JP2007277620A - Method for depositing spray deposit film on brittle base material - Google Patents

Method for depositing spray deposit film on brittle base material Download PDF

Info

Publication number
JP2007277620A
JP2007277620A JP2006103883A JP2006103883A JP2007277620A JP 2007277620 A JP2007277620 A JP 2007277620A JP 2006103883 A JP2006103883 A JP 2006103883A JP 2006103883 A JP2006103883 A JP 2006103883A JP 2007277620 A JP2007277620 A JP 2007277620A
Authority
JP
Japan
Prior art keywords
base material
substrate
sprayed film
plasma
brittle material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006103883A
Other languages
Japanese (ja)
Inventor
Keisuke Watanabe
敬祐 渡邉
Takashi Morita
敬司 森田
Sachiyuki Nagasaka
幸行 永坂
Masataka Murata
征隆 村田
Takahiro Kubo
尊裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006103883A priority Critical patent/JP2007277620A/en
Publication of JP2007277620A publication Critical patent/JP2007277620A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing a spray deposit film on a brittle base material capable of enhancing the adhesive force of a plasma-resistant spray deposit film by using a means for suppressing warp or breakage of the base material, and easily coarsening the surface of the base material consisting of ceramic or the like at low cost. <P>SOLUTION: A surface of a base material consisting of a brittle material such as a ceramic, a glass or a quartz is coarsened by the micro-blasting using a masking material or a mesh, and a spray deposit film is deposited on the surface of the base material by a plasma thermal spraying method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラズマ処理装置、半導体・液晶製造用エッチャーやCVD装置等の内部を構成する脆性材料からなる部材の基材に溶射膜を形成する方法に関する。   The present invention relates to a method for forming a sprayed film on a base material of a member made of a brittle material constituting the inside of a plasma processing apparatus, an etcher for semiconductor / liquid crystal production, a CVD apparatus, or the like.

近年、半導体製造におけるエッチング工程、CVD成膜工程、レジストを除去するアッシング工程等においては、反応性の高いフッ素、塩素等のハロゲン系腐食性ガスを用いたプラズマプロセスが主流である。
従来、半導体製造装置には、シリコン、石英ガラスや炭化ケイ素からなる部材が多用されてきたが、これらはフッ素系ガスによる腐食が著しいことから、上記のようなハロゲンプラズマに曝される部材には、高純度アルミナ、窒化アルミニウム、さらには、イットリア、YAG等のセラミックスが用いられるようになってきた。
In recent years, plasma processes using highly reactive halogen-based corrosive gases such as fluorine and chlorine are mainly used in etching processes, CVD film forming processes, ashing processes for removing resists, and the like in semiconductor manufacturing.
Conventionally, members made of silicon, quartz glass, or silicon carbide have been frequently used in semiconductor manufacturing apparatuses. However, these members are significantly corroded by fluorine-based gas, so that they are exposed to the halogen plasma as described above. High-purity alumina, aluminum nitride, and ceramics such as yttria and YAG have come to be used.

しかしながら、上記のようなセラミックス部材は、高価であり、また、複雑な形状や大型サイズの加工が比較的困難である。
このため、耐プラズマ性部材を比較的安価に作製する方法として、セラミックスや金属等からなる基材表面に、耐プラズマ性に優れた膜を溶射法により形成する方法が採用されている。
However, the ceramic member as described above is expensive, and it is relatively difficult to process a complicated shape or a large size.
For this reason, as a method for producing a plasma-resistant member at a relatively low cost, a method is adopted in which a film having excellent plasma resistance is formed on the surface of a substrate made of ceramics or metal by a thermal spraying method.

