JP2000171478A - Ultrasonic flow velocity-measuring apparatus - Google Patents

Ultrasonic flow velocity-measuring apparatus

Info

Publication number
JP2000171478A
JP2000171478A JP34401598A JP34401598A JP2000171478A JP 2000171478 A JP2000171478 A JP 2000171478A JP 34401598 A JP34401598 A JP 34401598A JP 34401598 A JP34401598 A JP 34401598A JP 2000171478 A JP2000171478 A JP 2000171478A
Authority
JP
Japan
Prior art keywords
flow velocity
ultrasonic
velocity measuring
fluid
ultrasonic flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34401598A
Other languages
Japanese (ja)
Inventor
Akio Tomita
明男 冨田
Takaomi Ikada
隆臣 筏
Akio Kono
明夫 河野
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP34401598A priority Critical patent/JP2000171478A/en
Publication of JP2000171478A publication Critical patent/JP2000171478A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flow velocity-measuring apparatus which cannot only increase a gain of a receiving wave to a maximum, but secure a sufficient measurement accuracy. SOLUTION: A flow velocity-measuring part 7 is set to a lower horizontal part of an ultrasonic flow velocity measurement pipe 1 in the ultrasonic flow velocity-measuring apparatus. Inner faces of reflecting parts 7a of the flow velocity-measuring part 7 are formed to parabolic inner faces having an agreeing focal position and arranged symmetrically on the same axis. The inner face of a central part of the flow velocity-measuring part 7 is formed as a connecting part 7b of the parabolic inner faces to a cylindrical face of a small inner diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring device for measuring the flow velocity of a gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ガスそ
の他の流体の流量を求めるに際し、まず流体の流速を連
続的ないし定期的に測定し、これに基いて流量を演算す
ることが行われている。そして、このような流体の流速
測定方法の一つとして、超音波を利用した方法が知られ
ている。
2. Description of the Related Art In determining the flow rate of a gas or other fluid, the flow rate of the fluid is first measured continuously or periodically, and the flow rate is calculated based on the measured flow rate. I have. As one of such fluid flow velocity measuring methods, a method utilizing ultrasonic waves is known.

【0003】かかる超音波流速測定方法の原理を、図3
に示される従来の装置により説明すると次のとおりであ
る。図3において、(1)は内部をガス等の流体が流れ
る超音波流速測定管である。この超音波流速測定管
(1)内には、流れ方向の上流側及び下流側に、所定距
離を隔てて超音波振動子(2)(3)が配置されてい
る。
The principle of such an ultrasonic flow velocity measuring method is shown in FIG.
The following is a description of the conventional device shown in FIG. In FIG. 3, (1) is an ultrasonic flow velocity measuring tube through which a fluid such as a gas flows. In the ultrasonic flow velocity measuring tube (1), ultrasonic vibrators (2) and (3) are arranged at a predetermined distance upstream and downstream in the flow direction.

【0004】この超音波振動子(2)(3)は、パルス
発生回路(4)からの駆動パルスにより駆動されて振動
し、超音波を発生送信する一方、送信されてきた超音波
を受信するもので、その超音波振動子(2)(3)が振
動したときの受信波が増幅回路(5)から電気信号とし
て出力されるものとなされている。
The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a pulse generating circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The received wave when the ultrasonic vibrators (2) and (3) vibrate is output as an electric signal from the amplifier circuit (5).

