure the flow velocity of the fluid.

【0008】この発明は、上述の問題に鑑みてなされた
ものであって、連結部材の周囲の温度変化に対して、超
音波振動子の温度を同一に保つことができ、ひいては流
体の流速を精度良く測定することができる超音波流速測
定装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and can keep the temperature of an ultrasonic vibrator the same with respect to a change in temperature around a connecting member, and can reduce the flow velocity of a fluid. It is an object of the present invention to provide an ultrasonic flow velocity measuring device capable of measuring with high accuracy.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、超音波流速測定装置内を流れる計測流
体の上流側と下流側にそれぞれ超音波振動子が配置さ
れ、前記各超音波振動子から相互に超音波を発生送信す
るとともに、送信された超音波を相互に受信し、超音波
の伝搬時間の差に基づいて流速測定するものとなされて
いる超音波流速測定装置において、前記上流側と下流側
の前記超音波振動子を連結する連結部材が設けられ、該
連結部材が熱伝導性の高い物質で形成されていることを
特徴とする。
In order to achieve the above-mentioned object, the present invention provides an ultrasonic transducer in which ultrasonic transducers are arranged on an upstream side and a downstream side of a measurement fluid flowing in an ultrasonic flow velocity measuring device, respectively. In the ultrasonic flow velocity measuring device that generates and transmits ultrasonic waves mutually from the ultrasonic transducers, mutually receives the transmitted ultrasonic waves, and measures the flow velocity based on the difference in the propagation time of the ultrasonic waves, A connecting member for connecting the ultrasonic transducers on the upstream side and the downstream side is provided, and the connecting member is formed of a material having high thermal conductivity.

【0010】これによれば、前記連結部材は熱伝導性の
高い物質で形成されているので、連結部材の周囲の温度
が長さ方向に異なる状態になった場合でも、連結部材全
体に効率よく熱が伝導する。従って、連結部材の周囲の
温度分布にかかわらず連結部材全体がほぼ同一の温度と
なり、該連結部材に連結されている両超音波振動子の温
度もほぼ同一に保つことができる。
According to this, since the connecting member is formed of a material having high thermal conductivity, even when the temperature around the connecting member changes in the longitudinal direction, the entire connecting member can be efficiently used. Heat conducts. Therefore, regardless of the temperature distribution around the connecting member, the entire connecting member has substantially the same temperature, and the temperatures of the two ultrasonic transducers connected to the connecting member can be kept substantially the same.

【0011】また、前記連結部材は、前記上流側および
下流側の超音波振動子が熱的接触状態に設けられた流速
測定管またはケーシングからなるのが望ましい。これに
よれば、連結部材を別途設ける必要がないので、簡単か
つ確実に超音波振動子の温度をほぼ同一に保つことがで
きる。
Preferably, the connecting member comprises a flow rate measuring tube or a casing in which the upstream and downstream ultrasonic vibrators are provided in thermal contact. According to this, since there is no need to separately provide a connecting member, the temperature of the ultrasonic vibrator can be easily and reliably maintained at substantially the same temperature.

【0012】また、計測流体を流入せしめる流体流入管
と計測流体を流出せしめる流体流出管とが、前記流速測
定管またはケーシングを介して設けられるとともに、前
記流体流入管および流体流出管の長さ方向の一部または
全部が熱絶縁物で形成されているのが望ましい。これに
よれば、流体流入管または流体流出管の外部の温度変化
によって、流体流入管または流体流出管の熱絶縁物に対
して連結部材と反対側部分の温度が変化しても、当該反
対側部分から連結部材への熱伝導が熱絶縁物により制限
されるので、流体流入管または流体流出管の温度変化に
よる連結部材の温度変化を防止することができる。
In addition, a fluid inflow pipe through which a measurement fluid flows and a fluid outflow pipe through which a measurement fluid flows out are provided via the flow velocity measurement pipe or the casing. It is desirable that a part or the whole is formed of a thermal insulator. According to this, even if the temperature of the portion opposite to the connecting member with respect to the thermal insulator of the fluid inflow pipe or the fluid outflow pipe changes due to a temperature change outside the fluid inflow pipe or the fluid outflow pipe, the temperature on the opposite side is changed. Since heat conduction from the portion to the connecting member is limited by the thermal insulator, a change in the temperature of the connecting member due to a change in the temperature of the fluid inflow pipe or the fluid outflow pipe can be prevented.

