JP2000169974A - Corrosion resistant member - Google Patents

Corrosion resistant member

Info

Publication number
JP2000169974A
JP2000169974A JP34366198A JP34366198A JP2000169974A JP 2000169974 A JP2000169974 A JP 2000169974A JP 34366198 A JP34366198 A JP 34366198A JP 34366198 A JP34366198 A JP 34366198A JP 2000169974 A JP2000169974 A JP 2000169974A
Authority
JP
Japan
Prior art keywords
base material
magnesium oxide
corrosion
resistant member
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34366198A
Other languages
Japanese (ja)
Inventor
Hironori Ishida
弘徳 石田
Motohiro Umetsu
基宏 梅津
Norikazu Sashita
則和 指田
Mamoru Ishii
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP34366198A priority Critical patent/JP2000169974A/en
Publication of JP2000169974A publication Critical patent/JP2000169974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a member exhibiting corrosion resistance to plasma of gaseous halogen more excellent than that of an aluminum oxide member by forming a magnesium oxide film on the surface of a base material composed of ceramics, glass, metal or a metal matrix composite material. SOLUTION: Preferably, the thermal expansion coefficient of a base material is 12.0 to 13.5×10-6, furthermore, the base material is composed of a magnesium oxide sintered body, and, moreover, the base material is composed of an aluminum alloy matrix composite material. The base material composed of magnesium oxide or an aluminum allay matrix composite material is produced. These base materials may be produced by prescribed methods in accordance with respective producing methods. By roughening the surface of the base material by sand blasting or the like, the adhesive strength between the base material and the magnesium oxide film can be improved. As to the method for forming the magnesium oxide film on the surface of the base material, there is no need of placing limitation in particular, and the methods by thermal spraying, vapor deposition or the like are given.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性部材に関
し、特にハロゲン系ガスのプラズマに優れた耐食性を示
す耐食性部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant member, and more particularly to a corrosion-resistant member exhibiting excellent corrosion resistance to a halogen-based gas plasma.

【0002】[0002]

【従来の技術】従来、耐食性部材には、一般に耐食性の
ある石英等のガラスやアルミニウム等の金属が使用され
ていた。しかし、近年半導体製造装置、ポリイミド基板
製造装置、液晶プラズマ処理装置等においてプラズマ処
理が為されていて、そのプラズマ処理に反応性の高いハ
ロゲン系ガス、例えば、半導体エッチングではCF4
NF3等の高い腐食性を有するガスが用いられているの
で、先のガラスや金属から成る部材は用いられないとい
う問題があった。
2. Description of the Related Art Heretofore, generally, corrosion-resistant glass such as quartz or metal such as aluminum has been used for corrosion-resistant members. However, in recent years, plasma processing has been performed in a semiconductor manufacturing apparatus, a polyimide substrate manufacturing apparatus, a liquid crystal plasma processing apparatus, and the like, and a halogen-based gas highly reactive to the plasma processing, for example, CF 4 in semiconductor etching,
Since a highly corrosive gas such as NF 3 is used, there is a problem that the member made of glass or metal is not used.

【0003】そのため、このハロゲン系ガスのプラズマ
に曝される部材には、耐食性の高い酸化アルミニウムの
焼結体から成る部材、あるいはガラスや金属などから成
る基材の表面に酸化アルミニウム膜を溶射等で形成した
部材が耐食性に優れるものとして使用されている。
[0003] For this reason, members exposed to the plasma of the halogen-based gas include members made of a sintered body of aluminum oxide having high corrosion resistance, or spraying an aluminum oxide film on the surface of a substrate made of glass or metal. Are used as those having excellent corrosion resistance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この酸
化アルミニウム焼結体や酸化アルミニウム膜を基材表面
に成膜したものから成る部材は、確かにハロゲン系ガス
のプラズマに優れた耐食性を示すが未だ十分でなく、さ
らに耐食性に優れた部材が望まれていた。
However, a member composed of the aluminum oxide sintered body or the aluminum oxide film formed on the surface of the base material surely exhibits excellent corrosion resistance to the plasma of the halogen-based gas. A member that is not sufficient and has excellent corrosion resistance has been desired.