【0005】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受波されるまでの伝搬時間と、下流側
の超音波振動子(3)から流れに対して逆方向に送信さ
れた超音波が上流側の超音波振動子(2)で受波される
までの伝搬時間との差は、流速に関係することから、こ
の伝搬時間差を求めることにより流体の流速を測定する
ものとなされている。なお、図3において、(6)は各
超音波振動子(2)(3)とパルス発生回路(4)及び
増幅回路(5)の接続を切替える切替回路であり、まず
パルス発生回路(4)と上流側の超音波振動子(2)、
下流側の超音波振動子(3)と増幅回路(5)を接続し
て、上流側から下流側への伝搬時間を測定したのち、該
切替回路(6)の作動によりパルス発生回路(4)と下
流側の超音波振動子(3)、上流側の超音波振動子
(2)と増幅回路(5)とが接続されるように切替え
て、下流側から上流側への伝搬時間を測定するものとな
されている。
[0005] The propagation time until the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow is received by the downstream ultrasonic oscillator (3); The difference between the ultrasonic wave transmitted from the downstream ultrasonic vibrator (3) in the opposite direction to the flow and the propagation time until the ultrasonic wave is received by the upstream ultrasonic vibrator (2) depends on the flow velocity. For this reason, the flow velocity of the fluid is measured by calculating the difference between the propagation times. In FIG. 3, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3) and the pulse generation circuit (4) and the amplification circuit (5). And the upstream ultrasonic transducer (2),
After connecting the ultrasonic transducer (3) on the downstream side and the amplifier circuit (5) and measuring the propagation time from the upstream side to the downstream side, the pulse generation circuit (4) is operated by the operation of the switching circuit (6). And the ultrasonic transducer (3) on the downstream side, and the ultrasonic transducer (2) on the upstream side and the amplifier circuit (5) are connected so that the propagation time from the downstream side to the upstream side is measured. It has been done.

【0006】ところで、超音波流速測定管(1)内を流
れる流体が小流量である場合、超音波流速測定管(1)
の流速測定部(1a)が図3に示すように内径大で横断
面積が大きいと、流体の流速が遅くなり十分な測定精度
が得られない。それゆえ、従来、流体が小流量の場合
は、図4に示すように、内径小の流速測定部(1b)が
形成された超音波流速測定管(1)が用いられ、小流量
の流体の流速を維持するものとなされていた。
When the fluid flowing through the ultrasonic flow velocity measuring pipe (1) has a small flow rate, the ultrasonic flow velocity measuring pipe (1)
If the flow velocity measuring section (1a) has a large inner diameter and a large cross-sectional area as shown in FIG. 3, the flow velocity of the fluid becomes slow and sufficient measurement accuracy cannot be obtained. Therefore, conventionally, when a fluid has a small flow rate, as shown in FIG. 4, an ultrasonic flow velocity measuring tube (1) provided with a flow velocity measuring portion (1b) having a small inside diameter is used, and a small flow rate of the fluid is measured. It was intended to maintain the flow rate.

【0007】しかしながら、このように流速測定部(1
b)を内径小に形成すると、超音波振動子(2)(3)
から計測流体に平行に送信される超音波のうち、流速測
定部(1a)を通過するもののみが対向する超音波振動
子(3)(2)に到達し、それ以外の超音波は乱反射す
るので、計測流体に平行に送信される超音波の一部しか
流速測定に用いることができなかった。このため、受信
波の利得を最大限に増大できず、ひいては流速を求める
のに十分な測定精度を確保することがきないという欠点
があった。
However, the flow velocity measuring unit (1)
When b) is formed with a small inner diameter, the ultrasonic transducers (2) and (3)
Of the ultrasonic waves transmitted in parallel to the fluid to be measured, only those that pass through the flow velocity measuring section (1a) reach the opposed ultrasonic transducers (3) and (2), and the other ultrasonic waves are irregularly reflected. Therefore, only a part of the ultrasonic wave transmitted in parallel with the measurement fluid could be used for the flow velocity measurement. For this reason, there is a drawback that the gain of the received wave cannot be maximized, and that sufficient measurement accuracy for determining the flow velocity cannot be ensured.

【0008】この発明は、上述のような技術背景に鑑み
てなされたもので、受信波の利得を最大限に増大させ、
ひいては十分な測定精度を確保できる超音波流速測定装
置を提供することを目的とする。
[0008] The present invention has been made in view of the above technical background, and maximizes the gain of a received wave.
Further, it is an object of the present invention to provide an ultrasonic flow velocity measuring device capable of securing sufficient measurement accuracy.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、放物面に平行に入射した超音波は放物
面の焦点に集結することに着目し、これを利用して超音
波流速測定装置における流速測定部の内面構造を工夫し
たものである。
In order to achieve the above object, the present invention focuses on the fact that ultrasonic waves incident parallel to a paraboloid are focused at the focal point of the paraboloid, and utilizes this. This is a device in which the inner surface structure of the flow velocity measuring unit in the ultrasonic flow velocity measuring device is devised.