【0013】また、前記連結部材の周囲に熱遮断物が設
けられているのが望ましい。これによれば、熱遮断物外
の温度が変化しても、熱遮断物外から熱遮断物内の連結
部材への熱移動が熱遮断物により制限されるので、熱遮
断物外の温度変化による連結部材の温度変化を防止する
ことができる。
It is desirable that a heat shield is provided around the connecting member. According to this, even if the temperature outside the heat shield changes, the heat transfer from the outside of the heat shield to the connecting member inside the heat shield is restricted by the heat shield. This can prevent the temperature change of the connecting member due to the above.

【0014】[0014]

【発明の実施の形態】[実施形態1]図1ないし図2
は、この発明に係る超音波流速測定装置を、ガスの流量
を測定する装置に適用した状態を示す図である。
[First Embodiment] FIGS. 1 and 2
FIG. 1 is a diagram showing a state in which an ultrasonic flow velocity measuring device according to the present invention is applied to a device for measuring a gas flow rate.

【0015】図1において、(1)はガスが流れる上向
きに開口するコ字形状の超音波流速測定管であり、該超
音波測定管(1)の下部水平部が直管状の連結部材
(7)となされている。また、前記連結部材(7)の長
さ方向両側部には、流体を連結部材(7)に流入せしめ
る流体流入管(9)と、流体を連結部材(7)から流出
せしめる流体流出管(10)とが連結部材(7)に垂直
な態様で設けられている。
In FIG. 1, (1) is a U-shaped ultrasonic flow velocity measuring tube which is open upward and through which gas flows, and a lower horizontal portion of the ultrasonic measuring tube (1) has a straight tubular connecting member (7). ). A fluid inflow pipe (9) through which fluid flows into the coupling member (7) and a fluid outflow pipe (10) through which fluid flows out from the coupling member (7) are provided at both longitudinal sides of the coupling member (7). ) Are provided perpendicular to the connecting member (7).

【0016】(2)(3)は超音波を発信送信する超音
波振動子で、前記連結部材(7)の長さ方向両側部に対
向して配置されている。(4)は超音波振動子(2)
(3)を駆動するためのパルスを発生する発生回路、
(5)は超音波振動子(2)(3)で受信した受信波を
出力する増幅回路、(6)は超音波振動子(2)(3)
とパルス発生回路(4)および増幅回路(5)の接続を
切り替える切替回路である。 前記連結部材(7)は熱
伝導性の高い材質、例えば銅やアルミニウムなどで形成
されている。このため、連結部材(7)の周囲の温度が
長さ方向に異なる状態になった場合でも、連結部材
(7)全体に効率よく熱が伝導し、その結果、連結部材
(7)全体が同一またはほぼ同一の温度となり、該連結
部材(7)に設けられている超音波振動子(2)(3)
の温度を同一に保つことができる。
(2) and (3) are ultrasonic vibrators for transmitting and transmitting ultrasonic waves, and are disposed opposite to both longitudinal sides of the connecting member (7). (4) is an ultrasonic transducer (2)
(3) a generating circuit for generating a pulse for driving
(5) is an amplifier circuit for outputting a received wave received by the ultrasonic transducers (2) and (3), and (6) is an ultrasonic transducer (2) (3)
And a switching circuit for switching the connection between the pulse generator circuit (4) and the amplifier circuit (5). The connecting member (7) is formed of a material having high thermal conductivity, for example, copper or aluminum. Therefore, even when the temperature around the connecting member (7) changes in the longitudinal direction, heat is efficiently transmitted to the entire connecting member (7), and as a result, the entire connecting member (7) is the same. Alternatively, the temperature becomes substantially the same, and the ultrasonic vibrators (2) and (3) provided on the connecting member (7)
Can be kept the same.

