JP2000298046A - Measuring device - Google Patents

Measuring device

Info

Publication number
JP2000298046A
JP2000298046A JP11107364A JP10736499A JP2000298046A JP 2000298046 A JP2000298046 A JP 2000298046A JP 11107364 A JP11107364 A JP 11107364A JP 10736499 A JP10736499 A JP 10736499A JP 2000298046 A JP2000298046 A JP 2000298046A
Authority
JP
Japan
Prior art keywords
fluid
measurement
pipe
inflow chamber
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11107364A
Other languages
Japanese (ja)
Inventor
Akio Kono
明夫 河野
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Gas Meter Co Ltd
Original Assignee
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Gas Meter Co Ltd filed Critical Kansai Gas Meter Co Ltd
Priority to JP11107364A priority Critical patent/JP2000298046A/en
Publication of JP2000298046A publication Critical patent/JP2000298046A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure items such as flowrate by suppressing the generation of Karman vortex of fluid around a measuring tube. SOLUTION: A flow measuring part 1 is separated with a partition wall 10 into an inflow chamber 11 and an outflow chamber 12 and a measuring tube 13 is provided in a state of penetrating the partition wall 10 in the flow measuring part 1. Around the measuring tube 13 of the inflow chamber 11, a straightener plate 14 for suppressing the generation of Karman vortex of fluid is provided. By this, the fluid flown into the inflow chamber 11 is arranged by the straightener 14 placed around the measuring tube 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガスその他の流
体の流量等、所期する計測項目についての計測を行う計
測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for measuring desired measurement items such as flow rates of gas and other fluids.

【0002】[0002]

【従来の技術】ガスその他の流体の所期する計測項目、
例えば流体の流量を求めるに際し、まず流体の流速を連
続的ないし定期的に計測し、これに基いて流体の流量を
演算することが行われている。そして、このような流体
の流量の計測方法の一つとして、超音波を利用した方法
が知られている。
2. Description of the Related Art Expected measurement items of gas and other fluids,
For example, when obtaining the flow rate of a fluid, first, the flow rate of the fluid is continuously or periodically measured, and the flow rate of the fluid is calculated based on the measured flow rate. As one method of measuring the flow rate of such a fluid, a method using ultrasonic waves is known.

【0003】かかる超音波を利用した方法の原理を、図
6に示される従来の装置により説明すると次のとおりで
ある。図6において、(21)は内部をガス等の流体が
流れる計測管である。この計測管(21)内には、流れ
方向の上流側及び下流側に、所定距離を隔てて超音波振
動子(2)(3)が配置されている。
The principle of such a method using ultrasonic waves will be described below with reference to a conventional apparatus shown in FIG. In FIG. 6, reference numeral (21) denotes a measuring pipe through which a fluid such as a gas flows. Ultrasonic transducers (2) and (3) are arranged in the measurement pipe (21) at a predetermined distance on the upstream side and the downstream side in the flow direction.

【0004】この超音波振動子(2)(3)は、パルス
発生回路(4)からの駆動パルスにより駆動されて振動
し、超音波を発生送信する一方、送信されてきた超音波
を受信するもので、その超音波振動子(2)(3)が振
動したときの受信波が増幅回路(5)から電気信号とし
て出力されるものとなされている。
The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a pulse generating circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The received wave when the ultrasonic vibrators (2) and (3) vibrate is output as an electric signal from the amplifier circuit (5).

【0005】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受波されるまでの伝搬時間と、下流側
の超音波振動子(3)から流れに対して逆方向に送信さ
れた超音波が上流側の超音波振動子(2)で受波される
までの伝搬時間との差は流速に関係することから、演算
回路(7)において前記伝搬時間差に基づいて流速を計
測し、さらに流速に基づいて流量を求める。なお、図6
において、(6)は各超音波振動子(2)(3)とパル
ス発生回路(4)及び増幅回路(5)の接続を切替える
切替回路であり、まずパルス発生回路(4)と上流側の
超音波振動子(2)、下流側の超音波振動子(3)と増
幅回路(5)を接続して、上流側から下流側への伝搬時
間を計測したのち、該切替回路(6)の作動によりパル
ス発生回路(4)と下流側の超音波振動子(3)、上流
側の超音波振動子(2)と増幅回路(5)とが接続され
るように切替えて、下流側から上流側への伝搬時間を計
測するものとなされている。
[0005] The propagation time until the ultrasonic wave transmitted from the upstream ultrasonic oscillator (2) in the forward direction with respect to the flow is received by the downstream ultrasonic oscillator (3); The difference between the ultrasonic wave transmitted from the downstream ultrasonic oscillator (3) in the opposite direction to the flow and the propagation time until the ultrasonic wave is received by the upstream ultrasonic oscillator (2) is related to the flow velocity. Therefore, in the arithmetic circuit (7), the flow velocity is measured based on the propagation time difference, and the flow rate is obtained based on the flow velocity. FIG.
In the above, (6) is a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3) and the pulse generating circuit (4) and the amplifier circuit (5). After connecting the ultrasonic transducer (2), the ultrasonic transducer (3) on the downstream side and the amplifier circuit (5) and measuring the propagation time from the upstream side to the downstream side, the switching circuit (6) The operation is switched so that the pulse generating circuit (4) is connected to the downstream ultrasonic oscillator (3), and the upstream ultrasonic oscillator (2) is connected to the amplifier circuit (5). It measures the propagation time to the side.