【0010】即ち、この発明は、超音波流速測定部を流
れる計測流体の上流側と下流側にそれぞれ超音波振動子
が配置され、前記各超音波振動子から相互に超音波を発
生送信するとともに、送信された超音波を相互に受信
し、超音波の伝搬時間の差に基いて流速を測定するもの
となされている超音波流速測定装置において、前記超音
波流速測定部における流体の流れ方向の両側部の内面
は、互いに焦点位置が一致し、かつ同一軸上に対象配置
せしめられた放物内面に形成されていることを特徴とす
る。
That is, according to the present invention, ultrasonic transducers are arranged on the upstream side and the downstream side of the measurement fluid flowing through the ultrasonic flow velocity measuring section, respectively. In an ultrasonic flow velocity measuring device that receives the transmitted ultrasonic waves mutually and measures the flow velocity based on the difference in the propagation time of the ultrasonic waves, the flow direction of the fluid in the ultrasonic flow velocity measuring unit The inner surfaces of both side portions are characterized by being formed as parabolic inner surfaces whose focal positions coincide with each other and are symmetrically arranged on the same axis.

【0011】これによれば、送信側の超音波振動子から
計測流体の流れに平行に送信された超音波の大部分が、
流速測定部の送信側の放物内面で1回だけ反射した後、
その放物内面の焦点位置を通過する。そして、その焦点
位置を通過した超音波は、そのまま流速測定部の受信側
の放物内面で1回だけ反射し、計測流体の流れに平行に
なった後、受信側の超音波振動子に受信される。このた
め、計測流体に平行に送信される超音波の大部分が流速
測定に用いられ、受信波の利得を最大限に増大させこと
ができる。
According to this, most of the ultrasonic waves transmitted from the ultrasonic transducer on the transmitting side in parallel with the flow of the measurement fluid,
After being reflected only once on the inner surface of the parabola on the transmitting side of the flow velocity measuring unit,
It passes through the focal position on the inner surface of the parabola. Then, the ultrasonic wave that has passed through the focal position is reflected once only on the inner surface of the parabola on the receiving side of the flow velocity measuring unit, becomes parallel to the flow of the measurement fluid, and is received by the ultrasonic transducer on the receiving side. Is done. For this reason, most of the ultrasonic waves transmitted in parallel to the measurement fluid are used for the flow velocity measurement, and the gain of the received wave can be maximized.

【0012】また、流速測定部の中間部は、放物面の連
結部となされ内径小に形成されているため、流体の流速
が大きくなり、超音波の伝搬時間差をより確実に求める
ことができる。
Further, since the intermediate portion of the flow velocity measuring portion is formed as a connecting portion of the paraboloid and has a small inner diameter, the flow velocity of the fluid is increased, and the propagation time difference of the ultrasonic wave can be obtained more reliably. .

【0013】なお、この流速測定部は、超音波流速測定
管の内面自体に直接形成するものであってもよいし、あ
るいは、超音波流速測定管に別体に設けるものであって
もよい。
The flow velocity measuring section may be formed directly on the inner surface of the ultrasonic flow velocity measuring pipe, or may be provided separately from the ultrasonic flow velocity measuring pipe.

【0014】[0014]

【発明の実施の形態】図1ないし図2は、この発明に係
る超音波流速測定装置を、ガスの流量を測定する装置に
適用した状態を示す図である。
1 and 2 show a state in which an ultrasonic flow velocity measuring apparatus according to the present invention is applied to an apparatus for measuring a gas flow rate.