【0017】また、前記連結部材(7)は、中間部(7
b)の左右両側に反射部(7a)(7a)が形成されて
なり、また反射部(7a)(7a)の一端開口部の内径
が前記超音波振動子の外径とほぼ同一に形成されてい
る。前記反射部(7a)は、いずれも一端開口部から中
間部(7b)にかけて次第に径小になる放物内面を有し
ており、両放物内面は互いに連結部材中央で焦点位置が
一致し、かつ同一軸上に配置せしめられている。このた
め、送信側の超音波振動子(2)(3)から計測流体の
流れに平行に送信された超音波はすべて、送信側の反射
部(7a)の放物内面で1回だけ反射した後、放物内面
の焦点(8)を通過する。そして、その焦点(8)を通
過した超音波は、そのまま受信側の反射部(7a)の放
物内面で1回だけ反射し、計測流体の流れに平行になっ
た後、受信側の超音波振動子(3)(2)に受信され
る。従って、計測流体に平行に送信される超音波はすべ
て流速測定に用いられ、受信波の利得を最大限に増大さ
せことができる。
Further, the connecting member (7) is provided at an intermediate portion (7).
Reflecting portions (7a) and (7a) are formed on both left and right sides of b), and the inner diameter of one end opening of the reflecting portions (7a) and (7a) is formed to be substantially the same as the outer diameter of the ultrasonic transducer. ing. Each of the reflecting portions (7a) has a parabolic inner surface whose diameter gradually decreases from one end opening to the intermediate portion (7b), and both paraboloid inner surfaces have the same focal position at the center of the connecting member. And they are arranged on the same axis. For this reason, all the ultrasonic waves transmitted in parallel to the flow of the measurement fluid from the ultrasonic transducers (2) and (3) on the transmission side are reflected only once on the inner surface of the paraboloid of the reflection section (7a) on the transmission side. Thereafter, it passes through the focal point (8) on the inner surface of the parabola. Then, the ultrasonic wave that has passed through the focal point (8) is reflected only once on the inner surface of the paraboloid of the reflection unit (7a) on the receiving side, becomes parallel to the flow of the measurement fluid, and then becomes an ultrasonic wave on the receiving side. Vibrators (3) and (2) receive the signals. Therefore, all the ultrasonic waves transmitted in parallel to the measurement fluid are used for the flow velocity measurement, and the gain of the received wave can be maximized.

【0018】また、前記中間部(7b)は、内径小の円
筒内面に形成されているため、流体の流速が大きくな
り、超音波の伝搬時間差を確実に求めることができる。
すなわち、流体の流速が大きくなると、上流側の超音波
振動子(2)から流れに対し順方向に送信された超音波
が下流側の超音波振動子(3)で受信されるまでの伝搬
時間が短くなる一方、下流側の超音波振動子(3)から
流れに対して逆方向に送信された超音波が上流側の超音
波振動子(2)で受信されるまでの伝搬時間が長くなる
ので、超音波の伝搬時間差を確実に求めることができ、
特に超音波の伝搬時間差が小さい小流量の場合にその効
果が発揮される。
Further, since the intermediate portion (7b) is formed on the inner surface of the cylinder having a small inner diameter, the flow velocity of the fluid becomes large, and the difference in the propagation time of the ultrasonic wave can be reliably obtained.
That is, when the flow velocity of the fluid increases, the propagation time until the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow is received by the downstream ultrasonic oscillator (3). , While the propagation time until the ultrasonic wave transmitted in the opposite direction to the flow from the downstream ultrasonic oscillator (3) is received by the upstream ultrasonic oscillator (2) increases. Therefore, the propagation time difference of the ultrasonic wave can be reliably obtained,
In particular, the effect is exhibited when the flow rate of the ultrasonic wave is small and the flow rate is small.

【0019】次に、図1に示す超音波流速測定装置を用
いた超音波流速測定の原理を説明する。
Next, the principle of ultrasonic flow velocity measurement using the ultrasonic flow velocity measuring device shown in FIG. 1 will be described.