【0006】ところで、上述のような超音波を利用した
流量計測装置として、図7に示すような流量計測装置が
提案されている。この流量計測装置は、流量計測部
(1)内部が区画壁(10)により流入室(11)と流
出室(12)とに区画される共に、前記流入室(11)
及び流出室(12)に流入管(8)及び流出管(9)が
連結されている。また、前記区画壁(10)には、計測
管(13)が区画壁(10)を貫通する態様で設けられ
ており、流入室(11)と流出室(12)とが連通せし
められている。
[0006] As a flow rate measuring apparatus utilizing the above-described ultrasonic waves, a flow rate measuring apparatus as shown in FIG. 7 has been proposed. In this flow rate measuring device, the inside of a flow rate measuring section (1) is partitioned into an inflow chamber (11) and an outflow chamber (12) by a partition wall (10), and the inflow chamber (11) is separated.
The inflow pipe (8) and the outflow pipe (9) are connected to the outflow chamber (12). A measuring pipe (13) is provided in the partition wall (10) so as to penetrate the partition wall (10), and the inflow chamber (11) and the outflow chamber (12) are communicated. .

【0007】しかして、流入管(8)を流れてきた流体
は、図7の白抜矢印のように、前記計測管(13)の長
さ方向と交差する向きで流入室(11)に流入し、該流
入室(11)において流れの勢いが緩和される。そし
て、流れの勢いが緩和された流入室(11)内の流体
は、計測管(13)の流入室(11)側の開口部(11
d)まで流れ、該開口部(11d)から計測管(13)
内に流入する。計測管(13)内に流入した流体は、そ
のまま計測管(13)内を流入室(11)側から流出室
(12)側に流れ、計測管(13)の流出室(12)側
の開口部(11e)から流出室(12)に流出したあ
と、そのまま流出管(9)に流出していく。
The fluid flowing through the inflow pipe (8) flows into the inflow chamber (11) in a direction intersecting with the length direction of the measurement pipe (13), as indicated by a white arrow in FIG. The flow force in the inflow chamber (11) is reduced. Then, the fluid in the inflow chamber (11) whose flow momentum has been alleviated flows into the opening (11) of the measurement pipe (13) on the inflow chamber (11) side.
d), from the opening (11d) to the measuring tube (13)
Flows into. The fluid flowing into the measuring pipe (13) flows through the measuring pipe (13) from the inflow chamber (11) side to the outflow chamber (12) side, and the opening of the measuring pipe (13) on the outflow chamber (12) side. After flowing out of the part (11e) to the outflow chamber (12), it flows out to the outflow pipe (9) as it is.

【0008】そして、前記流量計測部(1)の長さ方向
両側の内面には、前記超音波振動子(2)(3)が設け
られており、計測管(13)内を流れる流体の流速を、
上述の超音波を利用した方法で計測し、さらに流速に基
づいて流量を求めるものとなされている。
The ultrasonic vibrators (2) and (3) are provided on the inner surfaces on both sides in the length direction of the flow rate measuring section (1), and the flow velocity of the fluid flowing through the measuring pipe (13) is provided. To
The measurement is performed by the method using the above-described ultrasonic wave, and the flow rate is obtained based on the flow velocity.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述の
ように、流体が計測管(13)の長さ方向と交差する向
きで流入室(11)に流入する構造だと、流体の流れの
勢いは緩和されるが、計測管(13)の周囲にいわゆる
カルマン渦(P)が発生することが多かった。このた
め、カルマン渦(P)によって流入室(11)内の流体
の流れが乱れて、計測管(13)内に流入する流体の流
量が不安定になるので、計測管(13)内を流れる流体
の流量を精度よく求めることができないという問題があ
った。そして、この構造にかかる問題は、上述の超音波
を利用した流量計測の場合のみならず、その他の方法を
利用した流量計測の場合や、流速のみを計測する場合、
流体の温度その他の計測項目を計測する場合においても
同様に生じるものであった。
However, as described above, if the fluid flows into the inflow chamber (11) in a direction intersecting with the length direction of the measuring pipe (13), the flow of the fluid is increased. Although relaxed, a so-called Karman vortex (P) was often generated around the measurement tube (13). For this reason, the flow of the fluid in the inflow chamber (11) is disturbed by the Karman vortex (P), and the flow rate of the fluid flowing into the measurement pipe (13) becomes unstable, so that the fluid flows in the measurement pipe (13). There was a problem that the flow rate of the fluid could not be determined accurately. And the problem concerning this structure is not only in the case of the flow rate measurement using the above-described ultrasonic waves, but also in the case of the flow rate measurement using other methods, or when measuring only the flow velocity,
This also occurs when measuring the temperature of the fluid and other measurement items.