前記溶射法においては、溶射処理を行う前に、溶射膜の十分な密着力を得るために、通常、基材表面に粗面化処理を施す。
一般に、セラミックス等の脆性材料の粗面化処理は、サンドブラスト等の機械的手段や酸等の薬液によるエッチング等の化学的手段により行われている(例えば、特許文献1参照)。
特開2003−171190号公報
In the thermal spraying method, the surface of the substrate is usually subjected to a surface roughening treatment in order to obtain a sufficient adhesion of the thermal spray coating before the thermal spraying treatment.
In general, the roughening treatment of a brittle material such as ceramics is performed by mechanical means such as sandblasting or chemical means such as etching with a chemical solution such as acid (for example, see Patent Document 1).
JP 2003-171190 A

しかしながら、サンドブラスト処理は、凹部が拡開し、溶射膜の十分な密着力を得られる程度の粗度を得ることが困難であった。特に、セラミックス基材表面の粗度は、セラミックス粒子の結晶粒径に依存し、粒径が大きくなると、基材強度が低下するため、実際には平均表面粗さRaは5μm程度が限界であった。
また、十分な粗度を得るためには、使用するブラスト材の粒径もある程度大きくする必要があり、ブラスト圧も高くなるため、基材が薄い場合には、基材の反りや変形等が生じ、特に、石英等の強度が低い脆性材料においては、基材の破断が生じるおそれがあった。
However, the sandblasting process has been difficult to obtain a degree of roughness that allows the concave portions to expand and a sufficient adhesion of the sprayed film to be obtained. In particular, the roughness of the ceramic substrate surface depends on the crystal grain size of the ceramic particles, and as the particle size increases, the strength of the substrate decreases, so the average surface roughness Ra is actually limited to about 5 μm. It was.
In addition, in order to obtain sufficient roughness, it is necessary to increase the particle size of the blasting material used to some extent, and the blasting pressure also increases. In particular, in a brittle material with low strength such as quartz, the base material may be broken.

また、エッチング等の化学的手段による粗面化は、溶射膜の密着性を向上させることは可能であるが、酸等の薬液使用による危険性や制御の困難性を伴い、また、高コストであるという課題を有していた。   In addition, roughening by chemical means such as etching can improve the adhesion of the sprayed film, but it is accompanied by dangers due to the use of chemicals such as acids and difficulty in control, and at a high cost. Had the problem of being.

本発明は、上記技術的課題を解決するためになされたものであり、基材の反りや破断を抑制し、しかも、低コストで、かつ、簡便に、セラミックス等からなる基材表面を粗面化する手段を用いて、耐プラズマ性溶射膜の密着力を向上させることができる脆性材料基材への溶射膜形成方法を提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, suppresses warpage and breakage of the base material, and at low cost and easily provides a rough surface of the base material made of ceramics or the like. It is an object of the present invention to provide a method for forming a sprayed coating on a brittle material substrate, which can improve the adhesion of the plasma-resistant sprayed coating using a means for converting into a plasma.

本発明に係る脆性材料基材への溶射膜形成方法は、脆性材料からなる基材表面を、マスキング材またはメッシュを用いたマイクロブラスト加工により粗面化した後、該基材表面にプラズマ溶射法により溶射膜を形成することを特徴とする。
上記方法によれば、脆性材料からなる基材表面に、パターニングされた凹凸構造を形成することができるため、基材表面を簡便に所望の粗度に加工することができ、その上に形成する溶射膜の密着力を高めることができる。
In the method for forming a sprayed film on a brittle material substrate according to the present invention, the substrate surface made of the brittle material is roughened by microblasting using a masking material or a mesh, and then the plasma spraying method is applied to the substrate surface. A thermal spray film is formed by the method.
According to the above method, since a patterned concavo-convex structure can be formed on the surface of a base material made of a brittle material, the base material surface can be easily processed to a desired roughness and formed thereon. The adhesion of the sprayed film can be increased.