【0020】まず、図1の白抜矢印に示すように、超音
波流速測定管(1)にガス等の流体を流すと、その流体
は連結部材(7)の左端部から連結部材(7)内に流入
し、該連結部材(7)の左側の反射部(7a)、中間部
(7b)、右側の反射部(7a)を順に流れた後、連結
部材(7)の右端部から流出する。このとき、中間部
(7b)が上述のように内径小の円筒内面に形成されて
いるため、流体の流速は大きくなっている。
First, as shown by a white arrow in FIG. 1, when a fluid such as a gas flows through the ultrasonic flow velocity measuring tube (1), the fluid flows from the left end of the connecting member (7) to the connecting member (7). And flows through the reflection part (7a), the middle part (7b) and the right reflection part (7a) on the left side of the connecting member (7) in this order, and then flows out from the right end part of the connecting member (7). . At this time, since the intermediate portion (7b) is formed on the inner surface of the cylinder having a small inner diameter as described above, the flow velocity of the fluid is large.

【0021】そして、パルス発生回路(4)から流体の
上流側の超音波振動子(2)を駆動するためのパルスを
出力すると、その超音波振動子(2)の振動に応じて超
音波が送信される。このうち、上流側の超音波振動子
(2)から計測流体の流れに平行に送信された超音波は
すべて、上流側の反射部(7a)の放物内面で1回だけ
反射した後、その放物内面の焦点(8)を通過する。そ
して、その焦点(8)を通過した超音波は、そのまま下
流側の反射部(7a)の放物内面で1回だけ反射し、計
測流体の流れに平行になった後、下流側の超音波振動子
(3)に受信される。
When a pulse for driving the ultrasonic vibrator (2) on the upstream side of the fluid is output from the pulse generating circuit (4), the ultrasonic wave is generated according to the vibration of the ultrasonic vibrator (2). Sent. Of these, all the ultrasonic waves transmitted from the upstream ultrasonic transducer (2) in parallel with the flow of the measurement fluid are reflected only once on the parabolic inner surface of the upstream reflecting portion (7a) and then reflected therefrom. It passes through the focal point (8) on the inner surface of the parabola. Then, the ultrasonic wave that has passed through the focal point (8) is reflected once only on the inner surface of the paraboloid of the downstream reflecting portion (7a), and becomes parallel to the flow of the measurement fluid. Received by the vibrator (3).

【0022】次に、切替回路により接続を切り替え、流
体の下流側の超音波振動子(3)から超音波を送信する
と、上記と同様にして、計測流体の流れに平行に送信さ
れた超音波はすべて、上流側の超音波振動子(3)に受
信される。
Next, when the connection is switched by the switching circuit and the ultrasonic wave is transmitted from the ultrasonic transducer (3) on the downstream side of the fluid, the ultrasonic wave transmitted in parallel with the flow of the measurement fluid is transmitted in the same manner as described above. Are received by the upstream ultrasonic transducer (3).

【0023】しかして、上流側の超音波振動子(2)か
ら流れに対し順方向に送信された超音波が下流側の超音
波振動子(3)で受信されるまでの伝搬時間と、下流側
の超音波振動子(3)から流れに対して逆方向に送信さ
れた超音波が上流側の超音波振動子(2)で受信される
までの伝搬時間との差を導出し、流体の流速を測定す
る。この流体の流速測定の際、連結部材(7)の周囲の
温度が長さ方向に異なる状態になった場合があるが、連
結部材は熱伝導性の高い物質で形成されているので、連
結部材(7)全体に効率よく熱が伝導し、その結果、連
結部材(7)全体が同一またはほぼ同一の温度となり、
該連結部材(7)に設けられている超音波振動子(2)
(3)の温度を同一に保つことができる。従って、超音
波振動子(2)(3)管の共振周波数のズレの発生を防
止することができ、流体の流速を精度よく測定すること
が可能となる。
Thus, the propagation time until the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow is received by the downstream ultrasonic oscillator (3), and The difference from the propagation time until the ultrasonic wave transmitted in the opposite direction to the flow from the ultrasonic transducer (3) on the upstream side is received by the ultrasonic transducer (2) on the upstream side is derived. Measure the flow rate. When measuring the flow velocity of the fluid, the temperature around the connecting member (7) may be different in the longitudinal direction. However, since the connecting member is formed of a substance having high thermal conductivity, the connecting member is formed. (7) The heat is efficiently conducted to the whole, and as a result, the whole connecting member (7) has the same or almost the same temperature,
The ultrasonic vibrator (2) provided on the connecting member (7)
The temperature of (3) can be kept the same. Accordingly, it is possible to prevent the occurrence of deviation in the resonance frequency of the ultrasonic transducers (2) and (3), and to accurately measure the flow velocity of the fluid.