【0005】本発明は、上述したハロゲン系ガスのプラ
ズマに曝される部材が有する課題に鑑みなされたもので
あって、その目的は、ハロゲン系ガスのプラズマに対し
酸化アルミニウム部材より優れた耐食性を示す耐食性部
材を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of a member exposed to a halogen-based gas plasma, and has as its object to improve corrosion resistance to a halogen-based gas plasma more than an aluminum oxide member. The object of the present invention is to provide a corrosion-resistant member as shown in FIG.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、ガラスや金属などか
ら成る基材表面に酸化マグネシウム膜を被覆した部材と
すれば、ハロゲン系ガスのプラズマに対し酸化アルミニ
ウムから成る部材より優れた耐食性を示すとの知見を得
て本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object. As a result, if a member made of a substrate made of glass, metal, or the like coated with a magnesium oxide film is used, a halogen-based gas can be obtained. The present inventors have found that they exhibit better corrosion resistance to a member made of aluminum oxide than a member made of aluminum oxide, and have completed the present invention.

【0007】即ち本発明は、(1)ハロゲン系ガスのプ
ラズマに曝される耐食性部材において、該部材が、セラ
ミックス、ガラス、金属あるいは金属基複合材料から成
る基材表面に酸化マグネシウム膜を形成して成る部材で
あることを特徴とする耐食性部材(請求項1)とし、ま
た、(2)前記基材の熱膨張係数が、12.0〜13.
5×10-6であることを特徴とする請求項1記載の耐食
性部材(請求項2)とし、さらに、(3)前記基材が、
酸化マグネシウム焼結体であることを特徴とする請求項
1または2記載の耐食性部材(請求項3)とし、さらに
また、(4)前記基材が、アルミニウム合金基複合材料
であることを特徴とする請求項1または2記載の耐食性
部材(請求項4)とすることを要旨とする。以下さらに
詳細に説明する。
That is, the present invention provides (1) a corrosion-resistant member exposed to a halogen-based gas plasma, wherein the member has a magnesium oxide film formed on a surface of a substrate made of ceramics, glass, metal or a metal-based composite material. (2) The substrate has a coefficient of thermal expansion of 12.0-13.
5 × 10 −6 , wherein the corrosion-resistant member according to claim 1 (claim 2), and (3) the base material is:
The corrosion-resistant member according to claim 1 or 2, wherein the member is a magnesium oxide sintered body, and (4) the base material is an aluminum alloy-based composite material. The gist of the present invention is to provide a corrosion resistant member according to claim 1 or claim 2 (claim 4). This will be described in more detail below.

【0008】上記で述べたように、ハロゲン系ガスのプ
ラズマに曝される耐食性部材としては、セラミックス、
ガラス、金属あるいは金属基複合材料から成る基材表面
に酸化マグネシウム膜を形成して成る耐食性部材とした
(請求項1)。
As described above, the corrosion-resistant members exposed to the plasma of the halogen-based gas include ceramics,
A corrosion-resistant member formed by forming a magnesium oxide film on the surface of a substrate made of glass, metal, or a metal-based composite material (claim 1).

【0009】ハロゲン系ガスのプラズマに曝される耐食
性部材として、基材の表面に酸化マグネシウム膜を形成
して成る部材としたのは、酸化マグネシウムが酸化アル
ミニウムより耐食性が良いこと、酸化マグネシウムは通
常の常圧焼結では緻密性に劣ることなどから、酸化マグ
ネシウムとするものの、その焼結体ではなくその膜を基
材表面に形成するものとしたものである。この膜は基材
全体に形成しても、プラズマに曝される部分だけを形成
しても構わない。
As the corrosion resistant member exposed to the plasma of the halogen-based gas, the member formed by forming a magnesium oxide film on the surface of the base material is that magnesium oxide has better corrosion resistance than aluminum oxide, and magnesium oxide is usually used. Because of its inferior denseness in normal-pressure sintering, magnesium oxide is used, but a film is formed on the surface of the base material instead of the sintered body. This film may be formed on the entire substrate or only a portion exposed to the plasma.