前記粗面化された基材表面には、凹凸が繰り返して存在し、該凹凸の平均段差が5μm以上であることが好ましい。
上記のような凹凸を有していることにより、基材表面への溶射膜の十分な密着力を得ることができる。
ここでいう段差とは、凹凸の一つの凹部の両側にある凸部の最高点を結んだ直線と該凹部の最低部との距離であり、各段差の平均値が平均段差である。
It is preferable that unevenness is repeatedly present on the roughened substrate surface, and the average level difference of the unevenness is 5 μm or more.
By having the above irregularities, sufficient adhesion of the sprayed film to the substrate surface can be obtained.
The step here is a distance between a straight line connecting the highest points of the convex portions on both sides of one concave portion of the concave and convex portions and the lowest portion of the concave portion, and an average value of each step is an average step.

また、上記方法によれば、前記粗面化された基材は、基材が薄板状である場合においても、平面度を20μm以下に抑制することが可能である。   Further, according to the above method, the roughened substrate can suppress the flatness to 20 μm or less even when the substrate is a thin plate.

また、前記脆性材料としては、セラミックス、ガラスおよび石英のうちのいずれかであることが好ましい。
これらの材料に粗面化処理を施し、耐プラズマ性溶射膜を形成することにより、耐久性に優れた耐プラズマ性部材を得ることができる。
The brittle material is preferably any one of ceramic, glass and quartz.
By subjecting these materials to a surface roughening treatment and forming a plasma-resistant sprayed film, a plasma-resistant member having excellent durability can be obtained.

上述したとおり、本発明に係る脆性材料基材への溶射膜形成方法によれば、低コストかつ簡便な方法で、基材の反りや破断を抑制して、表面を粗面化することができ、溶射膜の密着力を高めることができる。
したがって、本発明は、プラズマ処理装置、半導体・液晶製造用エッチャーやCVD装置等の内部を構成する脆性材料からなる部材の基材に溶射膜を形成する際に、好適に用いることができ、これにより、上記のような部材の耐久性の向上を図ることができる。特に、ハロゲン系腐食性ガスやそのプラズマ等に対して高い耐食性を有するセラミックス溶射膜の形成に好適である。
As described above, according to the method for forming a sprayed coating on a brittle material substrate according to the present invention, the surface can be roughened by suppressing warpage and fracture of the substrate with a low-cost and simple method. The adhesion of the sprayed film can be increased.
Therefore, the present invention can be suitably used when forming a sprayed film on a base material of a member made of a brittle material constituting the inside of a plasma processing apparatus, an etcher for semiconductor / liquid crystal manufacturing, a CVD apparatus, and the like. As a result, the durability of the member as described above can be improved. In particular, it is suitable for forming a ceramic sprayed film having high corrosion resistance against a halogen-based corrosive gas or plasma thereof.

以下、本発明について、より詳細に説明する。
本発明に係る脆性材料基材への溶射膜形成方法は、脆性材料からなる基材表面を、マスキング材またはメッシュを用いたマイクロブラスト加工により粗面化した後、該基材表面にプラズマ溶射法により溶射膜を形成するものである。
マスクなしでマイクロブラスト加工を施した場合は、基材表面全体が粗面化され、Ra0.8μm程度までにしかすることができない。
これに対して、本発明においては、マスキング材またはメッシュを用いたマイクロブラスト加工を施すことにより、脆性材料からなる基材表面に、パターニングされた凹凸構造を形成することができる。
したがって、基材表面を、簡便に所望の粗度に加工することができ、その上に形成する溶射膜の密着力の向上を図ることができる。
Hereinafter, the present invention will be described in more detail.
The method for forming a sprayed film on a brittle material substrate according to the present invention is a method in which a substrate surface made of a brittle material is roughened by microblasting using a masking material or a mesh, and then plasma sprayed onto the substrate surface. To form a sprayed film.
When microblasting is performed without a mask, the entire surface of the base material is roughened, and can only be made to about Ra 0.8 μm.
On the other hand, in the present invention, a patterned concavo-convex structure can be formed on the surface of a base material made of a brittle material by performing microblasting using a masking material or a mesh.
Therefore, the surface of the substrate can be easily processed to a desired roughness, and the adhesion of the sprayed coating formed thereon can be improved.