【0024】[実施形態2]この実施形態では、図2に
示すように、前記流体流入管(11)および流体流出管
(12)は、長さ方向一部が熱絶縁物(13)で形成さ
れている。これによれば、流体流入管(11)または流
体流出管(13)の周囲の温度変化によって、流体流入
管(11)または流体流出管(12)の熱絶縁物(1
3)に対して連結部材(7)と反対側部分の温度が変化
しても、当該反対側部分から連結部材(7)への熱伝導
が熱絶縁物により制限されるので、流体流入管(11)
または流体流出管(12)の温度変化による連結部材
(7)の温度変化を防止することができる。なお、前記
流体流入管(11)および流体流出管(12)は、全体
が熱絶縁物で形成されるものであってもよい。
[Embodiment 2] In this embodiment, as shown in FIG. 2, the fluid inflow pipe (11) and the fluid outflow pipe (12) are partially formed of a thermal insulator (13) in the longitudinal direction. Have been. According to this, the thermal insulator (1) of the fluid inflow pipe (11) or the fluid outflow pipe (12) is changed by the temperature change around the fluid inflow pipe (11) or the fluid outflow pipe (13).
Even if the temperature of the portion opposite to the connecting member (7) changes with respect to (3), the heat conduction from the opposite portion to the connecting member (7) is restricted by the thermal insulator, so that the fluid inflow pipe ( 11)
Alternatively, it is possible to prevent a change in the temperature of the connecting member (7) due to a change in the temperature of the fluid outlet pipe (12). The fluid inflow pipe (11) and the fluid outflow pipe (12) may be formed entirely of a heat insulator.

【0025】また、前記連結部材(7)の周囲には、熱
遮断物(14)が設けられている。これによれば、連結
部材(7)の周囲の温度が変化しても、熱遮断部(1
4)により連結部材(7)が保護されているので、連結
部材(7)周囲の温度変化による連結部材(7)の温度
変化を防止することができる。
A heat shield (14) is provided around the connecting member (7). According to this, even if the temperature around the connecting member (7) changes, the heat shut-off unit (1)
Since the connecting member (7) is protected by 4), it is possible to prevent a change in the temperature of the connecting member (7) due to a change in the temperature around the connecting member (7).

【0026】なお、その他の構成部材で図1に示すもの
と同じものは、同一の符号を付してその説明を省略す
る。
The other components that are the same as those shown in FIG. 1 are given the same reference numerals and description thereof is omitted.

【0027】[実施形態3]この実施形態では、ケーシ
ング(16)が熱伝導性の高い連結部材となされてお
り、該ケーシング(16)の長さ方向両側部に超音波振
動子(2)(3)が互いに対向する態様で設けられてい
る。このケーシング(16)の内部は区画壁(17)に
より流入室(18)と流出室(19)とに区画され、そ
れら流入室(17)及び流出室(19)に流入管(2
0)及び流出管(21)が連結されている。また、前記
区画壁(17)には、計測管(22)が区画壁(17)
を貫通する態様で設けられており、流入室(18)と流
出室(19)とが連通せしめられている。
[Embodiment 3] In this embodiment, the casing (16) is a connecting member having high thermal conductivity, and the ultrasonic vibrators (2) ( 3) are provided so as to face each other. The interior of the casing (16) is partitioned by a partition wall (17) into an inflow chamber (18) and an outflow chamber (19), and the inflow chamber (17) and the outflow chamber (19) are connected to the inflow pipe (2).
0) and the outflow pipe (21) are connected. A measuring pipe (22) is provided on the partition wall (17).
And the inflow chamber (18) and the outflow chamber (19) are communicated with each other.