【0015】図1において、(1)はガスが流れる上向
きに開口するコ字形状の超音波流速測定管であり、該超
音波測定管(1)の下部水平部が直管状の流速測定部
(7)となされている。(2)(3)は超音波を発信送
信する超音波振動子で、前記流速測定部(7)の中心線
上の超音波流速測定管(1)の内面壁に対向して配置さ
れている。(4)は超音波振動子(2)(3)を駆動す
るためのパルスを発生する発生回路、(5)は超音波振
動子(2)(3)で受信した受信波を出力する増幅回
路、(6)は超音波振動子(2)(3)とパルス発生回
路(4)および増幅回路(5)の接続を切り替える切替
回路である。
In FIG. 1, (1) is a U-shaped ultrasonic flow velocity measuring tube which is open upward and through which gas flows, and a lower horizontal portion of the ultrasonic measuring tube (1) has a straight tubular flow velocity measuring portion ( 7). (2) and (3) are ultrasonic transducers for transmitting and transmitting ultrasonic waves, which are disposed opposite to the inner wall of the ultrasonic flow velocity measuring tube (1) on the center line of the flow velocity measuring section (7). (4) is a generation circuit for generating pulses for driving the ultrasonic transducers (2) and (3), and (5) is an amplifier circuit for outputting a reception wave received by the ultrasonic transducers (2) and (3). , (6) are switching circuits for switching the connection between the ultrasonic transducers (2) and (3), the pulse generation circuit (4) and the amplification circuit (5).

【0016】そして、流速測定部(7)は、中間連結部
(7b)の左右両側に反射部(7a)(7a)が形成さ
れてなり、また反射部(7a)(7a)の一端開口部の
内径が前記超音波振動子の外径とほぼ同一に形成されて
いる。
The flow rate measuring section (7) has reflecting sections (7a) and (7a) formed on both left and right sides of the intermediate connecting section (7b), and one end opening of the reflecting sections (7a) and (7a). Has an inner diameter substantially equal to the outer diameter of the ultrasonic transducer.

【0017】前記反射部(7a)は、いずれも一端開口
部から連結連結部(7b)にかけて次第に径小になる放
物内面を有しており、両放物内面は互いに流速測定部中
央で焦点位置が一致し、かつ同一軸上に配置せしめられ
ている。このため、送信側の超音波振動子(2)(3)
から計測流体の流れに平行に送信された超音波はすべ
て、送信側の反射部(7a)の放物内面で1回だけ反射
した後、放物内面の焦点(8)を通過する。そして、そ
の焦点(8)を通過した超音波は、そのまま受信側の反
射部(7a)の放物内面で1回だけ反射し、計測流体の
流れに平行になった後、受信側の超音波振動子(3)
(2)に受信される。従って、計測流体に平行に送信さ
れる超音波はすべて流速測定に用いられ、受信波の利得
を最大限に増大させことができる。
Each of the reflecting portions (7a) has a parabolic inner surface whose diameter gradually decreases from the one end opening to the connecting and connecting portion (7b). The positions coincide and are arranged on the same axis. Therefore, the ultrasonic transducers (2) and (3) on the transmission side
All of the ultrasonic waves transmitted in parallel with the flow of the measurement fluid from the first reflector are reflected only once on the inner surface of the paraboloid of the reflector (7a) on the transmitting side, and then pass through the focal point (8) of the inner surface of the paraboloid. Then, the ultrasonic wave that has passed through the focal point (8) is reflected only once on the inner surface of the paraboloid of the reflection unit (7a) on the receiving side, becomes parallel to the flow of the measurement fluid, and then becomes an ultrasonic wave on the receiving side. Vibrator (3)
Received in (2). Therefore, all the ultrasonic waves transmitted in parallel to the measurement fluid are used for the flow velocity measurement, and the gain of the received wave can be maximized.

【0018】また、前記中間連結部(7b)は、内径小
の円筒内面に形成されているため、流体の流速が大きく
なり、超音波の伝搬時間差を確実に求めることができ
る。
Further, since the intermediate connecting portion (7b) is formed on the inner surface of the cylinder having a small inner diameter, the flow velocity of the fluid is increased, and the difference in the propagation time of the ultrasonic wave can be reliably obtained.