前記マスキング材は、所望の粗面状態に応じてメッシュ状等に作製したものを用いることができ、また、マスキング材に代えて、網目状に編んだメッシュを基材表面に貼り付けて用いれば、より簡易的に、かつ、低コストで粗面化処理を行うことができる。
なお、前記マスキング材またはメッシュは、マイクロブラスト加工により、消耗しない材質のものを用いることが好ましい。例えば、マスキング材はASAマスク等の樹脂フィルム、また、メッシュは市販のナイロン、ポリエチレン、PET等からなるものが好ましい。
As the masking material, a material produced in a mesh shape or the like according to a desired rough surface state can be used, and instead of the masking material, a mesh knitted in a mesh shape can be applied to the surface of the base material. Thus, the roughening process can be performed more simply and at a low cost.
The masking material or mesh is preferably made of a material that is not consumed by microblasting. For example, the masking material is preferably a resin film such as an ASA mask, and the mesh is preferably made of commercially available nylon, polyethylene, PET, or the like.

また、使用するマスキング材またはメッシュは、#40〜200程度であることが好ましい。
目開きが大きすぎると、基材表面に形成される凹凸の繰り返しが少なくなり、その上に形成される溶射膜の十分な密着性が得られず、一方、目開きが小さすぎると、ブラスト材が十分に通過することができず、基材表面の十分な粗度が得られない。
Moreover, it is preferable that the masking material or mesh to be used is about # 40-200.
If the aperture is too large, the repetition of unevenness formed on the surface of the substrate is reduced, and sufficient adhesion of the sprayed film formed thereon cannot be obtained. On the other hand, if the aperture is too small, the blasting material Cannot pass sufficiently, and sufficient roughness of the substrate surface cannot be obtained.

前記粗面化された基材表面は、溶射膜の十分な密着力を得るためには、凹凸が規則的に繰り返して存在し、該凹凸の平均段差は5μm以上であることが好ましい。
表面粗さとしては、基材および溶射膜の材質等にもよるが、平均粗さRa1.2μm以上15μm以下であることが好ましい。
In order to obtain sufficient adhesion of the sprayed film, the roughened surface of the substrate preferably has irregularities regularly and repeatedly, and the average level difference of the irregularities is preferably 5 μm or more.
The surface roughness is preferably from 1.2 μm to 15 μm in average roughness Ra, although it depends on the material of the base material and the sprayed film.

また、前記粗面化による基材の平面度は、20μm以下であることが好ましい。
マイクロブラストは、通常#600程度の粒子を使用するため、粗面化処理における基材の平面度を20μm以下に抑制することができ、基材が薄板状である場合においても、基材の変形や破断を生じることなく、溶射膜を形成することができる。
The flatness of the base material by the roughening is preferably 20 μm or less.
Since microblast usually uses particles of about # 600, the flatness of the substrate in the roughening treatment can be suppressed to 20 μm or less, and even when the substrate is a thin plate, deformation of the substrate is possible. A sprayed film can be formed without causing breakage.

また、本発明に係る方法は、アルミナ、ジルコニア、ムライト、SiC、AlN、YAG、イットリア、SiN等またはこれらの複合物からなるセラミックス焼成体、ガラス、石英等の脆性材料からなる基材に適用することができる。
上記のような脆性材料基材においても、本発明に係る方法によれば、上記のように、薄板状基材であっても、基材の反りや破断を抑制して、所望の粗面化処理を施すことができる。
In addition, the method according to the present invention is applied to a substrate made of a brittle material such as alumina, zirconia, mullite, SiC, AlN, YAG, yttria, SiN, etc., or a composite thereof, or a composite material thereof, glass, quartz, etc. be able to.
Even in the brittle material substrate as described above, according to the method according to the present invention, as described above, even if it is a thin plate-like substrate, the warp and fracture of the substrate are suppressed, and the desired roughening is achieved. Processing can be performed.