【0010】この発明は、上述のような技術背景に鑑み
てなされたもので、計測管の周囲における流体のカルマ
ン渦の発生を抑制することができ、ひいては流量等の計
測項目についての計測を精度よく行うことが可能な計測
装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned technical background, and can suppress the occurrence of Karman vortices of a fluid around a measurement pipe, and can therefore perform measurement of a measurement item such as a flow rate with high accuracy. It is an object of the present invention to provide a measurement device that can be performed well.

【0011】[0011]

【課題を解決するための手段】この発明は、流体流入室
と、一端部を前記流入室に臨ませ、かつ他端部を前記流
入室外に臨ませるとともに、長さ方向を前記流入室に流
入する流体の流入方向に対して交差する状態に配置され
た計測管とを備え、前記計測管の長さ方向と交差する向
きで前記流入室に流入したのち、前記計測管を通過して
流出する流体について、前記計測管通過中に、所期する
計測項目についての計測を行うものとなされた流体の計
測装置であって、前記流入室における前記計測管の周囲
に、流入流体のカルマン渦の発生抑制用の整流板が設け
られていることを特徴とする。
According to the present invention, a fluid inflow chamber, one end of which faces the inflow chamber, and the other end of which faces the outside of the inflow chamber, and flows in the lengthwise direction into the inflow chamber. A measuring pipe arranged in a state intersecting with the inflow direction of the fluid to flow into the inflow chamber in a direction intersecting with the length direction of the measuring pipe, and then flowing out through the measuring pipe. A fluid measuring device configured to perform measurement on an expected measurement item while passing through the measurement tube, wherein a Karman vortex of the inflow fluid is generated around the measurement tube in the inflow chamber. A rectifying plate for suppression is provided.

【0012】これによれば、前記計測管の長さ方向と交
差する向きで前記流入室に流入した流体は、計測管の周
囲に設けられた整流板により整流されるので、計測管の
周囲における流体のカルマン渦の発生が抑制される。
According to this, the fluid that has flowed into the inflow chamber in a direction intersecting with the length direction of the measurement pipe is rectified by the rectifying plate provided around the measurement pipe. Generation of Karman vortices in the fluid is suppressed.

【0013】なお、この発明では、交差とは、前記流入
室に流入する流体の流入方向と、前記計測管の長さ方向
とが交わる場合のみならず、前記流入室に流入する流体
の流入方向と、前記計測管の長さ方向とがねじれの関係
にある場合も含まれる。
In the present invention, the term "intersection" means not only when the inflow direction of the fluid flowing into the inflow chamber and the length direction of the measurement tube intersect, but also in the inflow direction of the fluid flowing into the inflow chamber. And the length direction of the measuring tube is in a torsional relationship.

【0014】[0014]

【発明の実施の形態】図1及び図2は、この発明に係る
計測装置を、超音波を利用した流量計測装置に適用した
状態を示す図である。
1 and 2 are views showing a state in which a measuring device according to the present invention is applied to a flow measuring device using ultrasonic waves.