【0019】すなわち、流体の流速が大きくなると、上
流側の超音波振動子(2)から流れに対し順方向に送信
された超音波が下流側の超音波振動子(3)で受信され
るまでの伝搬時間が短くなる一方、下流側の超音波振動
子(3)から流れに対して逆方向に送信された超音波が
上流側の超音波振動子(2)で受信されるまでの伝搬時
間が長くなるので、超音波の伝搬時間差を確実に求める
ことができ、特に超音波の伝搬時間差が小さい小流量の
場合にその効果が発揮される。
That is, when the flow velocity of the fluid increases, the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction to the flow is received by the downstream ultrasonic oscillator (3). , While the propagation time until the ultrasonic wave transmitted in the opposite direction to the flow from the downstream ultrasonic transducer (3) is received by the upstream ultrasonic transducer (2) is reduced. Becomes longer, the difference in the propagation time of the ultrasonic wave can be reliably obtained, and the effect is exhibited particularly when the flow rate of the ultrasonic wave is small and the flow rate is small.

【0020】次に、図1に示す超音波流速測定装置を用
いた超音波流速測定の原理を説明する。
Next, the principle of ultrasonic flow velocity measurement using the ultrasonic flow velocity measuring device shown in FIG. 1 will be described.

【0021】まず、図1の白抜矢印に示すように、超音
波流速測定管(1)にガス等の流体を流すと、その流体
は流速測定部(7)の左端部から流速測定部(7)内に
流入し、該流速測定部(7)の左側の反射部(7a)、
中間連結部(7b)、右側の反射部(7a)を順に流れ
た後、流速測定部(7)の右端部から流出する。このと
き、中間連結部(7b)が上述のように内径小の円筒内
面に形成されているため、流体の流速は大きくなってい
る。
First, as shown by a white arrow in FIG. 1, when a fluid such as a gas flows through the ultrasonic flow velocity measuring tube (1), the fluid flows from the left end of the flow velocity measuring section (7) to the flow velocity measuring section (1). 7), the reflection part (7a) on the left side of the flow velocity measurement part (7),
After flowing through the intermediate connecting part (7b) and the right reflecting part (7a) in order, it flows out from the right end of the flow velocity measuring part (7). At this time, since the intermediate connecting portion (7b) is formed on the inner surface of the cylinder having a small inner diameter as described above, the flow velocity of the fluid is large.

【0022】そして、パルス発生回路(4)から流体の
上流側の超音波振動子(2)を駆動するためのパルスを
出力すると、その超音波振動子(2)の振動に応じて超
音波が送信される。このうち、上流側の超音波振動子
(2)から計測流体の流れに平行に送信された超音波は
すべて、上流側の反射部(7a)の放物内面で1回だけ
反射した後、その放物内面の焦点(8)を通過する。そ
して、その焦点(8)を通過した超音波は、そのまま下
流側の反射部(7a)の放物内面で1回だけ反射し、計
測流体の流れに平行になった後、下流側の超音波振動子
(3)に受信される。
When a pulse for driving the ultrasonic vibrator (2) on the upstream side of the fluid is output from the pulse generating circuit (4), the ultrasonic wave is generated according to the vibration of the ultrasonic vibrator (2). Sent. Of these, all the ultrasonic waves transmitted from the upstream ultrasonic transducer (2) in parallel with the flow of the measurement fluid are reflected only once on the parabolic inner surface of the upstream reflecting portion (7a) and then reflected therefrom. It passes through the focal point (8) on the inner surface of the parabola. Then, the ultrasonic wave that has passed through the focal point (8) is reflected once only on the inner surface of the paraboloid of the downstream reflecting portion (7a), and becomes parallel to the flow of the measurement fluid. Received by the vibrator (3).

【0023】次に、切替回路により接続を切り替え、流
体の下流側の超音波振動子(3)から超音波を送信する
と、上記と同様にして、計測流体の流れに平行に送信さ
れた超音波はすべて、上流側の超音波振動子(3)に受
信される。
Next, when the connection is switched by the switching circuit and the ultrasonic wave is transmitted from the ultrasonic transducer (3) on the downstream side of the fluid, the ultrasonic wave transmitted in parallel to the flow of the measurement fluid is transmitted in the same manner as described above. Are received by the upstream ultrasonic transducer (3).

