JP2002214011A - Ultrasonic flow velocity measuring apparatus - Google Patents

Ultrasonic flow velocity measuring apparatus

Info

Publication number
JP2002214011A
JP2002214011A JP2001015307A JP2001015307A JP2002214011A JP 2002214011 A JP2002214011 A JP 2002214011A JP 2001015307 A JP2001015307 A JP 2001015307A JP 2001015307 A JP2001015307 A JP 2001015307A JP 2002214011 A JP2002214011 A JP 2002214011A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow velocity
velocity measuring
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001015307A
Other languages
Japanese (ja)
Inventor
Akio Kono
明夫 河野
Eiji Nakamura
英司 中村
Toshifumi Matsuda
年史 松田
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001015307A priority Critical patent/JP2002214011A/en
Publication of JP2002214011A publication Critical patent/JP2002214011A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flow velocity measuring apparatus which can efficiently increase the gain of a received wave and realize a smooth flow of a fluid and hence ensure a satisfactory measuring accuracy. SOLUTION: A flow velocity measuring unit 11 has inner surfaces formed symmetrically about the center point O between ultrasonic transducers 2, 3 over the entire circumference, and these symmetric inner surfaces form a part of an elliptical surface with a focus at the most close point of the peripheral edges of the transducers 2, 3. This increases the apertures of a fluid inlet and outlet 11a, 11b enough to take the almost of an ultrasonic wave transmitted from the ultrasonic transducer into the measuring unit (11) and realize a smooth flow of a fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring device for measuring the flow velocity of a gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術】ガスその他の流体の流量を求めるに際
し、まず流体の流速を連続的ないし定期的に測定し、こ
れに基いて流量を演算することが行われている。そし
て、このような流体の流速測定方法の一つとして、超音
波を利用した方法が知られている。
2. Description of the Related Art When determining the flow rate of a gas or other fluid, the flow rate of the fluid is measured continuously or periodically, and the flow rate is calculated based on the measured flow rate. As one of such fluid flow velocity measuring methods, a method utilizing ultrasonic waves is known.

【0003】かかる超音波流速測定方法の原理を、図4
に示される従来の装置により説明すると次のとおりであ
る。図4において、(101)は内部をガス等の流体が
流れる超音波流速測定管で、(111)は流体の流速を
測定する部分である。この超音波流速測定管(1)内に
は、流れ方向の上流側及び下流側に、所定距離を隔てて
超音波振動子(2)(3)が配置されている。
FIG. 4 shows the principle of such an ultrasonic flow velocity measuring method.
The following is a description of the conventional device shown in FIG. In FIG. 4, (101) is an ultrasonic flow velocity measuring tube through which a fluid such as a gas flows, and (111) is a part for measuring the flow velocity of the fluid. In the ultrasonic flow velocity measuring tube (1), ultrasonic vibrators (2) and (3) are arranged at a predetermined distance upstream and downstream in the flow direction.

【0004】この超音波振動子(2)(3)は、パルス
発生回路(4)からの駆動パルスにより駆動されて振動
し、超音波を発生送信する一方、送信されてきた超音波
を受信するもので、その超音波振動子(2)(3)が振
動したときの受信波が受信増幅回路(5)から電気信号
として出力されるものとなされている。
The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a pulse generating circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The reception wave when the ultrasonic transducers (2) and (3) vibrate is output as an electric signal from the reception amplification circuit (5).