本発明においては、上記のようにして粗面化処理された基材表面に、溶射膜を形成する。
溶射膜の形成方法としては、一般に、フレーム溶射、プラズマ溶射等の方法があるが、本発明においては、プラズマ溶射法により膜を形成することが好ましい。
プラズマ溶射法は、プラズマ炎を使用するため、フレーム溶射法よりも高温で行われ、イットリア等の高融点溶射材を十分に溶融して高速で基材に衝突させることができ、緻密な膜が形成され、密着力により優れた溶射膜を得ることができる。
In the present invention, a sprayed film is formed on the surface of the base material roughened as described above.
As a method for forming a sprayed film, there are generally methods such as flame spraying and plasma spraying. In the present invention, it is preferable to form a film by a plasma spraying method.
Since the plasma spraying method uses a plasma flame, it is performed at a higher temperature than the flame spraying method, and a high melting point spraying material such as yttria can be sufficiently melted and collided with the substrate at a high speed. It is possible to obtain a thermal sprayed film that is formed and has better adhesion.

前記溶射膜としては、耐プラズマ性に優れたイットリアからなることが好ましいが、その他、YAG、アルミナ、ジルコニア等のセラミックス膜とすることもできる。
特に、前記基材に、耐プラズマ性溶射膜をプラズマ溶射法により形成したものは、溶射膜の剥離による耐プラズマ性の低下の抑制、プラズマ曝露時におけるパーティクルの発生の抑制等の利点を有していることから、耐プラズマ性部材として好適に用いることができる。
The sprayed film is preferably made of yttria having excellent plasma resistance, but may be a ceramic film made of YAG, alumina, zirconia, or the like.
In particular, a plasma-resistant sprayed film formed on the substrate by a plasma spraying method has advantages such as suppression of plasma resistance reduction due to peeling of the sprayed film and suppression of particle generation during plasma exposure. Therefore, it can be suitably used as a plasma resistant member.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1〜4]
直径300mm、厚さ5mmのアルミナ焼成体をメッシュ状のマスキング材でマスクし、マイクロブラスト(砥粒:GC#600、圧力:0.2MPa)にて粗面化処理を行った。
表面の凹凸の平均段差をレーザ顕微鏡にて測定し、また、平面度を3次元測定機で測定した。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Examples 1 to 4]
The alumina fired body having a diameter of 300 mm and a thickness of 5 mm was masked with a mesh-shaped masking material, and a roughening treatment was performed with microblast (abrasive grains: GC # 600, pressure: 0.2 MPa).
The average level difference of the surface irregularities was measured with a laser microscope, and the flatness was measured with a three-dimensional measuring machine.

前記粗面化処理したアルミナ焼成体の基材表面に、イットリアセラミックス(平均粒径10〜60μm)をプラズマ溶射し、溶射膜を形成した。
溶射後の溶射膜について、エポキシ樹脂により先端部を接着したスタッドピンを垂直方向に引っ張るボンドキャップ法により、密着力を測定した。
サンプルは各10点作製し、各測定値の平均値を求めた。
Yttria ceramics (average particle size of 10 to 60 μm) was plasma sprayed on the surface of the roughened alumina fired body to form a sprayed film.
With respect to the thermal sprayed film after thermal spraying, the adhesive force was measured by a bond cap method in which a stud pin having an end bonded with an epoxy resin was pulled in the vertical direction.
Ten samples were prepared for each sample, and the average value of the measured values was obtained.

[実施例5]
マスキング材に代えて、メッシュをアルミナ焼成体表面に貼り付け、それ以外については、実施例1と同様にして、粗面化処理、溶射膜形成および各種測定を行った。
[Example 5]
Instead of the masking material, the mesh was affixed to the surface of the alumina fired body, and other than that, roughening treatment, sprayed film formation and various measurements were performed in the same manner as in Example 1.