【0024】しかして、上記で得られた、上流側の超音
波振動子(2)から流れに対し順方向に送信された超音
波が下流側の超音波振動子(3)で受信されるまでの伝
搬時間と、下流側の超音波振動子(3)から流れに対し
て逆方向に送信された超音波が上流側の超音波振動子
(2)で受信されるまでの伝搬時間との差を導出し、流
体の流速を測定する。
Thus, until the ultrasonic wave transmitted in the forward direction from the upstream ultrasonic oscillator (2) obtained above in the flow is received by the downstream ultrasonic oscillator (3). And the propagation time from when the ultrasonic wave transmitted in the opposite direction to the flow from the downstream ultrasonic transducer (3) is received by the upstream ultrasonic transducer (2). Is derived and the flow velocity of the fluid is measured.

【0025】なお、以上の実施形態では、この流速測定
部(7)を超音波流速測定管(1)の内面に直接形成す
るものとしたが、これに限られず、流速測定部を超音波
流速測定管に別体に設けるものとしてよい。
In the above embodiment, the flow velocity measuring section (7) is formed directly on the inner surface of the ultrasonic flow velocity measuring pipe (1). However, the present invention is not limited to this. The measuring tube may be provided separately.

【0026】また、流速測定部(7)中央の中間連結部
(7b)を内径小の円筒内面に形成したが、内径小であ
ればそれ以外の内面形状に形成してもよい。
Further, although the middle connecting portion (7b) at the center of the flow velocity measuring portion (7) is formed on the inner surface of the cylinder having a small inner diameter, it may be formed into another inner surface shape if the inner diameter is small.

【0027】[0027]

【発明の効果】この発明は、前記超音波流速測定部にお
ける流体の流れ方向の両側部の内面は、互いに焦点位置
が一致し、かつ同一軸上に対象配置せしめられた放物内
面に形成されていることを特徴とするので、計測流体に
平行に送信される超音波の大部分が流速測定に用いら
れ、受信波の利得を最大限に増大させことができると共
に、流体の流速が大きくなり、超音波の伝搬時間差をよ
り確実に求めることができ、ひいては十分な測定精度を
確保できる超音波流速測定装置を提供することが可能と
なる。
According to the present invention, the inner surfaces of both sides in the flow direction of the fluid in the ultrasonic flow velocity measuring section are formed on the inner surfaces of the parabolas whose focal positions coincide with each other and are symmetrically arranged on the same axis. Because most of the ultrasonic waves transmitted parallel to the measurement fluid are used for flow velocity measurement, the gain of the received wave can be maximized and the flow velocity of the fluid increases. In addition, it is possible to provide an ultrasonic flow velocity measuring device that can more reliably determine the difference in propagation time of ultrasonic waves, and that can ensure sufficient measurement accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態に係る超音波流速測定装
置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an ultrasonic flow velocity measuring device according to an embodiment of the present invention.

【図2】図1の超音波流速測定装置I−I線矢視断面図
である。
FIG. 2 is a sectional view taken along line II of the ultrasonic flow velocity measuring device shown in FIG.

【図3】従来の内径大の超音波流速測定装置の概略構成
図である。
FIG. 3 is a schematic configuration diagram of a conventional ultrasonic flow velocity measuring device having a large inner diameter.

【図4】従来の内径小の超音波流速測定装置の概略構成
図である。
FIG. 4 is a schematic configuration diagram of a conventional ultrasonic flow velocity measuring device having a small inner diameter.