【0028】しかして、流入管(20)を流れてきた流
体は、図7の白抜矢印のように、前記計測管(22)の
長さ方向と交差する向きで流入室(18)に流入し、該
流入室(18)において流れの勢いが緩和される。そし
て、流れの勢いが緩和された流入室(18)内の流体
は、計測管(22)の流入室(18)側の開口部まで流
れ、該開口部から計測管(22)内に流入する。計測管
(22)内に流入した流体は、そのまま計測管(22)
内を流入室(18)側から流出室(19)側に流れ、計
測管(22)の流出室(19)側の開口部から流出室
(19)に流出したあと、そのまま流出管(21)に流
出していく。そして、計測管(22)内を流れる流体の
流速を、上述の超音波を利用した方法で計測し、さらに
流速に基づいて流量を求めるものとなされている。
The fluid flowing through the inflow pipe (20) flows into the inflow chamber (18) in a direction intersecting with the length direction of the measurement pipe (22) as shown by the white arrow in FIG. Then, the flow force is reduced in the inflow chamber (18). Then, the fluid in the inflow chamber (18) whose flow momentum has been alleviated flows to the opening of the measurement pipe (22) on the inflow chamber (18) side, and flows into the measurement pipe (22) from the opening. . The fluid flowing into the measuring pipe (22) is directly used as the measuring pipe (22).
After flowing through the inside from the inflow chamber (18) side to the outflow chamber (19) side and flowing out of the opening of the measurement pipe (22) on the outflow chamber (19) side to the outflow chamber (19), the outflow pipe (21) remains as it is. Leaks to Then, the flow velocity of the fluid flowing in the measurement pipe (22) is measured by the method using the above-described ultrasonic waves, and the flow rate is obtained based on the flow velocity.

【0029】このように、ケーシング(16)が熱伝導
性の高い連結部材となされいるので、ケーシング(1
6)の周囲の温度が長さ方向に異なる状態になった場合
でも、ケーシング(16)全体に効率よく熱が伝導す
る。従って、ケーシング(16)の周囲の温度分布にか
かわらずケーシング(16)全体が同一またはほぼ同一
の温度となり、該ケーシング(16)に設けられている
超音波振動子(2)(3)の温度を同一に保つことがで
きる。
As described above, since the casing (16) is a connecting member having high heat conductivity, the casing (1)
Even when the ambient temperature in 6) changes in the longitudinal direction, heat is efficiently transmitted to the entire casing (16). Accordingly, the entire casing (16) has the same or almost the same temperature regardless of the temperature distribution around the casing (16), and the temperature of the ultrasonic vibrators (2) and (3) provided in the casing (16) is high. Can be kept the same.

【0030】なお、これらの実施形態では、連結部材を
流速測定管(7)またはケーシング(14)としたが、
これに限られず、流速測定管(7)またはケーシング
(14)とは別に超音波振動子(2)(3)を連結する
熱伝導性の高い連結部材を設けるものとしてもよい。
In these embodiments, the connecting member is the flow velocity measuring pipe (7) or the casing (14).
The present invention is not limited to this, and a connecting member having high thermal conductivity for connecting the ultrasonic vibrators (2) and (3) may be provided separately from the flow velocity measuring tube (7) or the casing (14).

【0031】[0031]

【発明の効果】請求項1に係る発明によれば、前記連結
部材は熱伝導性の高い物質で形成されているので、連結
部材の周囲の温度が長さ方向に異なる状態になった場合
でも、連結部材全体に効率よく熱が伝導する。従って、
連結部材の周囲の温度分布にかかわらず連結部材全体が
ほぼ同一の温度となり、該連結部材に連結されている両
超音波振動子の温度もほぼ同一に保つことができ、ひい
ては流体の流速を精度良く測定することが可能となる。
According to the first aspect of the present invention, since the connecting member is formed of a material having high thermal conductivity, even when the temperature around the connecting member is different in the length direction, In addition, heat is efficiently conducted to the entire connecting member. Therefore,
Regardless of the temperature distribution around the connecting member, the entire connecting member has substantially the same temperature, and the temperatures of both ultrasonic transducers connected to the connecting member can be kept substantially the same, and the flow velocity of the fluid can be precisely controlled. It becomes possible to measure well.