[実施例6]
アルミナ焼成体に代えて、石英を基材として用い、それ以外については、実施例5と同様にして、粗面化処理、溶射膜形成および各種測定を行った。
[Example 6]
In place of the alumina fired body, quartz was used as a base material, and other than that, roughening treatment, sprayed film formation, and various measurements were performed in the same manner as in Example 5.

[比較例1]
マスクなしで粗面化処理を行い、それ以外については、実施例1と同様にして、溶射膜形成および各種測定を行った。
[Comparative Example 1]
A surface roughening treatment was performed without a mask, and the other processes were performed in the same manner as in Example 1 to form a sprayed film and perform various measurements.

[比較例2]
マスクなしで、ブラスト(砥粒:WA#70、圧力:0.3MPa)にて粗面化処理を行い、それ以外については、実施例1と同様にして、溶射膜形成および各種測定を行った。
[Comparative Example 2]
The surface was roughened by blasting (abrasive grain: WA # 70, pressure: 0.3 MPa) without a mask, and other than that, sprayed film formation and various measurements were performed in the same manner as in Example 1. .

[比較例3]
アルミナ焼成体に代えて、石英を基材として用い、それ以外については、比較例2と同様にして、粗面化処理、溶射膜形成および各種測定を行った。
[Comparative Example 3]
In place of the alumina fired body, quartz was used as a base material, and other than that, roughening treatment, sprayed film formation, and various measurements were performed in the same manner as in Comparative Example 2.

上記各実施例および各比較例の結果を、まとめて表1に示す。





















Table 1 summarizes the results of the above Examples and Comparative Examples.





















Figure 2007277620
Figure 2007277620

表1から分かるように、マスキング材またはメッシュを用いて、マイクロブラストにより、脆性材料基材表面を粗面化処理することにより、基材の反りを抑制し、段差を有する凹凸面を形成することができ、溶射膜の密着力を向上させることができることが認められた。特に、平均段差が5μm以上の場合において、密着力の向上が大きいことが認められた。   As can be seen from Table 1, the surface of the brittle material substrate is roughened by microblasting using a masking material or mesh, thereby suppressing the warpage of the substrate and forming an uneven surface having steps. It was confirmed that the adhesion of the sprayed film can be improved. In particular, when the average level difference was 5 μm or more, it was confirmed that the improvement in adhesion was great.

Claims (4)

脆性材料からなる基材表面を、マスキング材またはメッシュを用いたマイクロブラスト加工により粗面化した後、該基材表面にプラズマ溶射法により溶射膜を形成することを特徴とする脆性材料基材への溶射膜形成方法。   To a brittle material substrate characterized in that a substrate surface made of a brittle material is roughened by microblasting using a masking material or a mesh, and then a sprayed film is formed on the substrate surface by a plasma spraying method. Thermal spray film forming method. 前記粗面化された基材表面には、凹凸が繰り返して存在し、該凹凸の平均段差が5μm以上であることを特徴とする請求項1記載の脆性材料基材への溶射膜形成方法。   The method for forming a sprayed film on a brittle material substrate according to claim 1, wherein unevenness is repeatedly present on the roughened substrate surface, and an average step of the unevenness is 5 µm or more. 前記粗面化による基材の平面度が20μm以下であることを特徴とする請求項1または請求項2記載の脆性材料基材への溶射膜形成方法。   The method of forming a sprayed film on a brittle material substrate according to claim 1 or 2, wherein the flatness of the substrate by the roughening is 20 µm or less. 前記脆性材料が、セラミックス、ガラスおよび石英のうちのいずれかであることを特徴とする請求項1から請求項3までのいずれかに記載の脆性材料基材への溶射膜形成方法。   The method for forming a sprayed film on a brittle material substrate according to any one of claims 1 to 3, wherein the brittle material is one of ceramics, glass, and quartz.
JP2006103883A 2006-04-05 2006-04-05 Method for depositing spray deposit film on brittle base material Pending JP2007277620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103883A JP2007277620A (en) 2006-04-05 2006-04-05 Method for depositing spray deposit film on brittle base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103883A JP2007277620A (en) 2006-04-05 2006-04-05 Method for depositing spray deposit film on brittle base material