【0010】そのマグネシウムフッ化物膜の下地となる
基材としては、12.0〜13.5×10-6の熱膨張係
数を有する基材とした(請求項2)。基材の熱膨張係数
がこの範囲を外れても構わないが、熱膨張係数をこの範
囲にしたのは、形成する酸化マグネシウム膜の熱膨張係
数がこの範囲にあるので、基材の熱膨張係数をこの範囲
にすれば、部材の温度が上昇しても熱膨張係数の違いに
よる酸化マグネシウム膜の亀裂が発生し難く、より好ま
しいことによる。
[0010] As a base material of the magnesium fluoride film, a base material having a thermal expansion coefficient of 12.0 to 13.5 × 10 -6 was used (claim 2). Although the coefficient of thermal expansion of the substrate may be out of this range, the coefficient of thermal expansion is set in this range because the coefficient of thermal expansion of the magnesium oxide film to be formed is in this range. Within this range, the magnesium oxide film is less likely to crack due to a difference in thermal expansion coefficient even when the temperature of the member increases, which is more preferable.

【0011】その基材の材質としては、酸化マグネシウ
ム焼結体(請求項3)またはアルミニウム合金基複合材
料(請求項4)とした。基材の材質としては、前記以外
に他のセラミックス、ガラス、金属、他の金属基複合材
料などがあり、それら材質の基材でも勿論構わないが、
それを酸化マグネシウム焼結体としたのは、熱膨張係数
が先の12.0〜13.5×10-6の範囲に入る上に基
材と膜との付着強度が特に高いのでより好ましいことに
よる。また、アルミニウム合金基複合材料としたのは、
アルミニウム合金と複合化する強化材の種類や含有率を
適宜選ぶことにより、熱膨張係数を先の12.0〜1
3.5×10-6の範囲に入れることができるのでこれも
より好ましいことによる。
The material of the substrate was a magnesium oxide sintered body (claim 3) or an aluminum alloy-based composite material (claim 4). As the material of the base material, there are other ceramics, glass, metal, other metal-based composite materials and the like in addition to the above.
It is more preferable to use a magnesium oxide sintered body because the thermal expansion coefficient is in the range of 12.0 to 13.5 × 10 −6 and the adhesion strength between the substrate and the film is particularly high. by. The aluminum alloy-based composite material was
By appropriately selecting the type and content of the reinforcing material to be combined with the aluminum alloy, the coefficient of thermal expansion can be increased from 12.0 to 1
This is also preferable because it can be in the range of 3.5 × 10 −6 .

【0012】[0012]

【発明の実施の形態】本発明の製造方法を述べると、先
ず酸化マグネシウム焼結体あるいはアルミニウム合金基
複合材料などから成る基材を作製する。これら基材は各
基材の製造方法に合わせた慣用の方法で製造すればよ
い。その基材の表面をサンドブラスト等で荒らすことに
より、基材と酸化マグネシウム膜との間の付着強度を向
上させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention will be described. First, a substrate made of a magnesium oxide sintered body or an aluminum alloy-based composite material is prepared. These base materials may be manufactured by a conventional method according to the manufacturing method of each base material. By roughening the surface of the base material by sandblasting or the like, the adhesive strength between the base material and the magnesium oxide film can be improved.

【0013】次いで基材の表面に酸化マグネシウム膜を
形成する。その方法は、特に限定する必要はなく、溶射
や蒸着等による方法が挙げられる。
Next, a magnesium oxide film is formed on the surface of the substrate. The method is not particularly limited, and examples thereof include a method by thermal spraying and vapor deposition.

