JP2019056143A - Base material having thermal spray coating and method for manufacturing the same - Google Patents

Base material having thermal spray coating and method for manufacturing the same Download PDF

Info

Publication number
JP2019056143A
JP2019056143A JP2017181479A JP2017181479A JP2019056143A JP 2019056143 A JP2019056143 A JP 2019056143A JP 2017181479 A JP2017181479 A JP 2017181479A JP 2017181479 A JP2017181479 A JP 2017181479A JP 2019056143 A JP2019056143 A JP 2019056143A
Authority
JP
Japan
Prior art keywords
sprayed
film
thermal spray
sprayed film
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017181479A
Other languages
Japanese (ja)
Other versions
JP7284553B2 (en
Inventor
青山 久範
Hisanori Aoyama
久範 青山
賢信 則武
Masanobu Noritake
賢信 則武
陽一 伊藤
Yoichi Ito
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017181479A priority Critical patent/JP7284553B2/en
Publication of JP2019056143A publication Critical patent/JP2019056143A/en
Application granted granted Critical
Publication of JP7284553B2 publication Critical patent/JP7284553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To provide a method for manufacturing a base material having a thermal spray coating, capable of compatibly improving adhesion to the base material and obtaining a sufficient thickness.SOLUTION: A method for manufacturing a base material having a thermal spray coating comprises: a first thermal spray step of thermally spraying slurry obtained by dispersing spray particles into a solvent on the surface of a base material 20 to form a first thermal spray coating 31 having a thickness of 120 μm or less; and a second thermal spray step of thermally spraying the spray particles in powder on the surface of the first thermal spray coating 31 to form a second thermal spray coating 32.SELECTED DRAWING: Figure 1

Description

本発明は、溶射膜を備えた基材及びその製造方法に関する。   The present invention relates to a base material provided with a sprayed film and a method for manufacturing the same.

半導体デバイス、液晶デバイスなどを製造する場合、Siウエハやガラス基板に形成された所定の膜をFなどのハロゲン系の腐食性ガスを用いプラズマ環境下で処理するドライエッチングなどの工程が存在する。そこで、近年、半導体デバイス、液晶デバイスなどの製造装置において、プラズマ環境下で腐食ガスに曝されるチャンバーや各種部材に、Alなどの金属材料からなる基材の耐食を防止するために、基材の表面に耐食性を有するYなどからなる溶射膜を形成することがある。 When manufacturing semiconductor devices, liquid crystal devices, etc., there are processes such as dry etching in which a predetermined film formed on a Si wafer or a glass substrate is processed in a plasma environment using a halogen-based corrosive gas such as F 2. . Therefore, in recent years, in manufacturing apparatuses such as semiconductor devices and liquid crystal devices, in order to prevent the corrosion resistance of a base material made of a metal material such as Al on a chamber or various members exposed to a corrosive gas in a plasma environment, A sprayed film made of Y 2 O 3 or the like having corrosion resistance may be formed on the surface.

そして、このような溶射膜は、パーティクルの発生を抑制するために、研磨加工又は研削加工後の表面が緻密であることが要求され、そのためには気孔率を小さくすることが必要である。粉末原料をそのまま溶射する乾式溶射と比較して、粉末原料を分散させたスラリーを用いて溶射する湿式溶射によって溶射膜を形成すれば、その気孔率を例えば1.5%以下にと小さくすることが可能であることが知られている。   And in order to suppress generation | occurrence | production of a particle, such a thermal spray film | membrane is requested | required that the surface after grinding | polishing process or grinding process is precise | minute, For that purpose, it is necessary to make a porosity small. Compared with dry thermal spraying, where the powder raw material is sprayed as it is, if the thermal spray film is formed by wet spraying using a slurry in which the powder raw material is dispersed, the porosity should be reduced to, for example, 1.5% or less. Is known to be possible.

特許文献1には、ガラスのような脆性基材のひび割れを防止するために、Y、Al等の酸化物被膜を脆性基材の表面に形成する際、まず粉末材料を用いた乾式溶射を行い、その上に、粉末材料を分散させたスラリーを用いた湿式溶射を行うことが開示されている。 In Patent Document 1, in order to prevent cracking of a brittle substrate such as glass, when an oxide film such as Y 2 O 3 or Al 2 O 3 is formed on the surface of the brittle substrate, first, a powder material is used. It is disclosed that dry spraying is performed, and then wet spraying is performed using a slurry in which a powder material is dispersed.

特開2014−122418号公報JP 2014-122418 A

しかしながら、乾式溶射で形成された溶射膜は気孔率が大きいので、基材との密着性に劣り、長期間に亘って使用すると基材から剥離するおそれがあるという課題があった。一方、湿式溶射では、例えば120μmを超える厚さの溶射膜を形成することが困難であるので、基材をプラズマ腐食から保護するために十分な厚さの溶射膜を形成することができないという課題があった。   However, since the thermal spray film formed by dry spraying has a high porosity, it has poor adhesion to the base material, and there is a problem that it may be peeled off from the base material when used for a long period of time. On the other hand, in wet spraying, for example, since it is difficult to form a sprayed film having a thickness exceeding 120 μm, it is impossible to form a sprayed film having a sufficient thickness to protect the substrate from plasma corrosion. was there.