【0015】図1において、(1)は流体の流量を計測
する流量計測部で、流体が流入するための流入管(8)
と流体が流出するための流出管(9)とが区画壁(1
0)を介して連結されている。(2)(3)は超音波を
送信・受信する超音波振動子で、流量計測部(1)の長
さ方向両側の内面中央に突設された収容部(1a)に、
互いに対向する態様で設けられている。(4)は超音波
振動子(2)(3)を駆動するためのパルスを発生する
パルス発生回路、(5)は超音波振動子(2)(3)で
受信した受信波を出力する増幅回路、(6)は超音波振
動子(2)(3)とパルス発生回路(4)及び増幅回路
(5)の接続を切り替える切替回路、(7)は超音波の
伝搬時間差に基づいて流体の流速、さらには流量を求め
る演算回路である。なお、図1において、図7に示した
ものと同一部分については同一の符号を付す。
In FIG. 1, (1) is a flow rate measuring section for measuring a flow rate of a fluid, and an inflow pipe (8) through which the fluid flows.
And an outflow pipe (9) through which the fluid flows out is defined by the partition wall (1).
0). (2) and (3) are ultrasonic vibrators for transmitting and receiving ultrasonic waves. The ultrasonic vibrator transmits and receives ultrasonic waves.
They are provided so as to face each other. (4) is a pulse generation circuit that generates pulses for driving the ultrasonic transducers (2) and (3), and (5) is an amplifier that outputs a received wave received by the ultrasonic transducers (2) and (3). A circuit, (6) a switching circuit for switching the connection between the ultrasonic transducers (2) and (3) and the pulse generation circuit (4) and the amplification circuit (5), and (7) a fluid for the fluid based on the propagation time difference of the ultrasonic waves. An arithmetic circuit for determining the flow velocity and further the flow rate. In FIG. 1, the same parts as those shown in FIG. 7 are denoted by the same reference numerals.

【0016】前記流量計測部(1)は、その長さ方向の
中央部よりやや超音波振動子(3)側の位置において、
横断面全域にわたって区画壁(10)が設けられてお
り、超音波振動子(2)が設けられている左側の空間が
流入室(11)となされる一方、超音波振動子(3)が
設けられている右側の空間が流出室(12)となされて
いる。そして、前記流量計測部(1)の流入室(11)
側の上壁には、前記区画壁(10)寄りの位置におい
て、流入管(8)が垂直に連結されている。このため、
流入管(8)内を流れてきた流体は、流量計測部(1)
の長さ方向と垂直な方向から流入室(11)に流入し、
該流入室(11)において流れの勢いが緩和される。ま
た、前記流量計測部(1)の流出室(12)側の上壁に
は、流出室(12)の中央位置において、流出管(9)
が垂直に連結されている。このため、流出室(12)内
の流体は、流出管(9)を介して、流量計測部(1)の
長さ方向と垂直上向きに流出する。
The flow rate measuring section (1) is located at a position slightly closer to the ultrasonic vibrator (3) than the center in the longitudinal direction.
A partition wall (10) is provided over the entire cross section, and the left space where the ultrasonic vibrator (2) is provided serves as the inflow chamber (11), while the ultrasonic vibrator (3) is provided. The space on the right side is an outflow chamber (12). And the inflow chamber (11) of the flow rate measuring section (1)
An inflow pipe (8) is vertically connected to the upper wall at a position near the partition wall (10). For this reason,
The fluid flowing in the inflow pipe (8) is measured by the flow rate measuring unit (1).
Flows into the inflow chamber (11) from a direction perpendicular to the length direction of
The flow force is reduced in the inflow chamber (11). In addition, the upper wall of the flow measuring unit (1) on the side of the outflow chamber (12) has an outflow pipe (9) at the center of the outflow chamber (12).
Are connected vertically. For this reason, the fluid in the outflow chamber (12) flows upward through the outflow pipe (9) perpendicularly to the length direction of the flow rate measurement unit (1).

【0017】また、前記流量計測部(1)内の中央部に
は、長さ方向が流量計測部(1)の長さ方向と合致した
状態で、かつ前記区画壁(10)の中央部を貫通する態
様の計測管(13)が設けられており、該計測管(1
3)によって前記流入室(11)と流出室(12)とが
連通せしめられている。これにより、流入室(11)内
に貯蓄した流体は、計測管(13)の流入室(11)側
の開口部(13d)から計測管(13)内に流入し、そ
のまま計測管(13)内を流入室(11)側から流出室
(12)側に流れ、計測管(13)の流出室(12)側
の開口部(13e)から流出室(12)に流出する。そ
して、このときに計測管(13)内を流れている流体の
流速を、後述の超音波を利用した方法で計測し、さらに
流速に基づいて流量を求めるようになっている。
The central portion of the flow measuring section (1) has a longitudinal direction coinciding with the longitudinal direction of the flow measuring section (1) and a central portion of the partition wall (10). A measurement pipe (13) having a penetrating mode is provided, and the measurement pipe (1) is provided.
The inflow chamber (11) and the outflow chamber (12) are communicated by 3). As a result, the fluid stored in the inflow chamber (11) flows into the measurement pipe (13) from the opening (13d) of the measurement pipe (13) on the inflow chamber (11) side, and directly flows into the measurement pipe (13). The gas flows from the inflow chamber (11) to the outflow chamber (12), and flows out of the measurement tube (13) through the opening (13e) on the outflow chamber (12) side to the outflow chamber (12). At this time, the flow rate of the fluid flowing in the measurement pipe (13) is measured by a method using an ultrasonic wave, which will be described later, and the flow rate is determined based on the flow rate.