【0005】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受波されるまでの伝搬時間と、下流側
の超音波振動子(3)から流れに対して逆方向に送信さ
れた超音波が上流側の超音波振動子(2)で受波される
までの伝搬時間との差は流速に関係することから、この
伝搬時間差を求めることにより流体の流速を測定するも
のとなされている。なお、図 において、(6)は各超
音波振動子(2)(3)とパルス発生回路(4)及び受
信増幅回路(5)の接続を切替える切替回路であり、ま
ずパルス発生回路(4)と上流側の超音波振動子
(2)、下流側の超音波振動子(3)と受信増幅回路
(5)を接続して、上流側から下流側への伝搬時間を測
定したのち、該切替回路(6)の作動によりパルス発生
回路(4)と下流側の超音波振動子(3)、上流側の超
音波振動子(2)と受信増幅回路(5)とが接続される
ように切替えて、下流側から上流側への伝搬時間を測定
するものとなされている。
[0005] The propagation time until the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow is received by the downstream ultrasonic oscillator (3); The difference between the ultrasonic wave transmitted from the downstream ultrasonic oscillator (3) in the opposite direction to the flow and the propagation time until the ultrasonic wave is received by the upstream ultrasonic oscillator (2) is related to the flow velocity. Therefore, the flow velocity of the fluid is measured by calculating the propagation time difference. In the figure, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3) and the pulse generating circuit (4) and the receiving amplifier circuit (5). After connecting the ultrasonic transducer (2) on the upstream side and the ultrasonic transducer (3) on the downstream side and the receiving amplifier circuit (5) to measure the propagation time from the upstream side to the downstream side, the switching is performed. By the operation of the circuit (6), the pulse generating circuit (4) and the downstream ultrasonic vibrator (3) are switched so that the upstream ultrasonic vibrator (2) and the receiving amplifier circuit (5) are connected. Thus, the propagation time from the downstream side to the upstream side is measured.

【0006】ところで、このような超音波流速測定装置
として、図4に示すように、流速測定部(111)の内
面が超音波振動子(2)(3)間の中央点を焦点とする
楕円内面に形成されたものが知られている。これによれ
ば、一方の超音波振動子(2)(3)から送信された超
音波は流速測定部(111)の楕円内面で1回だけ反射
したあと、他方の超音波振動子(3)(2)に受信され
る。このため、一方の超音波振動子(2)(3)から流
体の流れ方向に平行に送信される直進超音波のほか、流
速測定部(111)の楕円内面で1回だけ反射する反射
超音波が対向する超音波振動子(3)(2)に受信され
る。
In such an ultrasonic flow velocity measuring apparatus, as shown in FIG. 4, an inner surface of a flow velocity measuring section (111) has an ellipse whose focal point is a center point between the ultrasonic vibrators (2) and (3). What is formed on the inner surface is known. According to this, the ultrasonic wave transmitted from one of the ultrasonic vibrators (2) and (3) is reflected only once on the inner surface of the ellipse of the flow velocity measuring unit (111), and then the other ultrasonic vibrator (3) Received in (2). Therefore, in addition to the straight ultrasonic wave transmitted from one of the ultrasonic transducers (2) and (3) in parallel with the flow direction of the fluid, the reflected ultrasonic wave reflected only once on the inner surface of the ellipse of the flow velocity measuring unit (111). Is received by the opposed ultrasonic transducers (3) and (2).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、流速測
定部を上述のような構造にすると、流速測定部(11
1)両端の流体流入口(111a)と流体流出口(11
1b)の口径が必然的に小さくなるため、超音波振動子
(2)(3)から送信された超音波の一部が流速測定部
(111)内に進入せず、受信波の利得を効率的に増大
させることが難しいという問題があった。また、流速測
定部(111)の流体流入口(111a)と流体流出口
(111b)の口径が小さいことから、流体が流速測定
部(111)内をスムーズに流れない場合があるという
問題もあった。
However, if the flow velocity measuring section is structured as described above, the flow velocity measuring section (11
1) The fluid inlet (111a) at both ends and the fluid outlet (11
Since the aperture of 1b) is inevitably reduced, a part of the ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) does not enter the flow velocity measuring section (111), and the gain of the received wave is reduced. There is a problem that it is difficult to increase the size. Further, since the diameters of the fluid inlet (111a) and the fluid outlet (111b) of the flow velocity measuring unit (111) are small, there is also a problem that the fluid may not flow smoothly in the flow velocity measuring unit (111). Was.