【0014】以上述べた方法で耐食性部材を作製すれ
ば、ハロゲン系ガスのプラズマに優れた耐食性を示す耐
食性部材とすることができる。
If a corrosion-resistant member is manufactured by the above-described method, a corrosion-resistant member exhibiting excellent corrosion resistance to a halogen-based gas plasma can be obtained.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0016】(実施例1〜13) (1)耐食性部材の作製 先ず表1に示す材質で形状が100×100×4mmの
基材を作製した。なお、セラミックスは全て常圧焼結し
たものである。次にその表面全面に蒸着により3μmの
厚さの酸化マグネシウム(MgO)膜を形成し、耐食性
部材を作製した。
(Examples 1 to 13) (1) Production of Corrosion-Resistant Member First, a substrate having a material shown in Table 1 and a shape of 100 × 100 × 4 mm was produced. The ceramics were all sintered under normal pressure. Next, a magnesium oxide (MgO) film having a thickness of 3 μm was formed on the entire surface by vapor deposition to produce a corrosion-resistant member.

【0017】(2)評価 表面に成膜する前の基材の熱膨張係数をTMA(機械的
熱分析装置)で測定した。また、得られた耐食性部材の
表面をフッ素系ガスのプラズマに曝し、処理温度が10
0℃と400℃時のプラズマ処理前後の重量変化を測定
し、プラズマによって侵食された量の割合(基材+膜の
全重量に対する減少割合)を求めた。さらに、プラズマ
処理した部材のMgO膜の亀裂の有無を目視で調べた。
ここで膜に亀裂が発生していたものは意味がないので、
先の重量変化は求めなかった。それらの結果を表1に示
す。なお、プラズマの条件としては、ガスはCF4(キ
ャリアガス:Ar)、出力は200W、真空度は0.8
Toor、周波数は13.56MHz、時間は10時間
とした。
(2) Evaluation The thermal expansion coefficient of the substrate before forming a film on the surface was measured by TMA (mechanical thermal analyzer). Further, the surface of the obtained corrosion resistant member was exposed to a plasma of a fluorine-based gas, and the treatment temperature was reduced to 10%.
The weight change before and after the plasma treatment at 0 ° C. and 400 ° C. was measured, and the ratio of the amount eroded by the plasma (the reduction ratio with respect to the total weight of the substrate and the film) was determined. Furthermore, the presence or absence of cracks in the MgO film of the plasma-treated member was visually inspected.
Here, it is meaningless that the crack was generated in the film,
The previous weight change was not determined. Table 1 shows the results. The plasma conditions were CF 4 (carrier gas: Ar), an output of 200 W, and a degree of vacuum of 0.8.
Toor, the frequency was 13.56 MHz, and the time was 10 hours.

【0018】(比較例1〜13)実施例1〜13と同じ
基材を耐食性部材と見なし、その表面にはMgO膜を形
成せずに基材表面に直接実施例と同じプラズマを同じ条
件で曝し、処理温度が100℃と400℃時の重量減少
の割合を求めた。その結果を表2に示す。
(Comparative Examples 1 to 13) The same substrate as in Examples 1 to 13 was regarded as a corrosion-resistant member, and the same plasma as in the example was directly applied to the surface of the substrate without forming an MgO film on the surface under the same conditions. Exposure was performed, and the ratio of weight loss at a treatment temperature of 100 ° C. and 400 ° C. was determined. Table 2 shows the results.

【0019】表1から明らかなように、処理温度が10
0℃の場合には、実施例全てが膜に亀裂が認められず、
プラズマによって侵食された量の割合も0.07mas
s%以下にあり、極めて優れた耐食性を示している。ま
た、処理温度が400℃の場合には、実施例5〜13で
は基材の熱膨張係数が12.0〜13.5×10-6の範
囲内にないので、MgO膜に亀裂が認められたが、熱膨
張係数がこの範囲にある実施例1〜4では膜に亀裂が認
められず、浸食された量の割合も0.35mass%以
下と温度を上げても優れた耐食性を示している。このこ
とは、セラミックス、ガラスなどの基材の表面にMgO
膜を形成すれば、耐食性に極めて優れた耐食性部材とな
ることを示しており、さらに、基材の熱膨張係数をMg
O膜に合わせれば、高温でのプラズマ処理にも問題なく
用いられることを示している。
As is clear from Table 1, the treatment temperature was 10
In the case of 0 ° C., no cracks were observed in the films in all of the examples,
The ratio of the amount eroded by the plasma is also 0.07mas
s% or less, indicating extremely excellent corrosion resistance. When the treatment temperature was 400 ° C., in Examples 5 to 13, the thermal expansion coefficient of the substrate was not in the range of 12.0 to 13.5 × 10 −6 , so cracks were observed in the MgO film. However, in Examples 1 to 4 in which the coefficient of thermal expansion was in this range, no cracks were observed in the film, and the ratio of the eroded amount showed excellent corrosion resistance even when the temperature was increased to 0.35 mass% or less. . This means that the surface of substrates such as ceramics and glass
It is shown that if a film is formed, a corrosion-resistant member having extremely excellent corrosion resistance can be obtained.
This shows that if it is adjusted to the O film, it can be used for plasma treatment at a high temperature without any problem.