【符号の説明】[Explanation of symbols]

1・・・超音波流速測定管 2、3・・・超音波振動子 7・・・流速測定部 7a・・・反射部 7b・・・中間連結部 DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 7 ... Flow velocity measuring part 7a ... Reflecting part 7b ... Intermediate connecting part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筏 隆臣 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 河野 明夫 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 保田 哲也 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 Fターム(参考) 2F035 DA19 DA22  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takaomi Raft 4-1-2, Hirano-cho, Chuo-ku, Osaka City Inside Osaka Gas Co., Ltd. Kansai Gas Meter Co., Ltd. (72) Inventor Tetsuya Yasuda 2-10-16 Higashikobashi, Higashinari-ku, Osaka City Kansai Gas Meter Co., Ltd. F-term (reference) 2F035 DA19 DA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超音波流速測定部を流れる計測流体の上
流側と下流側にそれぞれ超音波振動子が配置され、前記
各超音波振動子から相互に超音波を発生送信するととも
に、送信された超音波を相互に受信し、超音波の伝搬時
間の差に基いて流速を測定するものとなされている超音
波流速測定装置において、 前記超音波流速測定部における流体の流れ方向の両側部
の内面は、互いに焦点位置が一致し、かつ同一軸上に対
象配置せしめられた放物内面に形成されていることを特
徴とする超音波流速測定装置。
1. An ultrasonic transducer is disposed on each of an upstream side and a downstream side of a measurement fluid flowing through an ultrasonic flow velocity measuring unit, and ultrasonic waves are generated and transmitted from each of the ultrasonic transducers and transmitted. In an ultrasonic flow velocity measuring device which receives ultrasonic waves mutually and measures a flow velocity based on a difference in propagation time of ultrasonic waves, inner surfaces of both sides in a flow direction of a fluid in the ultrasonic flow velocity measuring section Is an ultrasonic flow velocity measuring device characterized in that the focal positions coincide with each other and are formed on the inner surface of a parabola symmetrically arranged on the same axis.
JP34401598A 1998-12-03 1998-12-03 Ultrasonic flow velocity-measuring apparatus Pending JP2000171478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34401598A JP2000171478A (en) 1998-12-03 1998-12-03 Ultrasonic flow velocity-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34401598A JP2000171478A (en) 1998-12-03 1998-12-03 Ultrasonic flow velocity-measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000171478A true JP2000171478A (en) 2000-06-23

Family

ID=18366006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34401598A Pending JP2000171478A (en) 1998-12-03 1998-12-03 Ultrasonic flow velocity-measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000171478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214011A (en) * 2001-01-24 2002-07-31 Osaka Gas Co Ltd Ultrasonic flow velocity measuring apparatus
WO2011065201A1 (en) * 2009-11-30 2011-06-03 独立行政法人産業技術総合研究所 Flow rate measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214011A (en) * 2001-01-24 2002-07-31 Osaka Gas Co Ltd Ultrasonic flow velocity measuring apparatus
WO2011065201A1 (en) * 2009-11-30 2011-06-03 独立行政法人産業技術総合研究所 Flow rate measuring device
JP5582480B2 (en) * 2009-11-30 2014-09-03 独立行政法人産業技術総合研究所 Flow measuring device
US8997581B2 (en) 2009-11-30 2015-04-07 National Institute of Advanced Industrial Science and Technology Atsuden Co., Ltd. Flow rate measuring device

Similar Documents

Publication Publication Date Title
JPH10122923A (en) Ultrasonic flow meter
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
JPH109914A (en) Ultrasonic flowmeter
JP2000171478A (en) Ultrasonic flow velocity-measuring apparatus
JP2008122317A (en) Ultrasonic flow meter for gas
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
JP2000171277A (en) Flow rate measuring apparatus
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP3328505B2 (en) Ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP3535625B2 (en) Ultrasonic current meter
JP2002131104A (en) Ultrasonic flow rate measuring system
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP2001050786A (en) Measuring device
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JP2002081979A (en) Ultrasonic flow rate-measuring device
JP2000275266A (en) Ultrasonic flow velocity measuring device
JP2000131107A (en) Ultrasonic flow velocity measuring apparatus
JP2011007763A (en) Ultrasonic flowmeter
JP2001083170A (en) Ultrasonic flow velocity-measuring device
JPH0921665A (en) Ultrasonic flow meter
JP2002214011A (en) Ultrasonic flow velocity measuring apparatus
JP2003121223A (en) Ultrasonic flow velocity-measuring instrument