【0008】この発明は、上述の問題に鑑みてなされた
ものであって、受信波の利得を効率的に増大させること
ができるとともに、流体のスムーズな流れを実現するこ
とができ、ひいては十分な測定精度を確保することが可
能な超音波流速測定装置の提供を課題とする。
The present invention has been made in view of the above-mentioned problems, and can increase the gain of a received wave efficiently, can realize a smooth flow of fluid, and can therefore achieve a sufficient flow. It is an object of the present invention to provide an ultrasonic flow velocity measuring device capable of ensuring measurement accuracy.

【0009】[0009]

【課題を解決するための手段】上記課題は、流速測定部
を流れる計測流体の上流側と下流側にそれぞれ超音波振
動子が配置され、前記各超音波振動子から相互に超音波
を発生送信するとともに、送信された超音波を相互に受
信し、超音波の伝搬時間の差に基づいて計測流体の流速
を測定するものとなされている超音波流速測定装置にお
いて、前記流速測定部は、その内面の全部または一部が
各超音波振動子間の中央点に関して対称に形成され、そ
れら対称関係にある内面同士が各超音波振動子の周縁部
を焦点とする楕円面の一部を構成することを特徴とする
超音波流速測定装置によって解決される。なお、この発
明では、超音波振動子の周縁部とは、超音波振動子の正
面における中心点を除く全ての部分をいう。
An object of the present invention is to provide an ultrasonic transducer arranged upstream and downstream of a measurement fluid flowing through a flow velocity measuring unit, and generating and transmitting ultrasonic waves from each ultrasonic transducer. While receiving the transmitted ultrasonic waves, the ultrasonic flow velocity measuring device is configured to measure the flow velocity of the measurement fluid based on the difference in the propagation time of the ultrasonic waves, the flow velocity measuring unit, All or a part of the inner surface is formed symmetrically with respect to the center point between the ultrasonic transducers, and the inner surfaces having such a symmetrical relationship constitute a part of an elliptical surface whose focal point is the peripheral portion of each ultrasonic transducer. The problem is solved by an ultrasonic flow velocity measuring device. In the present invention, the peripheral portion of the ultrasonic vibrator means all parts except the center point on the front of the ultrasonic vibrator.

【0010】これによれば、流体流入口と流体流出口の
口径が大きくなり、超音波振動子から送信された超音波
の大部分を流速測定部に進入させることができる。しか
も、上述のような流速測定部の構造により、流速測定部
に進入した超音波は、流速測定部の一の楕円内面で反射
したあと、超超音波振動子に確実に受信されため、受信
波の利得を効率的に増大させることができる。
According to this, the diameters of the fluid inlet and the fluid outlet are increased, and most of the ultrasonic waves transmitted from the ultrasonic vibrator can enter the flow velocity measuring section. In addition, due to the structure of the flow velocity measurement unit as described above, the ultrasonic wave that has entered the flow velocity measurement unit is reflected by one inner ellipse of the flow velocity measurement unit, and is reliably received by the ultrasonic transducer. Can be efficiently increased.

【0011】また、流体流入口の口径が大きくなること
から流体が流速測定部に流入しやすくなるとともに、流
体流出口の口径が大きくなることから流体が流速測定部
から流出しやすくなり、流体のスムーズな流れを実現す
ることができ、上述の受信波の利得の効率的な増大と相
俟って十分な測定精度を確保することが可能となる。
In addition, since the diameter of the fluid inlet increases, the fluid can easily flow into the flow velocity measuring section, and since the diameter of the fluid outlet increases, the fluid can easily flow out of the flow velocity measuring section. A smooth flow can be realized, and sufficient measurement accuracy can be ensured in combination with the above-described efficient increase in the gain of the received wave.

【0012】[0012]

【発明の実施の形態】次に、この発明の実施形態に係る
超音波流速測定装置を図1及び図2を用いて説明する。
Next, an ultrasonic flow velocity measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS.

【0013】図1において、(1)はガスが流れる上向
きに開口するコ字形状の超音波流速測定管であり、該超
音波測定管(1)の下部水平部が流速測定部(11)と
なされている。
In FIG. 1, (1) is a U-shaped ultrasonic flow velocity measuring tube which is open upward and through which gas flows, and a lower horizontal portion of the ultrasonic measuring tube (1) is provided with a flow velocity measuring section (11). It has been done.