【0018】なお、この計測管(13)の長さ方向両端
部(13a)(13b)は、先端部に向かって拡径とな
る横断面円形のホーン型に形成され、流入室(11)内
の流体がスムーズに計測管(13)内に流入すると共
に、計測管(13)内の流体がスムーズに流入室(1
1)に流出するようになっている。また、計測管(1
3)の中間部(13c)は、中央部から両端部(13
a)(13b)にかけて緩やかに縮径する内面に形成さ
れており、超音波振動子(2)(3)から送信された超
音波の大部分が、この中間部(13c)内面で反射した
あと、対向する超音波振動子(3)(2)に受信される
ようになっている。
Both ends (13a) and (13b) of the measuring tube (13) in the longitudinal direction are formed in a horn shape having a circular cross section whose diameter increases toward the front end portion. Fluid smoothly flows into the measurement pipe (13), and the fluid in the measurement pipe (13) smoothly flows into the inflow chamber (1).
It flows out in 1). In addition, measurement pipe (1
The intermediate portion (13c) of 3) extends from the center portion to both end portions (13c).
a) It is formed on the inner surface whose diameter gradually decreases toward (13b), and most of the ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) are reflected on the inner surface of the intermediate portion (13c). , And are received by the opposed ultrasonic transducers (3) and (2).

【0019】また、流量計測部(1)の流入室(11)
には、幅方向(図1の紙面の厚さ方向)の中央位置おい
て、計測管(13)が存在する領域と、超音波振動子
(2)及び計測管(13)の間の領域とを除く縦断面全
域にわたって、整流板(14)(14)が計測管(1
3)の長さ方向に、かつ垂直に設けられている。この整
流板(14)は、流入管(8)から流入室(11)に流
入してきた流体の流れを整流するものである。具体的に
説明すると、流入管(8)を流れてきた流体は、流入管
(8)と流量計測部(1)の連結部において、流量計測
部(1)の幅方向両側に分かれながら流入室(11)に
流入する。そして、それぞれ別々に計測管(13)上方
の整流板(14)の側面、計測管(13)の外周面、及
び計測管(13)下方の整流板の側面を順に沿うように
して流れたあと、そのまま整流板の(14)の側面に沿
って、計測管(13)の流入室(11)側の開口部(1
3d)までスムーズに流れるので、計測管(13)の周
囲における流体のカルマン渦の発生を抑制することがで
きる。
Also, the inflow chamber (11) of the flow rate measuring section (1).
In the center position in the width direction (the thickness direction of the paper surface of FIG. 1), there is a region where the measurement tube (13) exists, and a region between the ultrasonic transducer (2) and the measurement tube (13). The flow straightening plates (14) and (14) are connected to the measuring tube (1) over the entire vertical cross section except
3) It is provided vertically and vertically. The rectifying plate (14) rectifies the flow of fluid flowing from the inflow pipe (8) into the inflow chamber (11). More specifically, the fluid flowing through the inflow pipe (8) flows into the inflow chamber at the connection between the inflow pipe (8) and the flow measurement section (1) while being divided on both sides in the width direction of the flow measurement section (1). (11). After flowing along the side surface of the current plate (14) above the measurement tube (13), the outer peripheral surface of the measurement tube (13), and the side surface of the current plate below the measurement tube (13), respectively. The opening (1) of the measuring pipe (13) on the inflow chamber (11) side along the side surface of the straightening plate (14) as it is.
Since the fluid flows smoothly up to 3d), the generation of Karman vortex of the fluid around the measuring pipe (13) can be suppressed.

【0020】次に、図1に示す流量計測装置を用いた流
量計測方法を説明する。
Next, a flow measurement method using the flow measurement device shown in FIG. 1 will be described.