【0032】請求項2に係る発明によれば、別途連結部
材を設ける必要がないので、簡単かつ確実に超音波振動
子の温度をほぼ同一に保つことができる。
According to the second aspect of the present invention, there is no need to separately provide a connecting member, so that the temperature of the ultrasonic vibrator can be easily and reliably maintained at substantially the same temperature.

【0033】請求項3に係る発明によれば、流体流入管
または流体流出管の外部の温度変化によって、流体流入
管または流体流出管の熱絶縁物に対して連結部材と反対
側部分の温度が変化しても、当該反対側部分から連結部
材への熱伝導が熱絶縁物により制限されるので、流体流
入管または流体流出管の温度変化による連結部材材の温
度変化を防止することができる。
According to the third aspect of the present invention, the temperature of the portion opposite to the connecting member with respect to the thermal insulator of the fluid inflow pipe or the fluid outflow pipe is changed by the temperature change outside the fluid inflow pipe or the fluid outflow pipe. Even if the temperature changes, the heat transfer from the opposite portion to the connecting member is limited by the thermal insulator, so that the temperature change of the connecting member due to the temperature change of the fluid inflow pipe or the fluid outflow pipe can be prevented.

【0034】請求項4に係る発明によれば、熱遮断物外
の温度が変化しても、熱遮断物外から熱遮断物内の連結
部材への熱移動が熱遮断物により制限されるので、熱遮
断物外の温度変化による連結部材の温度変化を防止する
ことができる。
According to the fourth aspect of the invention, even if the temperature outside the heat shield changes, the heat transfer from the outside of the heat shield to the connecting member inside the heat shield is restricted by the heat shield. In addition, it is possible to prevent a temperature change of the connecting member due to a temperature change outside the heat shield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態に係る超音波流速測定装
置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an ultrasonic flow velocity measuring device according to an embodiment of the present invention.

【図2】この発明の他の実施形態に係る超音波流速測定
装置を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing an ultrasonic flow velocity measuring device according to another embodiment of the present invention.

【図3】この発明のさらに他の実施形態に係る超音波流
速測定装置を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing an ultrasonic flow velocity measuring device according to still another embodiment of the present invention.

【図4】従来の超音波流速測定装置を示す概略構成図で
ある。
FIG. 4 is a schematic configuration diagram showing a conventional ultrasonic flow velocity measuring device.

【符号の説明】[Explanation of symbols]