Publications (1)

Publication Number Publication Date
JP2007277620A true JP2007277620A (en) 2007-10-25

Family

ID=38679363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103883A Pending JP2007277620A (en) 2006-04-05 2006-04-05 Method for depositing spray deposit film on brittle base material

Country Status (1)

Country Link
JP (1) JP2007277620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122418A (en) * 2012-11-22 2014-07-03 Gunma Prefecture Substrate with multilayer coating film and production method thereof
KR20170139084A (en) 2015-04-21 2017-12-18 도카로 가부시키가이샤 A roughening method of a base material, a surface treatment method of a base material, a method of producing a thermal spray coating material and a thermal spray coating material
CN114752886A (en) * 2022-04-15 2022-07-15 合肥升滕半导体技术有限公司 Quartz pot plasma jet method suitable for physical vapor deposition process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122418A (en) * 2012-11-22 2014-07-03 Gunma Prefecture Substrate with multilayer coating film and production method thereof
KR20170139084A (en) 2015-04-21 2017-12-18 도카로 가부시키가이샤 A roughening method of a base material, a surface treatment method of a base material, a method of producing a thermal spray coating material and a thermal spray coating material
US11131014B2 (en) 2015-04-21 2021-09-28 Tocalo Co., Ltd. Method for roughening surface of substrate, method for treating surface of substrate, method for producing thermal spray-coated member, and thermal spray-coated member
CN114752886A (en) * 2022-04-15 2022-07-15 合肥升滕半导体技术有限公司 Quartz pot plasma jet method suitable for physical vapor deposition process

Similar Documents

Publication Publication Date Title
CN107287545B (en) Yttrium fluoride spray coating, spray material for the same, and corrosion-resistant coating including the spray coating
JP4985928B2 (en) Multi-layer coated corrosion resistant member
KR100618630B1 (en) Plasma resistant member, manufacturing method for the same and method of forming a thermal spray coat
JP4591722B2 (en) Manufacturing method of ceramic sprayed member
TWI402374B (en) Method and apparatus for the application of twin wire arc spray coatings
KR100966132B1 (en) Plasma-Resistant Ceramic Coated Substrate
JP2010199596A5 (en)
KR101563130B1 (en) Parts of semiconductor and display equipments with improved anti-plasma corrosion and method improving anti-plasma corrosion of parts
JP2005240171A (en) Corrosion resistant member and its production method
WO2014104354A1 (en) Plasma resistant member
TWI500817B (en) Formation method of fluoride thermal spray membrane and fluoride thermal spray membrane-coated member
JP7306490B2 (en) Yttrium fluoride-based thermal spray coating, thermal sprayed member, and method for producing yttrium fluoride-based thermal spray coating
JP2007277620A (en) Method for depositing spray deposit film on brittle base material
JP2005097685A (en) Corrosion resistant member and manufacturing method therefor
JP5031259B2 (en) Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
JP2007063595A (en) Ceramic gas nozzle made of y2o3 sintered compact
WO2006117887A1 (en) Corrosion-resistant member and process for producing the same
JP2008007350A (en) Yttria ceramic sintered compact
JP2005225745A (en) Plasma resistant member and its producing method
JP7196343B1 (en) Glass base material having base film for film adhesion, and glass part provided with film
JP5365165B2 (en) Wafer
JP2019127598A (en) Manufacturing method of spray coated member
JP5077573B2 (en) Wafer
JP2019056143A (en) Base material having thermal spray coating and method for manufacturing the same
US20230312406A1 (en) Quartz glass substrate with improved adhesion of thermal spray coating, its manufacturing method, and method for manufacturing quartz glass parts covered with thermal spray coating

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711