【0014】(2)(3)は超音波を発信送信する円筒
状の超音波振動子で、前記流速測定部(11)の中央線
上の超音波流速測定管(1)の内面壁に対向して配置さ
れている。(4)は超音波振動子(2)(3)を駆動す
るためのパルスを発生する発生回路、(5)は超音波振
動子(2)(3)で受信した受信波を出力する受信増幅
回路、(6)は超音波振動子(2)(3)と駆動パルス
発生回路(4)および受信増幅回路(5)の接続を切り
替える切替回路で、これらは図4に示すものと同じであ
る。
(2) and (3) are cylindrical ultrasonic vibrators for transmitting and transmitting ultrasonic waves, facing the inner wall of the ultrasonic flow velocity measuring tube (1) on the center line of the flow velocity measuring section (11). It is arranged. (4) is a generation circuit for generating a pulse for driving the ultrasonic transducers (2) and (3), and (5) is a reception amplifier for outputting a reception wave received by the ultrasonic transducers (2) and (3). A circuit (6) is a switching circuit for switching the connection between the ultrasonic vibrators (2) and (3), the drive pulse generating circuit (4) and the receiving amplifier circuit (5), which are the same as those shown in FIG. .

【0015】前記流速測定部(11)は、上流側の端部
が流体流入口(11a)となされ、下流側の端部が流体
流出口となされており、流体は流体流入口(11a)か
ら流速測定部(11)内に流入して流体流出口(11
b)から流出する。
The flow velocity measuring section (11) has an upstream end as a fluid inlet (11a), a downstream end as a fluid outlet, and fluid flows from the fluid inlet (11a). After flowing into the flow velocity measuring section (11), the fluid outlet (11
b).

【0016】また、前記流速測定部(11)は、その内
面が全周に亘って前記各超音波振動子(2)(3)の中
央点Oに関して対称に形成され、それら対称関係にある
内面同士が各超音波振動子(2)(3)の周縁部の最接
近点を焦点とする楕円面の一部を構成する具体的には、
図1において、両側部の内面(EG)と(HJ)は、超
音波振動子(2)(3)間の中央点Oに関して対称で、
かつ超音波振動子(2)(3)の周縁部の最接近点
(A)(D)を焦点とする楕円内面の一部を構成する。
一方、両側部の内面(FH)と(GI)は、同じく超音
波振動子(2)(3)間の中央点Oに関して対称で、か
つ超音波振動子(2)(3)の周端部の最接近点(B)
(C)を焦点とする同じ楕円内面を構成する。さらに、
図2において、両側部の対称関係にある内面(E’
G’)と(H’J’)、(F’H’)と(G’I’)に
ついても同様で、両側部のその他の内面についても同様
の構造となされている。
The flow velocity measuring section (11) has an inner surface formed symmetrically with respect to a center point O of each of the ultrasonic vibrators (2) and (3) over the entire circumference, and the inner surfaces having a symmetrical relationship therebetween. Specifically, each of them constitutes a part of an elliptical surface whose focal point is the closest point of the peripheral portion of each of the ultrasonic transducers (2) and (3).
In FIG. 1, the inner surfaces (EG) and (HJ) on both sides are symmetric with respect to a center point O between the ultrasonic transducers (2) and (3).
In addition, it constitutes a part of the inner surface of the ellipse whose focal point is the closest points (A) and (D) of the peripheral portions of the ultrasonic transducers (2) and (3).
On the other hand, the inner surfaces (FH) and (GI) on both sides are also symmetric with respect to the center point O between the ultrasonic transducers (2) and (3), and the peripheral ends of the ultrasonic transducers (2) and (3). Point of closest approach (B)
The same ellipse inner surface having the focus at (C) is formed. further,
In FIG. 2, the inner surface (E ′ that is symmetrical on both sides)
G ′) and (H′J ′), and (F′H ′) and (G′I ′), and the other inner surfaces on both sides have the same structure.