【0020】これに対して、比較例1では、部材がMg
O焼結体であってしかもフッ素系ガスのプラズマと反応
して表面に耐食性が良好なマグネシウムフッ化物膜が形
成されるものの、そのマグネシウムフッ化物膜が蒸着で
形成されたMgO膜ほど十分緻密化されていないので、
処理温度が100℃、400℃とも実施例1より浸食さ
れた量の割合が多くなっている。また、比較例5では、
耐食性に強い酸化アルミニウム(Al23)ではある
が、いずれも実施例より浸食された量の割合が多くなっ
ている。それ以外の比較例2〜4、6〜13でも多かれ
少なかれ100℃、400℃のいずれも実施例に比べて
かなり耐食性が悪くなっている。
On the other hand, in Comparative Example 1, the member was made of Mg.
Although it is an O-sintered body and reacts with the plasma of fluorine-based gas to form a magnesium fluoride film having good corrosion resistance on the surface, the MgO film formed by vapor deposition of the magnesium fluoride film is sufficiently densified. Since it has not been
At both the processing temperatures of 100 ° C. and 400 ° C., the ratio of the eroded amount is larger than that of Example 1. In Comparative Example 5,
Although aluminum oxide (Al 2 O 3 ) having high corrosion resistance is used, the ratio of the eroded amount is larger than that of the embodiment. In Comparative Examples 2 to 4 and 6 to 13 other than those, at 100 ° C. and 400 ° C., the corrosion resistance was much worse than in the examples.

【0021】[0021]

【発明の効果】以上の通り、本発明にかかる耐食性部材
であれば、酸化アルミニウムは勿論のこと、酸化マグネ
シウム焼結体やその他のセラミックス、あるいはガラ
ス、金属、金属基複合材料などより優れた耐食性を示す
耐食性部材とすることができるようになった。このこと
により、ハロゲン系ガスのプラズマに対し酸化アルミニ
ウムなどの部材より優れた耐食性を示す耐食性部材を提
供することができるようになった。 整理番号 TKS255 化学式等を記載した書面
As described above, the corrosion-resistant member according to the present invention is more excellent than aluminum oxide, magnesium oxide sintered body and other ceramics, glass, metal, and metal-based composite material as well as aluminum oxide. Can be obtained. As a result, it has become possible to provide a corrosion-resistant member that exhibits better corrosion resistance to a plasma of a halogen-based gas than a member such as aluminum oxide. Reference number TKS255 Document describing chemical formula, etc.

【表1】 整理番号 TKS255 化学式等を記載した書面[Table 1] Reference number TKS255 Document describing chemical formula, etc.