【0021】まず、流入管(8)に流体を供給すると、
その流入管(8)を流れてきた流体は、流入管(8)と
流量計測部(1)の連結部において、流量計測部(1)
の幅方向両側に分かれながら流入室(11)に流入す
る。そして、それぞれ別々に計測管(13)上方の整流
板(14)の側面、計測管(13)の外周面、及び計測
管(13)下方の整流板(14)の側面を順に沿うよう
にして流れたあと、計測管(13)下方の整流板(1
4)に沿って計測管(13)の開口部(13d)まで流
れていく。このとき、流入室(11)に流入されてきた
流体は、該流入室(11)においてその流れの勢いが緩
和されると共に、計測管(13)の周囲に設けられた整
流板(14)によりカルマン渦の発生が抑制されること
によって、流入室(11)内をスムーズに流れることが
できる。
First, when a fluid is supplied to the inflow pipe (8),
The fluid that has flowed through the inflow pipe (8) is connected to the inflow pipe (8) and the flow measurement section (1) by the flow measurement section (1).
Flows into the inflow chamber (11) while being divided on both sides in the width direction. Then, separately, the side surface of the rectifying plate (14) above the measuring tube (13), the outer peripheral surface of the measuring tube (13), and the side surface of the rectifying plate (14) below the measuring tube (13) are sequentially arranged. After flowing, the current plate (1) below the measuring tube (13)
It flows to the opening (13d) of the measuring tube (13) along 4). At this time, the flow of the fluid flowing into the inflow chamber (11) is reduced in the inflow chamber (11), and the flow of the fluid is reduced by the flow straightening plate (14) provided around the measurement pipe (13). By suppressing the generation of Karman vortices, it is possible to flow smoothly in the inflow chamber (11).

【0022】そして、計測管(13)の流入室(11)
側の開口部(13d)に到達した流体は、該開口部(1
3d)から計測管(13)内に流入し、そのまま計測管
(13)内を流入室(11)側から流出室(12)側に
流れ、計測管(13)の流出室(12)側の開口部(1
3e)から流出室(12)に流出したあと、流出管
(9)に流出していく。
The inflow chamber (11) of the measuring pipe (13)
The fluid that has reached the opening (13d) on the side of the
3d) flows into the measurement pipe (13), flows through the measurement pipe (13) from the inflow chamber (11) side to the outflow chamber (12) side, and flows from the measurement pipe (13) to the outflow chamber (12) side. Opening (1
After flowing out of the outflow chamber (12) from 3e), it flows out to the outflow pipe (9).

【0023】この状態で、計測管(13)内を流れる流
体の流量を計測するべく、パルス発生回路から超音波振
動子(2)を駆動するためのパルスを出力すると、その
超音波振動子(2)の振動に応じた超音波が送信され
る。そして、その超音波の大部分は、そのまま対向する
超音波振動子(3)に受信されるか、あるいは計測管
(13)の中間部(13c)の内面で反射したあと、流
出側の超音波振動子(3)に受信される。
In this state, when a pulse for driving the ultrasonic vibrator (2) is output from the pulse generating circuit in order to measure the flow rate of the fluid flowing in the measuring tube (13), the ultrasonic vibrator ( Ultrasonic waves corresponding to the vibration of 2) are transmitted. Most of the ultrasonic waves are received as they are by the ultrasonic transducer (3) facing the same, or after being reflected by the inner surface of the intermediate portion (13c) of the measuring tube (13), the ultrasonic waves on the outflow side are returned. Received by the vibrator (3).

【0024】次に、切替回路により接続を切り替え、超
音波振動子(3)から超音波を送信すると、上述と同様
にして、超音波の大部分は対向する超音波振動子(2)
に受信される。
Next, when the connection is switched by the switching circuit and the ultrasonic wave is transmitted from the ultrasonic vibrator (3), most of the ultrasonic wave is transmitted in the same manner as described above.
Is received.

【0025】しかして、演算回路(7)によって、流入
室(11)側の超音波振動子(2)から流れに対して順
方向に送信された超音波が、流出室(12)側の超音波
振動子(3)に受信されるまでの伝搬時間と、流出室
(12)側の超音波振動子(3)から流れに対して逆方
向に送信された超音波が、流入室(11)側の超音波振
動子(2)に受信されまでの伝搬時間との差から、計測
管(13)内を流れる流体の流速を導出し、さらに該流
速に基づいて、計測管(13)内を流れる流体の流量を
求める。
The ultrasonic wave transmitted from the ultrasonic vibrator (2) on the inflow chamber (11) side in the forward direction by the arithmetic circuit (7) is transmitted to the supersonic wave on the outflow chamber (12) side. The propagation time until the ultrasonic wave is received by the ultrasonic oscillator (3) and the ultrasonic wave transmitted in the opposite direction to the flow from the ultrasonic oscillator (3) on the outflow chamber (12) side are transmitted to the inflow chamber (11). The flow velocity of the fluid flowing through the measurement pipe (13) is derived from the difference from the propagation time until reception by the ultrasonic transducer (2) on the side, and the flow rate in the measurement pipe (13) is further determined based on the flow velocity. Find the flow rate of the flowing fluid.