1・・・流速測定管 2、3・・・超音波振動子 7・・・連結部材材 8・・・焦点 9・・・流体流入管 10・・・流体流出管 DESCRIPTION OF SYMBOLS 1 ... Flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 7 ... Connecting member material 8 ... Focus 9 ... Fluid inflow tube 10 ... Fluid outflow tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山▲崎▼ 優 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 松田 年史 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 Fターム(参考) 2F035 DA07 DA14 DA22  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yama ▲ Saki ▼ Yu 2-10-16 Higashiobashi, Higashinari-ku, Osaka-shi Kansai Gas Meter Co., Ltd. No. 16 Kansai Gas Meter Co., Ltd. F term (reference) 2F035 DA07 DA14 DA22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超音波流速測定装置内を流れる計測流体
の上流側と下流側にそれぞれ超音波振動子が配置され、
前記各超音波振動子から相互に超音波を発生送信すると
ともに、送信された超音波を相互に受信し、超音波の伝
搬時間の差に基づいて流速測定するものとなされている
超音波流速測定装置において、 前記上流側と下流側の超音波振動子を連結する連結部材
が設けられ、該連結部材が熱伝導性の高い物質で形成さ
れていることを特徴とする超音波流速測定装置。
An ultrasonic transducer is arranged on each of an upstream side and a downstream side of a measurement fluid flowing in an ultrasonic flow velocity measuring device,
Ultrasonic flow velocity measurement, wherein ultrasonic waves are generated and transmitted from each of the ultrasonic transducers, the transmitted ultrasonic waves are mutually received, and the flow velocity is measured based on a difference in propagation time of the ultrasonic waves. In the apparatus, a connection member that connects the upstream and downstream ultrasonic transducers is provided, and the connection member is formed of a material having high thermal conductivity.
【請求項2】 前記連結部材は、前記上流側および下流
側の超音波振動子が熱的接触状態に設けられた流速測定
管またはケーシングからなる請求項1に記載の超音波流
速測定装置。
2. The ultrasonic flow velocity measuring device according to claim 1, wherein the connecting member comprises a flow velocity measuring tube or a casing in which the upstream and downstream ultrasonic vibrators are provided in thermal contact.
【請求項3】 計測流体を流入せしめる流体流入管と計
測流体を流出せしめる流体流出管とが、前記流速測定管
またはケーシングを介して設けられるとともに、前記流
体流入管および流体流出管の長さ方向の一部または全部
が熱絶縁物で形成されている請求項2に記載の超音波流
速測定装置。
3. A fluid inflow pipe through which a measurement fluid flows and a fluid outflow pipe through which a measurement fluid flows out are provided via the flow velocity measurement pipe or the casing, and a length direction of the fluid inflow pipe and the fluid outflow pipe is provided. 3. The ultrasonic flow velocity measuring device according to claim 2, wherein a part or the whole of is formed of a thermal insulator.
【請求項4】 前記連結部材の周囲に熱遮断物が設けら
れている請求項1ないし請求項3のいずれかに記載の超
音波流速測定装置。
4. The ultrasonic flow velocity measuring device according to claim 1, wherein a heat shield is provided around the connection member.
JP26234999A 1999-09-16 1999-09-16 Ultrasonic flow velocity-measuring device Pending JP2001083170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26234999A JP2001083170A (en) 1999-09-16 1999-09-16 Ultrasonic flow velocity-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26234999A JP2001083170A (en) 1999-09-16 1999-09-16 Ultrasonic flow velocity-measuring device

Publications (1)

Publication Number Publication Date
JP2001083170A true JP2001083170A (en) 2001-03-30

Family

ID=17374522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26234999A Pending JP2001083170A (en) 1999-09-16 1999-09-16 Ultrasonic flow velocity-measuring device

Country Status (1)

Country Link
JP (1) JP2001083170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505053A (en) * 2005-08-13 2009-02-05 フロウネティクス リミテッド Construction method for low cost plastic ultrasonic water meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505053A (en) * 2005-08-13 2009-02-05 フロウネティクス リミテッド Construction method for low cost plastic ultrasonic water meter
KR101269323B1 (en) * 2005-08-13 2013-05-29 플로우네틱스 리미티드 Ultrasonic water meter

Similar Documents

Publication Publication Date Title
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
TW577978B (en) Doppler-type ultrasonic flowmeter
JP5479605B2 (en) Ultrasonic flow sensor for detecting the flow rate of fluid medium
JPH10122923A (en) Ultrasonic flow meter
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
US7185547B2 (en) Extreme temperature clamp-on ultrasonic flowmeter transducer
JPH109914A (en) Ultrasonic flowmeter
JP2001083170A (en) Ultrasonic flow velocity-measuring device
JP2004521367A (en) Measuring head for ultrasonic flow meter
WO2004005861A1 (en) Parallel ultrasonic flowmeter
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP2000266577A (en) Ultrasonic flowmeter and measuring method thereof
JP3535625B2 (en) Ultrasonic current meter
RU2780963C1 (en) Ultrasonic gas flow meter
JP2019002907A (en) Apparatus for ultrasonically measuring flow rate of fluid in measuring channel capable of attenuating parasitic signals
JPH09287990A (en) Ultrasonic flowmeter
JP2000171277A (en) Flow rate measuring apparatus
JP2002131104A (en) Ultrasonic flow rate measuring system
JP2000171478A (en) Ultrasonic flow velocity-measuring apparatus
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JP2003121223A (en) Ultrasonic flow velocity-measuring instrument
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
JPH0921665A (en) Ultrasonic flow meter
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus