JP2006349439A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2006349439A
JP2006349439A JP2005174728A JP2005174728A JP2006349439A JP 2006349439 A JP2006349439 A JP 2006349439A JP 2005174728 A JP2005174728 A JP 2005174728A JP 2005174728 A JP2005174728 A JP 2005174728A JP 2006349439 A JP2006349439 A JP 2006349439A
Authority
JP
Japan
Prior art keywords
ultrasonic
semicircular
receiver
transmitter
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005174728A
Other languages
Japanese (ja)
Inventor
Shigetada Matsushita
重忠 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FLOW CELL KK
Original Assignee
NIPPON FLOW CELL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FLOW CELL KK filed Critical NIPPON FLOW CELL KK
Priority to JP2005174728A priority Critical patent/JP2006349439A/en
Publication of JP2006349439A publication Critical patent/JP2006349439A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily attach a ultrasonic vibrator to a laid pipe, in an ultrasonic flowmeter which has the same method as one with annular ultrasonic vibrator. <P>SOLUTION: Two ultrasonic transmitter/receiver are placed with a distance so as to contact the pipe of the flow path of fluid to be measured. These are mutually functioned as ultrasonic transmitter and ultrasonic receiver, and the ultrasonic flowmeter calculates flow velocity from an upstream ultrasonic transmission time and a down stream ultrasonic transmission time. Each of the ultrasonic transmitter/receiver is constituted of two semicircular ultrasonic vibrators. A tightening mechanism for surrounding the pipe and fixing the two semicircular ultrasonic vibrators is provided. The two semicircular ultrasonic vibrators fixed at each length position of the pipe vibrate with the same phase, and are electrically connected so as to output with the same phase as the vibration of the measuring pipe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定流体を流す測定管に2個の超音波送受信機を流れに対して距離を隔てて設け、この2個の超音波送受信機を一方が超音波送信器、他方が超音波受信器として相互に作動させ、下流方向超音波伝播時間と上流方向超音波伝播時間を測定して流速を算出する、いわゆる伝播時間差方式の超音波流量計に関するものである。   In the present invention, two ultrasonic transmitters / receivers are provided in a measurement tube for flowing a fluid to be measured at a distance from the flow. One of the two ultrasonic transmitters / receivers is an ultrasonic transmitter and the other is an ultrasonic wave. The present invention relates to a so-called propagation time difference type ultrasonic flowmeter which operates as a receiver and calculates a flow velocity by measuring a downstream ultrasonic wave propagation time and an upstream ultrasonic wave propagation time.

超音波流量計は配管の内部に機構を設ける必要が無いので測定に伴う圧力損失が全く無い、正逆流いずれも流速ゼロから測定可能であるなどの優れた特徴がある。超音波流量計には原理的には伝播時間差方式とドップラー方式とがあるが、精度が良好な伝播時間差方式が一般的である。そして伝播時間差方式の超音波流量計の一般的な形態としては、超音波が管体に斜めに入射するように超音波振動子をプラスチックのくさびをに取り付けたものを、管体の外面において斜めに向かい合わせの位置に設け、この2個の超音波振動子を超音波送受信機として相互に作動させるものである。これにより下流方向の超音波伝播時間と上流方向の超音波伝播時間を測定して流速を算出することができる。   The ultrasonic flowmeter does not require any mechanism inside the pipe, so there is no pressure loss associated with the measurement, and it has excellent features such as that both forward and reverse flows can be measured from zero flow velocity. In principle, an ultrasonic flowmeter has a propagation time difference method and a Doppler method, but a propagation time difference method with good accuracy is generally used. As a general form of the propagation time difference type ultrasonic flowmeter, an ultrasonic transducer attached to a plastic wedge so that the ultrasonic wave is obliquely incident on the pipe body is obliquely formed on the outer surface of the pipe body. The two ultrasonic transducers are mutually operated as an ultrasonic transmitter / receiver. Accordingly, the flow velocity can be calculated by measuring the ultrasonic propagation time in the downstream direction and the ultrasonic propagation time in the upstream direction.

上記のような超音波振動子からくさびを介して管体に対して斜め方向に超音波を打ち込む方法においては、管体の径はこのような超音波振動子ないしはくさびを取り付けられるだけの大きさが必要であり、また管が細くなると測定間隔も非常に短くなり、十分な測定精度が得られなかった。また上流下流の超音波振動子の間隔を十分に取る目的で、管路を直角に折り曲げて直角部の外面から管体の軸方向に超音波を打ち込む方法も広く行なわれているが、管体が細くなると管体の断面積が超音波振動子の振動面積に比べ非常に小さくなり、管内の流体に十分な超音波エネルギーを打ち込むことができなくなる。   In the method of driving ultrasonic waves obliquely with respect to the pipe body from the ultrasonic vibrator as described above, the diameter of the pipe body is large enough to attach such an ultrasonic vibrator or wedge. In addition, when the tube is thinned, the measurement interval becomes very short, and sufficient measurement accuracy cannot be obtained. Also, for the purpose of ensuring sufficient spacing between the upstream and downstream ultrasonic transducers, a method of bending the pipe at a right angle and driving ultrasonic waves from the outer surface of the right angle portion in the axial direction of the pipe body is widely performed. If the thickness of the tube becomes thinner, the cross-sectional area of the tube body becomes very small compared to the vibration area of the ultrasonic transducer, and sufficient ultrasonic energy cannot be injected into the fluid in the tube.

そこで細い管における流量の測定を可能にするため特開平8−86675号にあるような環状の超音波振動子を使用する方法が考え出された。これは2個の環状圧電体などの超音波振動子を、真直ぐな管に接触するように距離を隔てて設けるものである。環状の超音波振動子は測定管の外面にはめることができるので、細い管においても超音波による流量測定が適用できるようになった。しかもこの方法では超音波が管の断面全体を伝播するため乱流と層流のような流速分布の影響を受けにくいので、数ミリ以下の小口径の測定管に微小流量を流す時にも平均流量が得られるという長所がある。さらに上下流に配置する一対の超音波振動子の距離を十分の長さにできることから、上流方向と下流方向への伝播時間の差を大きくすれば測定感度を高められるという長所もある。
特開平8−86675号公報
Therefore, a method of using an annular ultrasonic transducer as disclosed in Japanese Patent Laid-Open No. 8-86675 has been devised to enable measurement of the flow rate in a thin tube. In this method, two ultrasonic transducers such as annular piezoelectric bodies are provided at a distance so as to come into contact with a straight tube. Since the annular ultrasonic transducer can be fitted on the outer surface of the measuring tube, flow measurement using ultrasonic waves can be applied even to a thin tube. Moreover, since the ultrasonic wave propagates through the entire cross section of the tube, this method is not easily affected by the flow velocity distribution such as turbulent flow and laminar flow. There is an advantage that can be obtained. Furthermore, since the distance between the pair of ultrasonic transducers arranged upstream and downstream can be made sufficiently long, there is an advantage that the measurement sensitivity can be increased by increasing the difference in the propagation time in the upstream direction and the downstream direction.
JP-A-8-86675

ところで上記のような環状の超音波振動子を使用する超音波流量計の場合、超音波振動子を貫通して測定管を設ける必要があるが、振動子から測定管に振動が伝わるように密着した状態で取り付けるのは難しい。したがって測定管にあらかじめ2個の超音波振動子を取り付けた装置が提供され、これの両端を継手で管路に接続して使用することが一般に行なわれる。このため既設の管路をそのまま使用して流量を測定することは困難であった。しかし例えば医療分野における薬剤注入のための管においては、別の管を接続すると滅菌状態を維持するのが困難になるという問題がある。本発明はこのようなことから、上記のような環状の超音波振動子によるものと同じ方式の超音波流量計において、既設の管路への超音波振動子の取り付けが容易にできるものを提供することを目的とする。   By the way, in the case of an ultrasonic flowmeter using an annular ultrasonic transducer as described above, it is necessary to provide a measurement tube through the ultrasonic transducer, but it is in close contact so that vibration is transmitted from the transducer to the measurement tube. It is difficult to install in the state. Therefore, an apparatus in which two ultrasonic transducers are attached to a measurement tube in advance is provided, and it is generally performed by connecting both ends of the measurement tube to a pipeline with a joint. For this reason, it was difficult to measure the flow rate using the existing pipeline as it is. However, for example, a tube for injecting a medicine in the medical field has a problem that it becomes difficult to maintain a sterilized state when another tube is connected. In view of the above, the present invention provides an ultrasonic flowmeter of the same type as that of the above-described annular ultrasonic transducer, which can easily attach the ultrasonic transducer to an existing pipe line. The purpose is to do.

本発明は前記課題を解決するものであって、被測定流体の流路の管体に接触するように距離を隔てて2個の超音波送受信器を設け、前記2個の超音波送受信器を一方が超音波送信器、他方が超音波受信器として相互に作動させ、被測定流体の上流側の超音波送受信器を超音波送信器としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波送受信器を超音波送信器としたときの上流方向超音波伝播時間により流速を算出する超音波流量計において、前記それぞれの超音波送受信器は2個の半円状の超音波振動子によって構成され、前記それぞれ2個の半円状の超音波振動子を管体を囲んで固定する締結機構がそれぞれ設けられており、管体のそれぞれの長さ位置に固定された2個の半円状の超音波振動子は同位相の振動をし、また測定管の振動に対して同位相の出力をするように電気的に接続されていることを特徴とする超音波流量計である。   The present invention solves the above-described problem, and provides two ultrasonic transmitters / receivers at a distance so as to come into contact with a pipe body of a fluid to be measured. One is an ultrasonic transmitter, the other is an ultrasonic receiver, and the other is an ultrasonic transmitter as the ultrasonic transmitter / receiver on the upstream side of the measured fluid. In the ultrasonic flowmeter for calculating the flow velocity by the ultrasonic propagation time in the upstream direction when the ultrasonic transmitter / receiver on the downstream side is an ultrasonic transmitter, each of the ultrasonic transmitter / receiver has two semicircular Each of the fastening mechanisms is composed of a sound wave oscillator, and is provided with a fastening mechanism for fixing the two semicircular ultrasonic vibrators around the tube body, and is fixed to each length position of the tube body. The semicircular ultrasonic transducers vibrate in the same phase. It is an ultrasonic flowmeter according to claim in which relative vibration of the measuring tube are electrically connected to the output of the same phase.

また本発明は、被測定流体の流路の管体に接触するように距離を隔てて2個の超音波送受信器を設け、前記2個の超音波送受信器を一方が超音波送信器、他方が超音波受信器として相互に作動させ、被測定流体の上流側の超音波送受信器を超音波送信器としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波送受信器を超音波送信器としたときの上流方向超音波伝播時間により流速を算出する超音波流量計において、前記それぞれの超音波送受信器は2個の半円状の超音波振動子によって構成され、前記それぞれ2個の半円状の超音波振動子を管体を囲んだ状態で管体の長さ方向に距離を隔てて固定する締結機構が設けられており、管体のそれぞれの長さ位置に固定された2個の半円状の超音波振動子は同位相の振動をし、また測定管の振動に対して同位相の出力をするように電気的に接続されていることを特徴とする超音波流量計である。   In the present invention, two ultrasonic transmitters / receivers are provided at a distance so as to be in contact with the pipe body of the flow path of the fluid to be measured, one of the two ultrasonic transmitters / receivers being an ultrasonic transmitter and the other Are mutually operated as an ultrasonic receiver and the ultrasonic transmitter / receiver on the upstream side of the fluid to be measured is used as an ultrasonic transmitter, and the ultrasonic transmitter / receiver on the downstream side of the fluid to be measured In the ultrasonic flowmeter for calculating the flow velocity by the ultrasonic propagation time in the upstream direction when the ultrasonic transmitter is used as the ultrasonic transmitter, each of the ultrasonic transmitters / receivers is constituted by two semicircular ultrasonic transducers, A fastening mechanism is provided for fixing two semicircular ultrasonic transducers with a distance in the longitudinal direction of the tubular body in a state of surrounding the tubular body, and at each length position of the tubular body. Two fixed semicircular ultrasonic transducers vibrate in the same phase, It is an ultrasonic flowmeter according to claim in which relative vibration of the measuring tube are electrically connected to the output of the same phase.

また上記それぞれの超音波流量計において、管体のそれぞれの長さ位置に固定された2個の半円状の超音波振動子は、相互に接触していないことも特徴とする。   Further, in each of the ultrasonic flowmeters described above, the two semicircular ultrasonic transducers fixed at the respective length positions of the tubular body are not in contact with each other.

本発明の超音波流量計によれば、既設の管路に超音波振動子を取り付けることにより、専用の測定管に環状の超音波振動子があらかじめ取り付けられた超音波流量計と同等の動作をさせることができる。したがって環状の超音波振動子の使用が特に適している小径の管路において、途中に超音波流量計専用の測定管を接続せずに既設の管路のままで流量測定が行なえる。   According to the ultrasonic flowmeter of the present invention, by attaching an ultrasonic vibrator to an existing pipe line, an operation equivalent to that of an ultrasonic flowmeter in which an annular ultrasonic vibrator is attached in advance to a dedicated measurement pipe is performed. Can be made. Therefore, in a small-diameter pipe that is particularly suitable for use of an annular ultrasonic transducer, the flow rate can be measured with the existing pipe without connecting a measuring pipe dedicated to the ultrasonic flowmeter.

図1は本発明の超音波流量計の概念図であって、主要な部分は被測定流体の流路の管体1に接触するように距離を隔てて設けられた2個の超音波送受信器2、3と、これによる測定データを入力して最終的には流速ないしは流量を算出する制御部からなる。超音波送受信器2、3は本発明においては従来と異なる特別な形態のものを使用するので後に詳細に説明する。制御部においては2つの超音波送受信器2、3が、2回路連動式の切替スイッチ7を経て電気パルス励起部9と信号増幅器10とに交互に接続されるようになっている。図中8は切替スイッチ制御部、11は測定・演算部である。測定・演算部11は切替スイッチ制御部8や電気パルス励起部9に操作指令を送るとともに、信号増幅器10からの信号を入力して下流方向超音波伝播時間、上流方向超音波伝播時間および超音波伝播波形の周期もしくは周波数などの測定データから流量を出力する。   FIG. 1 is a conceptual diagram of an ultrasonic flowmeter according to the present invention. The main part is two ultrasonic transmitters / receivers provided at a distance so as to be in contact with the tube 1 of the flow path of the fluid to be measured. 2 and 3 and a control unit for inputting measurement data and calculating a flow rate or flow rate. The ultrasonic transmitters / receivers 2 and 3 use special forms different from the conventional ones in the present invention, and will be described in detail later. In the control unit, two ultrasonic transmitters / receivers 2 and 3 are alternately connected to the electric pulse excitation unit 9 and the signal amplifier 10 via a two-circuit interlocking type changeover switch 7. In the figure, 8 is a changeover switch control unit, and 11 is a measurement / calculation unit. The measurement / calculation unit 11 sends an operation command to the changeover switch control unit 8 and the electric pulse excitation unit 9 and inputs a signal from the signal amplifier 10 to input the downstream ultrasonic wave propagation time, the upstream ultrasonic wave propagation time, and the ultrasonic wave. The flow rate is output from measurement data such as the period or frequency of the propagation waveform.

上記のように2個の超音波送受信器を一方が超音波送信器、他方が超音波受信器として相互に作動させ、被測定流体の上流側の超音波送受信器を超音波送信器としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波送受信器を超音波送信器としたときの上流方向超音波伝播時間により流速を算出する。すなわち流体中の音速をc、流体の流速をV、2つの超音波送受信器間の距離をL、下流方向の超音波伝播時間をT1 、上流方向の超音波伝播時間をT2 とすると、T1 =L/(c+V)、およびT2 =L/(c−V)となる。上流方向と下流方向の伝播時間の差をΔT、上流方向と下流方向の平均伝播時間をT0 として、c≫Vを考慮に入れてこれらの式を整理すると、V=ΔT・L/(2T0 2)となり、流体中の音速cを格別知ることなしに流速Vが求まることになる。ただし実際上はこのような数式が成立するのは測定管の影響が無い場合に限られる。管内の超音波伝播速度が測定管の振動の影響を受けるため、精確な流量の測定には音速のデータなどに基づいて補正する方法が提案されているが、本発明に関係ないのでその詳細については述べない。 When two ultrasonic transmitters / receivers are operated as one ultrasonic transmitter and the other as an ultrasonic receiver as described above, and the ultrasonic transmitter / receiver upstream of the fluid to be measured is used as the ultrasonic transmitter The flow velocity is calculated from the downstream ultrasonic propagation time and the upstream ultrasonic propagation time when the ultrasonic transmitter / receiver downstream of the fluid to be measured is an ultrasonic transmitter. That is, when the velocity of sound in the fluid is c, the flow velocity of the fluid is V, the distance between the two ultrasonic transceivers is L, the ultrasonic propagation time in the downstream direction is T 1 , and the ultrasonic propagation time in the upstream direction is T 2 , T 1 = L / (c + V) and T 2 = L / (c−V). When the difference between the propagation time in the upstream direction and the downstream direction is ΔT, the average propagation time in the upstream direction and the downstream direction is T 0 , and these equations are arranged considering c >> V, V = ΔT · L / (2T 0 2 ), and the flow velocity V can be obtained without specially knowing the speed of sound c in the fluid. However, in practice, such a mathematical formula is established only when there is no influence of the measuring tube. Since the ultrasonic propagation velocity in the tube is affected by the vibration of the measurement tube, a method for correcting the accurate flow rate based on the sound velocity data has been proposed, but the details are not related to the present invention. Does not say.

本発明の超音波流量計は超音波送受信器の形態に特徴を有するが、図2は本発明の超音波送受信器の正面図、図3はこれの管体に平行な断面図である。2つの超音波送受信器2、3が流体の流路である管体1に沿って間隔を置いて設けられている。管体自体は流量測定に当然必須のものであるが既設の配管でも良く、本発明の超音波流量計自体としては必ず用意するものではない。2つの超音波送受信器2、3は同じ構成のものであるが、そのそれぞれは2個の半円状の超音波振動子21、22および31、32から成っている。この2個の半円状の超音波振動子は流量測定時には合わせて環状になるように管体を囲んで取り付けられる。半円状の超音波振動子の内径は管体の外径と一致しており、管体に密着して取り付けられる。   The ultrasonic flowmeter of the present invention is characterized by the form of an ultrasonic transmitter / receiver. FIG. 2 is a front view of the ultrasonic transmitter / receiver of the present invention, and FIG. 3 is a cross-sectional view parallel to the tube. Two ultrasonic transmitters / receivers 2 and 3 are provided at intervals along the tube 1 which is a fluid flow path. Of course, the pipe body itself is indispensable for the flow rate measurement, but an existing pipe may be used, and the ultrasonic flowmeter itself of the present invention is not necessarily prepared. The two ultrasonic transmitters / receivers 2 and 3 have the same configuration, but each includes two semicircular ultrasonic transducers 21 and 22 and 31 and 32. These two semicircular ultrasonic transducers are attached so as to surround the tube so as to form a ring shape when the flow rate is measured. The inner diameter of the semicircular ultrasonic transducer coincides with the outer diameter of the tube, and is attached in close contact with the tube.

上記の超音波振動子の材質としては、たとえばPZT(ジルコン・チタン酸鉛)などの圧電体に電極を設けた圧電振動子が使用できる。特に半円の形状における円の軸に直角な両面に電極を設けたものが適しており、電界の方向と直角な方向の歪を発生させる圧電横効果によって円の軸に平行な面、すなわち管体に接触する面を振動させることができる。なお振動子の内面と管体との間に隙間がある場合にこれを埋めて管体に密着させるため、超音波振動子の取り付けの際に適当な厚さのプラスチックなどの半円状のフェルールを間に挟んでもよい。   As a material of the above ultrasonic vibrator, for example, a piezoelectric vibrator in which an electrode is provided on a piezoelectric body such as PZT (zircon / lead titanate) can be used. In particular, a semi-circular shape with electrodes provided on both sides perpendicular to the axis of the circle is suitable. The surface in contact with the body can be vibrated. If there is a gap between the inner surface of the transducer and the tube, it will be filled and closely attached to the tube, so a semi-circular ferrule such as plastic of appropriate thickness will be attached when installing the ultrasonic transducer. May be sandwiched between them.

上記のようにそれぞれ2個の半円状の超音波振動子21、22および31、32を合わせて環状になるように管体に固定する手段として、それぞれ締結機構4、5が設けられている。締結機構の構成は両方とも同じであるので図2に示されている側の締結機構4について説明すると、それぞれの半円状の超音波振動子21、22の外周を取り囲む半円形状の振動子保持具41、42と、これら振動子保持具の両端に設けたフランジ部を相互に止める2本のねじ43、44からなっている。なおそれぞれの超音波振動子たとえば21と、それぞれの振動子保持具たとえば41とは接着などの手段で所定に位置にあらかじめ固定することが、管体への着脱を迅速に行なうために好ましい。   As described above, the fastening mechanisms 4 and 5 are provided as means for fixing the two semicircular ultrasonic transducers 21, 22, 31, and 32 to the tubular body so as to form an annular shape. . Since both of the fastening mechanisms have the same configuration, the fastening mechanism 4 on the side shown in FIG. 2 will be described. Semicircular vibrators surrounding the outer circumferences of the respective semicircular ultrasonic vibrators 21 and 22. The holders 41 and 42 and two screws 43 and 44 for fastening the flange portions provided at both ends of the vibrator holders to each other are provided. In addition, it is preferable to fix each ultrasonic vibrator, for example, 21 and each vibrator holder, for example, 41 beforehand in a predetermined position by means of adhesion or the like in order to quickly attach and detach the pipe body.

このように2個の半円状の超音波振動子によって構成された超音波送受信器を管路に間隔を置いて設け、これらを相互に超音波送信器、超音波受信器として作動させて超音波伝播時間を測定することにより流量を測定する。流量測定の原理自体は従来からの環状の超音波振動子を使用したものと同様であるが、このような半円状の超音波振動子を組み合わせて環状に配置すれば必然的に環状の超音波振動子と同様な動作をするわけではない。すなわち環状になるように取り付けられた2個の半円状の超音波振動子は相互に接触させてもこれにより機械的に一体として振動するわけではないので、むしろ図2に示したように間隙12をもって配置する方が良い。なぜなら2個の半円状の超音波振動子を管体に密着した状態でなおかつ相互に接触させるのは精度的に困難であるので、超音波に伝播に重要な管体に密着させることを優先にすべきだからである。   Thus, an ultrasonic transmitter / receiver composed of two semicircular ultrasonic transducers is provided at intervals in a pipeline, and these are mutually operated as an ultrasonic transmitter and an ultrasonic receiver so The flow rate is measured by measuring the sound propagation time. The principle of flow measurement itself is the same as that using a conventional annular ultrasonic transducer, but if such semicircular ultrasonic transducers are combined and arranged in an annular shape, an annular ultrasonic transducer will inevitably occur. It does not operate in the same way as a sound wave vibrator. That is, even if two semicircular ultrasonic transducers attached in an annular shape are brought into contact with each other, they do not vibrate mechanically as a unit. Therefore, as shown in FIG. It is better to arrange with twelve. Because it is difficult to make two semicircular ultrasonic transducers in close contact with each other and accurately contact each other, priority is given to close contact with the tube important for propagation to ultrasonic waves. Because it should be.

上記のように環状になるように取り付けられた2個の半円状の超音波振動子は機械的に一体として振動しないので、それぞれの振動の位相を一致させる必要がある。このため管体のそれぞれの位置に固定された2個の半円状の超音波振動子は同位相の振動をし、また測定管の振動に対して同位相の出力をするように電気的に接続する。具体的には図1に示したように、環状になるように取り付けられたそれぞれ2個の半円状の超音波振動子21、22および31、32において、円の軸に直角な対向する2つの面に設けた電極の同じ側の電極同士を並列に接続すれば良い。また同位相の出力が加え合わされる向きに直列に接続することもできる。   Since the two semicircular ultrasonic transducers attached in an annular shape as described above do not vibrate mechanically as one body, it is necessary to match the phases of the respective vibrations. For this reason, the two semicircular ultrasonic transducers fixed at the respective positions of the tube body vibrate in the same phase and are electrically output so as to output the same phase with respect to the vibration of the measuring tube. Connecting. Specifically, as shown in FIG. 1, each of the two semicircular ultrasonic transducers 21, 22, 31, and 32 that are attached in an annular shape are opposed to each other at a right angle to the axis of the circle. The electrodes on the same side of the electrodes provided on one surface may be connected in parallel. It is also possible to connect in series in the direction in which the outputs of the same phase are added.

なお環状になるように取り付けられた2個の半円状の超音波振動子において、管体の長さ方向のずれがあると2個の超音波振動子の出力波形の位相がずれることになる。しかし管路内の流体における超音波の波長(=音速/周波数)が1mm以上になる条件であれば、超音波振動子の取り付け位置の精度が一般の機械装置における精度の水準でも問題はない。したがって大幅な位相のずれのために並列に接続された2個の超音波振動子の出力が打ち消し合うといったことは生じない。   In addition, in the two semicircular ultrasonic transducers attached so as to form an annular shape, the phase of the output waveform of the two ultrasonic transducers is shifted if there is a shift in the length direction of the tubular body. . However, if the ultrasonic wave wavelength (= sound speed / frequency) in the fluid in the pipe line is 1 mm or more, there is no problem even if the accuracy of the ultrasonic transducer mounting position is the level of accuracy in a general mechanical device. Therefore, the outputs of the two ultrasonic transducers connected in parallel do not cancel each other due to a large phase shift.

また図4は本発明の超音波流量計の上記とは別の態様のものの管体に平行な断面図である。なお正面図は図2と同様なので省略する。図4のものは2個ずつの半円状の超音波振動子21、22および31、32を管体1を囲んだ状態で管体の長さ方向に距離を隔てて設ける点は先のものと同じである。一方、締結機構が異なっており、全部の超音波振動子を1つの締結機構によって管体に取り付けるようになっている。このため締結機構は、半円形の断面の樋状の2個の振動子保持具61、62と、これのフランジ部を相互に止める図示しない複数のねじからなっている。一方の振動子保持具61の長さ方向両端部近傍には超音波振動子21と31があらかじめ取り付けられており、同様にもう一方の振動子保持具62には超音波振動子22と32があらかじめ取り付けられている。したがって超音波振動子の管体長さ方向の間隔を常に一定にできるので、流量計を管体に取り付けたときの装置の調整が容易になる。   FIG. 4 is a cross-sectional view of the ultrasonic flowmeter of the present invention parallel to the tube of another embodiment different from the above. The front view is the same as FIG. In the case of FIG. 4, two semicircular ultrasonic transducers 21, 22, 31, and 32 are provided at a distance in the length direction of the tube body while surrounding the tube body 1. Is the same. On the other hand, the fastening mechanism is different, and all ultrasonic transducers are attached to the tube body by one fastening mechanism. For this reason, the fastening mechanism includes two bowl-shaped vibrator holders 61 and 62 having a semicircular cross section and a plurality of screws (not shown) that mutually hold the flange portions. The ultrasonic vibrators 21 and 31 are attached in advance in the vicinity of both ends in the length direction of one vibrator holder 61, and similarly, the ultrasonic vibrators 22 and 32 are attached to the other vibrator holder 62. Pre-installed. Therefore, since the interval in the tube length direction of the ultrasonic transducer can be made constant at all times, the apparatus can be easily adjusted when the flow meter is attached to the tube.

本発明は上記のものに限定されず、その技術思想の範囲内で適宜改変が可能である。たとえば締結機構は前記のような構造に限定するものではなく、たとえばねじで止める代わりにクランプでフランジを挟んで止めてもよい。また図4に示した半円形の断面の樋状の振動子保持具61、62に代えて、図3にあるような短い長さの振動子保持具41、42、51、52を管体に平行な複数の棒で相互に連結した構造にしても同様な機能を得ることができる。   The present invention is not limited to the above-described ones, and can be appropriately modified within the scope of the technical idea. For example, the fastening mechanism is not limited to the above-described structure. For example, the fastening mechanism may be clamped with a clamp instead of being screwed. Also, instead of the bowl-shaped vibrator holders 61 and 62 having a semicircular cross section shown in FIG. 4, vibrator holders 41, 42, 51 and 52 having a short length as shown in FIG. A similar function can be obtained even in a structure in which a plurality of parallel bars are connected to each other.

本発明の超音波流量計の概念図Conceptual diagram of the ultrasonic flowmeter of the present invention 本発明の超音波送受信器の正面図Front view of the ultrasonic transceiver of the present invention 図2の超音波送受信器の管体に平行な断面図Sectional view parallel to the tube of the ultrasonic transceiver of FIG. 本発明の超音波送受信器の管体に平行な断面図Sectional drawing parallel to the tubular body of the ultrasonic transceiver of the present invention

符号の説明Explanation of symbols

1 管体
2、3 超音波送受信器
4、5 締結機構
7 切替スイッチ
8 切替スイッチ制御部
9 電気パルス励起部
10 信号増幅器
11 測定・演算部
12 間隙
21、22、31、32 超音波振動子
41、42 振動子保持具
43、44 ねじ
61、62 振動子保持具
DESCRIPTION OF SYMBOLS 1 Tubular body 2, 3 Ultrasonic transmitter / receiver 4, 5 Fastening mechanism 7 Changeover switch 8 Changeover switch control part 9 Electric pulse excitation part 10 Signal amplifier 11 Measurement / calculation part 12 Gap 21, 22, 31, 32 Ultrasonic transducer 41 , 42 Vibrator holder 43, 44 Screw 61, 62 Vibrator holder

Claims (3)

被測定流体の流路の管体に接触するように距離を隔てて2個の超音波送受信器を設け、前記2個の超音波送受信器を一方が超音波送信器、他方が超音波受信器として相互に作動させ、被測定流体の上流側の超音波送受信器を超音波送信器としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波送受信器を超音波送信器としたときの上流方向超音波伝播時間により流速を算出する超音波流量計において、前記それぞれの超音波送受信器は2個の半円状の超音波振動子によって構成され、前記それぞれ2個の半円状の超音波振動子を管体を囲んで固定する締結機構がそれぞれ設けられており、管体のそれぞれの長さ位置に固定された2個の半円状の超音波振動子は同位相の振動をし、また測定管の振動に対して同位相の出力をするように電気的に接続されていることを特徴とする超音波流量計。 Two ultrasonic transmitters / receivers are provided at a distance so as to be in contact with the pipe body of the flow path of the fluid to be measured, one of the two ultrasonic transmitters / receivers being an ultrasonic transmitter and the other being an ultrasonic receiver. When the ultrasonic transmitter / receiver upstream of the fluid to be measured is used as the ultrasonic transmitter, the ultrasonic propagation time in the downstream direction and the ultrasonic transmitter / receiver downstream of the fluid to be measured are In the ultrasonic flowmeter for calculating the flow velocity based on the ultrasonic propagation time in the upstream direction, each of the ultrasonic transceivers is composed of two semicircular ultrasonic transducers, and each of the two half A fastening mechanism for fixing the circular ultrasonic transducer around the tube is provided, and the two semicircular ultrasonic transducers fixed at the respective length positions of the tube are in phase. Output in the same phase with respect to the vibration of the measuring tube. Ultrasonic flow meter, characterized by being urchin electrically connected. 被測定流体の流路の管体に接触するように距離を隔てて2個の超音波送受信器を設け、前記2個の超音波送受信器を一方が超音波送信器、他方が超音波受信器として相互に作動させ、被測定流体の上流側の超音波送受信器を超音波送信器としたときの下流方向超音波伝播時間と、被測定流体の下流側の超音波送受信器を超音波送信器としたときの上流方向超音波伝播時間により流速を算出する超音波流量計において、前記それぞれの超音波送受信器は2個の半円状の超音波振動子によって構成され、前記それぞれ2個の半円状の超音波振動子を管体を囲んだ状態で管体の長さ方向に距離を隔てて固定する締結機構が設けられており、管体のそれぞれの長さ位置に固定された2個の半円状の超音波振動子は同位相の振動をし、また測定管の振動に対して同位相の出力をするように電気的に接続されていることを特徴とする超音波流量計。 Two ultrasonic transmitters / receivers are provided at a distance so as to be in contact with the pipe body of the flow path of the fluid to be measured, one of the two ultrasonic transmitters / receivers being an ultrasonic transmitter and the other being an ultrasonic receiver. When the ultrasonic transmitter / receiver upstream of the fluid to be measured is used as the ultrasonic transmitter, the ultrasonic propagation time in the downstream direction and the ultrasonic transmitter / receiver downstream of the fluid to be measured are In the ultrasonic flowmeter for calculating the flow velocity based on the ultrasonic propagation time in the upstream direction, each of the ultrasonic transceivers is composed of two semicircular ultrasonic transducers, and each of the two half A fastening mechanism is provided for fixing the circular ultrasonic transducer with a distance in the length direction of the tubular body in a state of surrounding the tubular body, and two pieces are fixed at respective length positions of the tubular body. The semicircular ultrasonic transducers vibrate in the same phase and the measurement tube Ultrasonic flow meter, characterized in that it is electrically connected to the output of the same phase against. 管体のそれぞれの長さ位置に固定された2個の半円状の超音波振動子は、相互に接触していないことを特徴とする請求項1または2記載の超音波流量計。 The ultrasonic flowmeter according to claim 1 or 2, wherein the two semicircular ultrasonic transducers fixed at respective length positions of the tubular body are not in contact with each other.
JP2005174728A 2005-06-15 2005-06-15 Ultrasonic flowmeter Pending JP2006349439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174728A JP2006349439A (en) 2005-06-15 2005-06-15 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174728A JP2006349439A (en) 2005-06-15 2005-06-15 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2006349439A true JP2006349439A (en) 2006-12-28

Family

ID=37645459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174728A Pending JP2006349439A (en) 2005-06-15 2005-06-15 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2006349439A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120817A1 (en) * 2007-03-30 2008-10-09 Asahi Organic Chemicals Industry Co., Ltd. Fluid controller
WO2011162284A1 (en) * 2010-06-22 2011-12-29 株式会社泉技研 Ultrasonic flow rate measuring device and ultrasonic flow rate measuring method
KR20160145175A (en) * 2014-05-28 2016-12-19 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Ultrasonic flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109487A (en) * 1977-11-11 1979-08-28 List Hans Measured value converter for detecting pressure in conduit
JPS56142469U (en) * 1980-03-26 1981-10-27
JPH04231820A (en) * 1990-05-19 1992-08-20 Flowtec Ag Measured value detector for ultrasonic-wave flow-rate measuring apparatus
JPH11264750A (en) * 1998-03-17 1999-09-28 Kaijo Corp Ultrasonic propagating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109487A (en) * 1977-11-11 1979-08-28 List Hans Measured value converter for detecting pressure in conduit
JPS56142469U (en) * 1980-03-26 1981-10-27
JPH04231820A (en) * 1990-05-19 1992-08-20 Flowtec Ag Measured value detector for ultrasonic-wave flow-rate measuring apparatus
JPH11264750A (en) * 1998-03-17 1999-09-28 Kaijo Corp Ultrasonic propagating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120817A1 (en) * 2007-03-30 2008-10-09 Asahi Organic Chemicals Industry Co., Ltd. Fluid controller
JP2008250685A (en) * 2007-03-30 2008-10-16 Asahi Organic Chem Ind Co Ltd Fluid control device
WO2011162284A1 (en) * 2010-06-22 2011-12-29 株式会社泉技研 Ultrasonic flow rate measuring device and ultrasonic flow rate measuring method
JP2012027012A (en) * 2010-06-22 2012-02-09 Izumi Giken:Kk Ultrasonic flow rate measuring equipment and ultrasonic flow rate measuring method
KR20160145175A (en) * 2014-05-28 2016-12-19 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Ultrasonic flowmeter
CN106461436A (en) * 2014-05-28 2017-02-22 国立研究开发法人产业技术综合研究所 Ultrasonic flowmeter
EP3136061A4 (en) * 2014-05-28 2017-12-06 National Institute of Advanced Industrial Science and Technology Ultrasonic flowmeter
US10197424B2 (en) 2014-05-28 2019-02-05 National Institute Of Advanced Industrial Science And Technology Ultrasonic flowmeter having transceivers driving and radially pressing the flow tube to increase amplitude of the ultrasonic wave
KR101951533B1 (en) * 2014-05-28 2019-02-22 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
TWI568992B (en) Ultrasonic sensors and use of this ultrasonic flowmeter
JP4851936B2 (en) Ultrasonic flow meter
US7069793B2 (en) Ultrasonic flow meter and ultrasonic sensor
JP2008134267A (en) Ultrasonic flow measurement method
EP2877815A1 (en) Disposable flow tube
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
JP2006349439A (en) Ultrasonic flowmeter
US10365137B2 (en) Transit time flow meter apparatus, transducer, flow meter and method
JP2005172556A (en) Ultrasonic flowmeter
JP3570315B2 (en) Ultrasonic flow meter and gas meter using it
JP4797515B2 (en) Ultrasonic flow measuring device
JP6187343B2 (en) Ultrasonic measuring instrument
JP7151311B2 (en) ultrasonic flow meter
JPS61132823A (en) Ultrasonic flowmeter
JP2007322186A (en) Ultrasonic flow meter
JP5345006B2 (en) Ultrasonic flow meter
JP2005189002A (en) Flow rate measurement system
JP6532504B2 (en) Ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JPH10239126A (en) Flowmeter
JP2005300244A (en) Ultrasonic flow meter
JP2014016330A (en) Ultrasonic flow meter
JP2007033032A (en) Ultrasonic flowmeter
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JP2012002625A (en) Flow rate measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816