【0017】このように、流速測定部(11)を上述の
ような構造に形成することによって、流体流入口(11
a)と流体流出口(11b)の口径が大きくなり、超音
波振動子から送信された超音波の大部分を流速測定部
(11)に進入させることができる。しかも、流速測定
部(11)に進入した超音波は、流速測定部(11)の
一の楕円内面で反射したあと、対向する超音波振動子
(3)(2)に確実に受信されため、受信波の利得を効
率的に増大させることができる。
By forming the flow velocity measuring section (11) in the above-described structure, the fluid inlet (11) is formed.
a) and the diameter of the fluid outlet (11b) are increased, so that most of the ultrasonic waves transmitted from the ultrasonic vibrator can enter the flow velocity measuring unit (11). In addition, since the ultrasonic wave that has entered the flow velocity measuring unit (11) is reflected by one inner surface of the ellipse of the flow velocity measuring unit (11), it is reliably received by the opposed ultrasonic transducers (3) and (2). The gain of the received wave can be efficiently increased.

【0018】また、流体流入口(11a)の口径が大き
くなることから流体が流速測定部(11)に流入しやす
くなるとともに、流体流出口(11b)の口径が大きく
なることから流体が流速測定部(11)から流出しやす
くなり、流体のスムーズな流れを実現することができ、
上述の受信波の利得の効率的な増大と相俟って十分な測
定精度を確保することが可能となる。
Further, the diameter of the fluid inlet (11a) is increased, so that the fluid easily flows into the flow velocity measuring section (11), and the diameter of the fluid outlet (11b) is increased, so that the fluid is measured for the flow velocity. It is easy to flow out of the part (11), and a smooth flow of the fluid can be realized.
Sufficient measurement accuracy can be ensured in combination with the above-described efficient increase in the gain of the received wave.

【0019】次に、図1に示す超音波流速測定装置を用
いた超音波流速測定の原理を説明する。
Next, the principle of ultrasonic flow velocity measurement using the ultrasonic flow velocity measuring device shown in FIG. 1 will be described.

【0020】まず、図1の白抜矢印に示すように、超音
波流速測定管(1)にガス等の流体を流すと、その流体
は流速測定部(11)の流体流入口(11a)から流速
測定部(11)内に流入し、該流速測定部(11)内を
長手方向に沿って流れ、流速測定部(11)の流体流出
口(11b)から流出する。このとき、上述のように、
流体流入口(11a)の口径が大きくなることから流体
が流速測定部(11)に流入しやすくなるとともに、流
体流出口(11b)の口径が大きくなることから流体が
流速測定部(11)から流出しやすくなり、流体のスム
ーズな流れを実現することができる。
First, as shown by a white arrow in FIG. 1, when a fluid such as a gas flows into the ultrasonic flow velocity measuring tube (1), the fluid flows from a fluid inlet (11a) of the flow velocity measuring section (11). The fluid flows into the flow velocity measuring section (11), flows in the flow velocity measuring section (11) along the longitudinal direction, and flows out from the fluid outlet (11b) of the flow velocity measuring section (11). At this time, as described above,
The larger diameter of the fluid inlet (11a) facilitates the flow of the fluid into the flow velocity measuring unit (11), and the larger diameter of the fluid outlet (11b) allows the fluid to flow from the flow velocity measuring unit (11). The fluid easily flows out, and a smooth flow of the fluid can be realized.

【0021】そして、駆動パルス発生回路(4)から上
流側の超音波振動子(2)を駆動するための駆動パルス
を発生すると、その駆動パルスにより超音波振動子
(2)が駆動されて振動し、その超音波振動子(2)の
振動に応じて超音波が送信される。
When a drive pulse for driving the upstream ultrasonic vibrator (2) is generated from the drive pulse generating circuit (4), the ultrasonic vibrator (2) is driven by the drive pulse to vibrate. Then, an ultrasonic wave is transmitted according to the vibration of the ultrasonic vibrator (2).

【0022】超音波振動子(2)から送信された超音波
は、そのほとんどが口径が大きく形成された流体流入口
(11a)から流速測定部(11)内に進入し、流速測
定部(11)の一の楕円内面で反射したあと、対向する
超音波振動子(3)(2)に確実に受信される。
Most of the ultrasonic waves transmitted from the ultrasonic transducer (2) enter the flow velocity measuring section (11) from the fluid inlet (11a) having a large diameter, and flow therethrough. After being reflected by the inner surface of one ellipse, it is reliably received by the opposed ultrasonic transducers (3) and (2).

【0023】次に、切替回路(6)によりパルス発生回
路(4)と下流側の超音波振動子(3)、上流側の超音
波振動子(2)と受信増幅回路(5)とが接続されるよ
うに切り替えたあと、上述と同様にして、超音波振動子
(3)から送信された超音波は対向する超音波振動子
(2)に確実に受信される。
Next, the switching circuit (6) connects the pulse generating circuit (4) to the downstream ultrasonic vibrator (3), and connects the upstream ultrasonic vibrator (2) to the receiving amplifier circuit (5). Then, the ultrasonic wave transmitted from the ultrasonic transducer (3) is reliably received by the opposed ultrasonic transducer (2) in the same manner as described above.

【0024】しかして、上記で得られた、上流側の超音
波振動子(2)から流れ方向に対し順方向に送信された
超音波が下流側の超音波振動子(3)で受信されるまで
の伝搬時間と、下流側の超音波振動子(3)から流れに
対して逆方向に送信された超音波が上流側の超音波振動
子(2)で受信されるまでの伝搬時間の差を導出し、流
体の流速を測定する。
Thus, the ultrasonic wave obtained above and transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow direction is received by the downstream ultrasonic oscillator (3). Between the propagation time until the ultrasonic wave transmitted from the downstream ultrasonic transducer (3) and the ultrasonic wave transmitted in the opposite direction to the flow is received by the ultrasonic transducer (2) on the upstream side. Is derived and the flow velocity of the fluid is measured.

【0025】なお、この実施形態では、前記流速測定部
(11)は、その内面が全周に亘って前記各超音波振動
子(2)(3)の中央点Oに関して対称に形成され、そ
れら対称関係にある内面同士が各超音波振動子(2)
(3)の周縁部の最接近点を焦点とする楕円面の一部を
構成するものとしたが、その内面の一部において上述の
ような構造とするものとしてもよい。
In this embodiment, the flow velocity measuring section (11) has its inner surface formed symmetrically with respect to the center point O of each of the ultrasonic transducers (2) and (3) over the entire circumference. The inner surfaces that are in a symmetric relationship are each ultrasonic transducer (2)
Although a part of the elliptical surface having the focal point at the closest point of the peripheral edge in (3) is configured, the structure described above may be formed on a part of the inner surface.

【0026】また、上述の楕円内面の焦点を超音波振動
子(2)(3)の周縁部の最接近点(A)(A’)
(B)(B’)に設定したが、このように上述の作用・
効果を顕著に奏するべく、図3に示すように楕円内面の
焦点を超音波振動子(2)(3)の中心点(Z)から直
径Rの1/2倍以上の距離にある点(A’’)
(B’’)に設定することが望ましい。また、上述の作
用・効果を奏する限り、超音波振動子(2)(3)の中
心点(Z)から直径Rの1/2倍未満の距離にある点
(但し、超音波振動子(2)(3)の中心点を除く)
(A’’’)(B’’’)に設定してもよい。
The focal point of the inner surface of the ellipse is set to the closest point (A) (A ') of the peripheral portion of the ultrasonic transducers (2) and (3).
(B) is set to (B '), but as described above,
As shown in FIG. 3, the focal point of the inner surface of the ellipse is a point (A) at a distance equal to or more than 1/2 times the diameter R from the center point (Z) of the ultrasonic transducers (2) and (3) so that the effect is remarkable. '')
It is desirable to set (B ''). In addition, as long as the above-described functions and effects are achieved, a point that is less than half the diameter R from the center point (Z) of the ultrasonic vibrators (2) and (3) (however, the ultrasonic vibrator (2 ) (Excluding the center point of (3))
(A ''') and (B''').

【0027】また、超音波振動子を円筒状のものを採用
したが、矩形体状のものやその他の形状のものを採用し
てもよい。
Although the ultrasonic transducer has a cylindrical shape, it may have a rectangular shape or another shape.

【0028】[0028]

【発明の効果】この発明によれば、流体流入口と流体流
出口の口径が大きくなり、超音波振動子から送信された
超音波の大部分を流速測定部に進入させることができ
る。しかも、上述のような流速測定部の構造により、流
速測定部に進入した超音波は、流速測定部の一の楕円内
面で反射したあと、対向する超音波振動子に確実に受信
されため、受信波の利得を効率的に増大させることがで
きる。
According to the present invention, the diameters of the fluid inlet and the fluid outlet are increased, so that most of the ultrasonic waves transmitted from the ultrasonic transducer can enter the flow velocity measuring section. In addition, due to the structure of the flow velocity measuring unit as described above, the ultrasonic wave that has entered the flow velocity measuring unit is reflected by one inner ellipse of the flow velocity measuring unit, and is reliably received by the opposed ultrasonic transducer. The wave gain can be increased efficiently.

【0029】また、流体流入口の口径が大きくなること
から流体が流速測定部に流入しやすくなるとともに、流
体流出口の口径が大きくなることから流体が流速測定部
から流出しやすくなり、流体のスムーズな流れを実現す
ることができ、上述の受信波の利得の効率的な増大と相
俟って十分な測定精度を確保することが可能となる。
Further, since the diameter of the fluid inlet is large, the fluid can easily flow into the flow velocity measuring section, and since the diameter of the fluid outlet is large, the fluid can easily flow out of the flow velocity measuring section. A smooth flow can be realized, and sufficient measurement accuracy can be ensured in combination with the above-described efficient increase in the gain of the received wave.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態に係る超音波流速測定装置
の構成概略図である。
FIG. 1 is a schematic configuration diagram of an ultrasonic flow velocity measuring device according to an embodiment of the present invention.

【図2】図1の超音波流速測定装置のI−I線断面矢視
図である。
FIG. 2 is a cross-sectional view of the ultrasonic flow velocity measuring device of FIG. 1 taken along the line II.

【図3】超音波振動子の正面図である。FIG. 3 is a front view of the ultrasonic transducer.

【図4】従来の超音波流速測定装置の構成概略図であ
る。
FIG. 4 is a schematic configuration diagram of a conventional ultrasonic flow velocity measuring device.

【符号の説明】[Explanation of symbols]

1・・・超音波流速測定管 2、3・・・超音波振動子 11・・・流速測定部 DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 11 ... Flow velocity measuring part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 英司 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 松田 年史 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 保田 哲也 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 Fターム(参考) 2F035 DA19 DA22  ──────────────────────────────────────────────────の Continuing on the front page (72) Eiji Nakamura, Inventor, Kansai Gas Meter Co., Ltd., 10 at Kashida-ji, Kida-cho, Shimogyo-ku, Kyoto (72) Inventor Toshifumi Matsuda 10 Kansai Gas-meter, Kagi-daka, Shimoda-ku, Kyoto, Japan Incorporated (72) Inventor Tetsuya Yasuda 10 Kida-machi, Chudo-ji, Shimogyo-ku, Kyoto F-term (reference) 2F035 DA19 DA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流速測定部を流れる計測流体の上流側と
下流側にそれぞれ超音波振動子が配置され、前記各超音
波振動子から相互に超音波を発生送信するとともに、送
信された超音波を相互に受信し、超音波の伝搬時間の差
に基づいて計測流体の流速を測定するものとなされてい
る超音波流速測定装置において、前記流速測定部は、そ
の内面の全部または一部が各超音波振動子間の中央点に
関して対称に形成され、それら対称関係にある内面同士
が各超音波振動子の周縁部を焦点とする楕円面の一部を
構成することを特徴とする超音波流速測定装置。
An ultrasonic transducer is arranged on each of an upstream side and a downstream side of a measurement fluid flowing through a flow velocity measuring unit, and the ultrasonic transducers generate and transmit ultrasonic waves to each other, and transmit the transmitted ultrasonic waves. Mutually, and the ultrasonic flow velocity measuring device that is configured to measure the flow velocity of the measurement fluid based on the difference in the propagation time of the ultrasonic wave, the flow velocity measurement unit, all or a part of the inner surface, each An ultrasonic flow velocity characterized in that the inner surfaces are formed symmetrically with respect to a center point between the ultrasonic transducers, and the inner surfaces having the symmetrical relationship form a part of an elliptical surface whose focal point is the peripheral portion of each ultrasonic transducer. measuring device.
JP2001015307A 2001-01-24 2001-01-24 Ultrasonic flow velocity measuring apparatus Pending JP2002214011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015307A JP2002214011A (en) 2001-01-24 2001-01-24 Ultrasonic flow velocity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015307A JP2002214011A (en) 2001-01-24 2001-01-24 Ultrasonic flow velocity measuring apparatus