本発明は、上記従来の問題に鑑みなされたものであり、基材との密着性の向上と十分な厚さの確保との両立を図ることが可能な溶射膜を備えた基材及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and a base material provided with a thermal spray film capable of achieving both improvement in adhesion to the base material and securing sufficient thickness, and production thereof. It aims to provide a method.

本発明の溶射膜を備えた基材の製造方法は、基材の表面に、溶射粒子を溶媒に分散させたスラリーの形態で溶射し、厚さ120μm以下の第1の溶射膜を形成する第1の工程と、前記第1の溶射膜の表面に、溶射粒子を粉末の形態で溶射し、第2の溶射膜を形成する第2の工程とを備えることを特徴とする。   In the method for producing a base material provided with the sprayed film of the present invention, the first sprayed film having a thickness of 120 μm or less is formed on the surface of the base material in the form of a slurry in which spray particles are dispersed in a solvent. And a second step of forming a second sprayed film by spraying sprayed particles in the form of powder on the surface of the first sprayed film.

溶射粒子を粉末の形態で溶射する乾式溶射では、溶射粒子が微小過ぎると溶射装置から噴出させるガス流に溶射粒子を良好に供給できないので、溶射粒子を微小にするには限度があり、形成される溶射膜の気孔率を小さくすること、ひいては緻密性に限界があった。一方、溶射粒子を溶媒に分散させたスラリーの形態で溶射する湿式溶射では、乾式溶射と比較して、溶射粒子を微小にでき、形成される溶射膜の気孔率を小さくすることができ、ひいては緻密性に優れている。   In dry spraying in which the spray particles are sprayed in the form of powder, if the spray particles are too small, the spray particles cannot be satisfactorily supplied to the gas flow ejected from the spraying device. There was a limit to reducing the porosity of the sprayed film, and thus to the denseness. On the other hand, in the case of wet spraying in which the thermal spray particles are sprayed in the form of a slurry dispersed in a solvent, the thermal spray particles can be made finer and the porosity of the sprayed film formed can be reduced compared to dry spraying, and thus Excellent denseness.

本発明の溶射膜を備えた基材の製造方法によれば、基材の表面には湿式溶射によって第1の溶射膜が形成されるので、基材と第1の溶射膜との間に隙間が少なく密着性の向上を図ると共に基材と第1の溶射膜との間に剥離が生じるおそれの低減を図ることが可能となる。   According to the manufacturing method of the base material provided with the sprayed film of the present invention, since the first sprayed film is formed on the surface of the base material by wet spraying, a gap is formed between the base material and the first sprayed film. Therefore, it is possible to improve the adhesion and reduce the possibility of peeling between the base material and the first sprayed film.

そして、第1の溶射膜の表面に第2の溶射膜が形成されるが、これらは共に溶射粒子を溶射させたものであるので、密着性に優れている。さらに、湿式溶射によって形成される第1の溶射膜の厚さは120μm以下であるので、その形成工程においてクラックなどの欠陥が生じるおそれの低減を図ることが可能となる。   Then, a second sprayed film is formed on the surface of the first sprayed film, both of which are sprayed with sprayed particles, and thus have excellent adhesion. Furthermore, since the thickness of the 1st sprayed film formed by wet spraying is 120 micrometers or less, it becomes possible to aim at reduction of a possibility that defects, such as a crack, arise in the formation process.

また、溶射膜の最表面が乾式溶射によって形成される第2の溶射膜の表面である場合、湿式溶射によって形成される溶射膜と比較して緻密性に劣るので、表面の研磨加工、研削加工などの容易化を図ることが可能となる。   Further, when the outermost surface of the sprayed film is the surface of the second sprayed film formed by dry spraying, it is inferior to the denseness compared with the sprayed film formed by wet spraying. It is possible to facilitate the above.

本発明の溶射膜を備えた基材の製造方法において、前記第2の溶射膜の表面に、溶射粒子を溶媒に分散させたスラリーの形態で溶射し、厚さ120μm以下の第3の溶射膜を形成する第3の工程をさらに備えることが好ましい。   In the manufacturing method of the base material provided with the sprayed film of the present invention, a third sprayed film having a thickness of 120 μm or less is sprayed on the surface of the second sprayed film in the form of a slurry in which sprayed particles are dispersed in a solvent. It is preferable that the method further includes a third step of forming.

この場合、溶射膜の最表面を湿式溶射によって形成される第3の溶射膜の表面とすることができ、この表面を研磨加工又は研削加工したとき、露出する面の表面粗さの低減を図ることが可能となると共に、パーティクル発生の抑制を図ることが可能となる。   In this case, the outermost surface of the sprayed film can be the surface of the third sprayed film formed by wet spraying, and when this surface is polished or ground, the surface roughness of the exposed surface is reduced. This makes it possible to suppress the generation of particles.