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G076 AA02 BA03 BA17 BC01 BF05 CA10 DA14 DA30 4K029 AA02 AA04 BA43 BC01 CA01 4K044 AA01 AA11 AA12 AA13 BA12 BC02 CA11 CA13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G076 AA02 BA03 BA17 BC01 BF05 CA10 DA14 DA30 4K029 AA02 AA04 BA43 BC01 CA01 4K044 AA01 AA11 AA12 AA13 BA12 BC02 CA11 CA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン系ガスのプラズマに曝される耐
食性部材において、該部材が、セラミックス、ガラス、
金属あるいは金属基複合材料から成る基材表面に、酸化
マグネシウム膜を形成して成る部材であることを特徴と
する耐食性部材。
1. A corrosion-resistant member exposed to a plasma of a halogen-based gas, wherein the member is made of ceramic, glass,
A corrosion-resistant member, wherein the member is formed by forming a magnesium oxide film on a surface of a base material made of a metal or a metal-based composite material.
【請求項2】 前記基材の熱膨張係数が、12.0〜1
3.5×10-6であることを特徴とする請求項1記載の
耐食性部材。
2. The thermal expansion coefficient of the substrate is from 12.0 to 1
2. The corrosion-resistant member according to claim 1, wherein the corrosion resistance is 3.5 × 10 −6 .
【請求項3】 前記基材が、酸化マグネシウム焼結体で
あることを特徴とする請求項1または2記載の耐食性部
材。
3. The corrosion-resistant member according to claim 1, wherein the substrate is a magnesium oxide sintered body.
【請求項4】 前記基材が、アルミニウム合金基複合材
料であることを特徴とする請求項1または2記載の耐食
性部材。
4. The corrosion-resistant member according to claim 1, wherein the substrate is an aluminum alloy-based composite material.
JP34366198A 1998-12-03 1998-12-03 Corrosion resistant member Pending JP2000169974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34366198A JP2000169974A (en) 1998-12-03 1998-12-03 Corrosion resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34366198A JP2000169974A (en) 1998-12-03 1998-12-03 Corrosion resistant member

Publications (1)

Publication Number Publication Date
JP2000169974A true JP2000169974A (en) 2000-06-20

Family

ID=18363269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34366198A Pending JP2000169974A (en) 1998-12-03 1998-12-03 Corrosion resistant member

Country Status (1)

Country Link
JP (1) JP2000169974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310466A3 (en) * 2001-11-13 2003-10-22 Tosoh Corporation Quartz glass parts, ceramic parts and process of producing those

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310466A3 (en) * 2001-11-13 2003-10-22 Tosoh Corporation Quartz glass parts, ceramic parts and process of producing those

Similar Documents

Publication Publication Date Title
JP6443380B2 (en) Yttrium-based fluoride sprayed coating and corrosion resistant coating containing the sprayed coating
KR100618630B1 (en) Plasma resistant member, manufacturing method for the same and method of forming a thermal spray coat
KR102536087B1 (en) Thermal spray coating, thermal spray powder, method for producing thermal spray powder, and method for producing thermal spray coating
JP4283925B2 (en) Corrosion resistant material
KR101563130B1 (en) Parts of semiconductor and display equipments with improved anti-plasma corrosion and method improving anti-plasma corrosion of parts
JP3261044B2 (en) Components for plasma processing equipment
JPH0967662A (en) Ceramic-coated member
JP2003095649A (en) Method for manufacturing yttria-alumina complex oxide film, yttria-alumina complex oxide film, flame sprayed film, corrosion resistant member and low particle member
US9404171B2 (en) Rare earth oxide-containing sprayed plate and making method
JP3488373B2 (en) Corrosion resistant materials
JP6699701B2 (en) Yttrium-based fluoride thermal spray coating, thermal spray material for forming the thermal spray coating, method of forming the thermal spray coating, and corrosion resistant coating including the thermal spray coating
JP4006596B2 (en) Rare earth oxide sprayed member and powder for spraying
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
US20230257863A1 (en) Glass substrate with a base film to improve adhesion of thermal spray coating, and glass parts with thermal spray coating
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP2000169974A (en) Corrosion resistant member
JP2001097791A (en) Corrosionproof member and method for producing the same
JP2019511991A (en) Copper / ceramic composite
JP2000169953A (en) Corrosion resistant member
JP3784180B2 (en) Corrosion resistant material
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP4601136B2 (en) Corrosion resistant material
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JPH05263212A (en) Heat-resistant coating
JP2007277620A (en) Method for depositing spray deposit film on brittle base material