Publications (1)

Publication Number Publication Date
JP2002214011A true JP2002214011A (en) 2002-07-31

Family

ID=18881877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015307A Pending JP2002214011A (en) 2001-01-24 2001-01-24 Ultrasonic flow velocity measuring apparatus

Country Status (1)

Country Link
JP (1) JP2002214011A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215759A (en) * 1991-10-25 1993-08-24 Schlumberger Ind Fluid velocity measuring apparatus
JPH10170318A (en) * 1996-12-12 1998-06-26 Osaka Gas Co Ltd Ultrasonic flow-velocity measuring apparatus
JP2000131107A (en) * 1998-10-21 2000-05-12 Osaka Gas Co Ltd Ultrasonic flow velocity measuring apparatus
JP2000171478A (en) * 1998-12-03 2000-06-23 Osaka Gas Co Ltd Ultrasonic flow velocity-measuring apparatus
JP2001349758A (en) * 2000-04-03 2001-12-21 Kansai Gas Meter Co Ltd Ultrasonic flow velocity measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215759A (en) * 1991-10-25 1993-08-24 Schlumberger Ind Fluid velocity measuring apparatus
JPH10170318A (en) * 1996-12-12 1998-06-26 Osaka Gas Co Ltd Ultrasonic flow-velocity measuring apparatus
JP2000131107A (en) * 1998-10-21 2000-05-12 Osaka Gas Co Ltd Ultrasonic flow velocity measuring apparatus
JP2000171478A (en) * 1998-12-03 2000-06-23 Osaka Gas Co Ltd Ultrasonic flow velocity-measuring apparatus
JP2001349758A (en) * 2000-04-03 2001-12-21 Kansai Gas Meter Co Ltd Ultrasonic flow velocity measuring instrument

Similar Documents

Publication Publication Date Title
US10036763B2 (en) Beam shaping acoustic signal travel time flow meter
JPH10122923A (en) Ultrasonic flow meter
JP2017187310A (en) Ultrasonic flowmeter
JP2002214011A (en) Ultrasonic flow velocity measuring apparatus
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
JP7151311B2 (en) ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP2002131104A (en) Ultrasonic flow rate measuring system
JP3328505B2 (en) Ultrasonic flow meter
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP2003177042A (en) Ultrasonic flowmeter
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JP2006349439A (en) Ultrasonic flowmeter
JP2000171277A (en) Flow rate measuring apparatus
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP3194270B2 (en) Ultrasonic flow meter
JP2000171478A (en) Ultrasonic flow velocity-measuring apparatus
JP3497279B2 (en) Ultrasonic flow meter
JPH0989615A (en) Ultrasonic flowmeter
JP2000298046A (en) Measuring device
JP2001050786A (en) Measuring device
JP2007033032A (en) Ultrasonic flowmeter
JP2002081979A (en) Ultrasonic flow rate-measuring device
JP2000275266A (en) Ultrasonic flow velocity measuring device
JPH11271113A (en) Ultrasonic vortex flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201