【0026】なお、以上の実施形態では、整流板(1
4)を、流入室(11)の幅方向中央位置において、計
測管(13)が存在する領域と、超音波振動子(2)及
び計測管(13)の間の領域とを除く縦断面全域にわた
って設けるものとしたが、これに限られず、図3に示す
ように、整流板(15)を計測管(13)の下方(又は
上方)にのみ設けてもよい。あるいは、整流板を計測管
(13)の長さ方向の一部分、例えば、図4に示すよう
に整流板(16)を計量管(13)の中間部分に設けた
り、図6に示すように整流板(17)を区画壁(10)
から計量管(13)の開口部(13d)にわたる部分に
設けるものとしてもよい。要は、計測管(13)の周囲
における流体のカルマン渦の発生を抑制できるように、
整流板を計測管(13)の周囲の所定箇所に設けるもの
とすればよい。
In the above embodiment, the current plate (1
4) The entire vertical cross-section of the inflow chamber (11) at the center in the width direction except for the region where the measurement tube (13) exists and the region between the ultrasonic transducer (2) and the measurement tube (13). However, the present invention is not limited to this, and the straightening plate (15) may be provided only below (or above) the measuring tube (13) as shown in FIG. Alternatively, the current plate may be provided in a part of the length of the measuring tube (13) in the longitudinal direction, for example, a current plate (16) may be provided at an intermediate portion of the measuring tube (13) as shown in FIG. Board (17) to partition wall (10)
To the opening (13d) of the measuring tube (13). In short, so that the generation of Karman vortex of the fluid around the measurement tube (13) can be suppressed,
The current plate may be provided at a predetermined location around the measurement tube (13).

【0027】また、流入管(8)を流量計測部(1)に
垂直に連結することにより、流体を計測管(13)に対
して垂直な方向から流入室(11)に流入せしめるもの
としたが、必ずしも直角でなくてもよく、計量管(1
3)の長さ方向と交差する向きで流体を流入室(11)
に流入せしめるものであればよい。
Also, by connecting the inflow pipe (8) vertically to the flow rate measuring section (1), the fluid can flow into the inflow chamber (11) from a direction perpendicular to the measurement pipe (13). However, it is not always necessary to use a right angle.
3) Inflow the fluid in a direction intersecting the length direction with the inflow chamber (11)
Anything can be used as long as it can be flowed into.

【0028】また、計量管(13)の端部(13b)を
流出室(12)に臨ませるものとしたが、計量管(1
3)の端部(13b)を直接流出管(9)に直接連結す
るものとしてもよい。
The end (13b) of the measuring tube (13) faces the outflow chamber (12).
The end (13b) of 3) may be directly connected to the outflow pipe (9).

【0029】また、超音波を利用した流量計測のみなら
ず、その他の方法を利用した流量計測であってもよい
し、さらに流量でなく、他の計測項目を計測するものと
してもよい。
In addition to the flow rate measurement using the ultrasonic wave, the flow rate measurement may be performed using another method. Further, not only the flow rate but also other measurement items may be measured.

【0030】[0030]

【発明の効果】この発明に係る流量計測装置は、流入室
における前記計測管の周囲に、流入流体のカルマン渦の
発生抑制用の整流板が設けられていることを特徴とする
から、前記計測管の長さ方向と交差する向きで前記流入
室に流入した流体は、計測管の周囲に設けられた整流板
により整流され、計測管の周囲における流体のカルマン
渦の発生を抑制することができる。従って、流入室内の
流体は、カルマン渦により流れを乱されることなく計測
管内にスムーズに流入していくので、流体の流量等の計
測項目の計測を精度よく行うことが可能となる。
The flow rate measuring device according to the present invention is characterized in that a rectifying plate for suppressing the generation of Karman vortex of the inflowing fluid is provided around the measurement pipe in the inflow chamber. Fluid flowing into the inflow chamber in a direction intersecting with the length direction of the pipe is rectified by a rectifying plate provided around the measurement pipe, thereby suppressing generation of Karman vortex of the fluid around the measurement pipe. . Therefore, the fluid in the inflow chamber smoothly flows into the measurement pipe without being disturbed by the Karman vortex, so that it is possible to accurately measure the measurement items such as the flow rate of the fluid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態に係る流量計測装置を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a flow measurement device according to an embodiment of the present invention.

【図2】図1の流量計測装置のI−I線矢視断面図であ
る。
FIG. 2 is a cross-sectional view of the flow measurement device of FIG.

【図3】整流板を計量管の下方に設けた流量計測装置を
示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a flow rate measuring device in which a current plate is provided below a measuring pipe.

【図4】整流板を計量管の中間部に設けた流量計測装置
を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a flow rate measuring device in which a current plate is provided at an intermediate portion of a measuring pipe.

【図5】整流板を区画壁から計量管の開口部にわたる部
分に設けた流量計測装置を示す概略構成図である。
FIG. 5 is a schematic configuration diagram showing a flow rate measuring device in which a flow straightening plate is provided at a portion extending from a partition wall to an opening of a measuring pipe.

【図6】超音波流速計測方法を説明するための概略構成
図である。
FIG. 6 is a schematic configuration diagram for explaining an ultrasonic flow velocity measuring method.

【図7】従来の流量計測装置を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a conventional flow measurement device.

【符号の説明】[Explanation of symbols]

1・・・流量計測部 2、3・・・超音波振動子 8・・・流入管 9・・・流出管 10・・・区画壁 11・・・流入室 12・・・流出室 13・・・計測管 14・・・整流板 DESCRIPTION OF SYMBOLS 1 ... Flow measurement part 2, 3 ... Ultrasonic vibrator 8 ... Inflow pipe 9 ... Outflow pipe 10 ... Partition wall 11 ... Inflow chamber 12 ... Outflow chamber 13 ...・ Measurement tube 14 ・ ・ ・ Rectifier plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体流入室と、一端部を前記流入室に臨
ませ、かつ他端部を前記流入室外に臨ませるとともに、
長さ方向を前記流入室に流入する流体の流入方向に対し
て交差する状態に配置された計測管とを備え、 前記計測管の長さ方向と交差する向きで前記流入室に流
入したのち、前記計測管を通過して流出する流体につい
て、前記計測管通過中に、所期する計測項目についての
計測を行うものとなされた流体の計測装置であって、 前記流入室における前記計測管の周囲に、流入流体のカ
ルマン渦の発生抑制用の整流板が設けられていることを
特徴とする流体の計測装置。
A fluid inflow chamber having one end facing the inflow chamber and the other end facing the outside of the inflow chamber;
A measuring pipe arranged in a state intersecting the length direction with respect to the inflow direction of the fluid flowing into the inflow chamber, after flowing into the inflow chamber in a direction intersecting with the length direction of the measurement pipe, A fluid measuring device configured to measure a desired measurement item while passing through the measurement tube, for a fluid flowing out of the measurement tube, and around the measurement tube in the inflow chamber. A flow rectifying plate for suppressing generation of Karman vortices in the inflow fluid.
JP11107364A 1999-04-15 1999-04-15 Measuring device Pending JP2000298046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11107364A JP2000298046A (en) 1999-04-15 1999-04-15 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11107364A JP2000298046A (en) 1999-04-15 1999-04-15 Measuring device

Publications (1)

Publication Number Publication Date
JP2000298046A true JP2000298046A (en) 2000-10-24

Family

ID=14457220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11107364A Pending JP2000298046A (en) 1999-04-15 1999-04-15 Measuring device

Country Status (1)

Country Link
JP (1) JP2000298046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426039A (en) * 2011-09-26 2012-04-25 威海市天罡仪表股份有限公司 Rotary current stabilizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426039A (en) * 2011-09-26 2012-04-25 威海市天罡仪表股份有限公司 Rotary current stabilizer
CN102426039B (en) * 2011-09-26 2012-11-28 威海市天罡仪表股份有限公司 Rotary current stabilizer

Similar Documents

Publication Publication Date Title
JP2002520584A (en) Induction mode flow measurement system
JPWO2006040996A1 (en) Ultrasonic flow meter
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
JP2002131105A (en) Ultrasonic flow rate measuring method
JP2895704B2 (en) Ultrasonic flow meter
EP1726920B1 (en) Method for ultrasonic Doppler fluid flow measurement
JPH05223608A (en) Ultrasonic flowmeter
JP2000298046A (en) Measuring device
JP2015169433A (en) Ultrasonic sound velocity measurement apparatus and ultrasonic sound velocity measurement method
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JP2002131104A (en) Ultrasonic flow rate measuring system
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP2001050786A (en) Measuring device
JP3497279B2 (en) Ultrasonic flow meter
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP2002267513A (en) Ultrasonic flowmeter
KR20100007218A (en) Pipe apparatus for a flow measurement to use ultrasonic waves
JP2000275266A (en) Ultrasonic flow velocity measuring device
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP2004239868A (en) Ultrasonic flowmeter
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP2000171478A (en) Ultrasonic flow velocity-measuring apparatus