なお、本発明の溶射膜を備えた基材の製造方法において、基材上に順番に積層される溶射膜の内、第4以降の偶数番目の溶射膜を乾式溶射によって形成されるものとし、第5以降の奇数番目の溶射膜を湿式溶射によって形成されるものとすれば、溶射膜の層数は限定されない。   In addition, in the manufacturing method of the base material provided with the thermal spray film of the present invention, among the thermal spray films sequentially stacked on the base material, the fourth and subsequent even-numbered thermal spray films shall be formed by dry spraying, If the fifth and subsequent odd-numbered sprayed films are formed by wet spraying, the number of sprayed films is not limited.

また、本発明の溶射膜を備えた基材の製造方法において、前記第1の溶射膜の気孔率をPW、前記第2の溶射膜の気孔率をPDとしたとき、PW/PD≦0.5の関係を満たすことが好ましい。   In the method of manufacturing a substrate provided with the sprayed coating of the present invention, when the porosity of the first sprayed coating is PW and the porosity of the second sprayed coating is PD, PW / PD ≦ 0. It is preferable that the relationship 5 is satisfied.

PW/PDが0.5を超える場合には、第2の溶射膜の気孔率PDが小さくなり過ぎる場合と第1の溶射膜の気孔率PWが大きくなり過ぎる場合とが含まれる。PW/PDが1に近づくと、第1の溶射膜と第2の溶射膜の組織が近くなるため、第1の溶射膜と第2の溶射膜との間の密着性は向上する。   When PW / PD exceeds 0.5, the case where the porosity PD of the second sprayed film becomes too small and the case where the porosity PW of the first sprayed film becomes too large are included. When PW / PD approaches 1, the structures of the first sprayed film and the second sprayed film are close to each other, so that the adhesion between the first sprayed film and the second sprayed film is improved.

しかしながら、第2の溶射膜の気孔率PDが小さくなり過ぎる場合については、第2の溶射膜が乾式溶射により形成されることから、そもそも気孔率PDを一定の値よりも小さくすることが困難である。一方で、第1の溶射膜の気孔率PWが大きくなり過ぎる場合には、基材と第1の溶射膜との間の密着性が十分に確保することができなくなる。   However, when the porosity PD of the second sprayed film is too small, it is difficult to make the porosity PD smaller than a certain value because the second sprayed film is formed by dry spraying. is there. On the other hand, when the porosity PW of the first sprayed film becomes too large, the adhesion between the base material and the first sprayed film cannot be sufficiently ensured.

また、本発明の溶射膜を備えた基材の製造方法において、前記第1の溶射膜の厚さをTW、前記第2の溶射膜の厚さをTDとしたとき、TW/TD≦0.5の関係を満たすことが好ましい。   Moreover, in the manufacturing method of the base material provided with the sprayed film of the present invention, when the thickness of the first sprayed film is TW and the thickness of the second sprayed film is TD, TW / TD ≦ 0. It is preferable that the relationship 5 is satisfied.

これは、後述する実施例及び比較例から分かるように、上記関係を満たさない場合、湿式溶射によって形成される溶射膜のうち最も表側に位置する溶射膜にクラックが生じるからである。   This is because, as can be seen from Examples and Comparative Examples described later, when the above relationship is not satisfied, cracks occur in the sprayed film located on the most front side among the sprayed films formed by wet spraying.

また、湿式溶射は、乾式溶射と比較して、溶射効率に劣るので、湿式溶射により形成した第1の溶射膜を乾式溶射により形成した第2の溶射膜よりも薄くすることにより、コストの低減を図ることが可能となる。   Further, since wet spraying is inferior in thermal spraying efficiency compared to dry spraying, cost reduction is achieved by making the first sprayed film formed by wet spraying thinner than the second sprayed film formed by dry spraying. Can be achieved.

本発明の溶射膜を備えた基材は、基材と、前記基材の表面に形成されている第1の溶射膜と、前記第1の溶射膜の表面に形成されている第2の溶射膜とを備えた溶射膜を備えた基材であって、前記第1の溶射膜の気孔率をPW、前記第2の溶射膜の気孔率をPDとしたとき、PW/PD≦0.5の関係を満たすことを特徴とする。   The base material provided with the thermal spray film of the present invention includes a base material, a first thermal spray film formed on the surface of the base material, and a second thermal spray formed on the surface of the first thermal spray film. A substrate having a thermal spray film provided with a film, where PW / PD ≦ 0.5 when the porosity of the first thermal spray film is PW and the porosity of the second thermal spray film is PD. It is characterized by satisfying the relationship.

本発明の溶射膜を備えた基材によれば、基材の表面に形成されている第1の溶射膜の気孔率PWは第2の気孔率PDより小さいので、基材と第1の溶射膜との間に隙間が少なく密着性の向上、及び基材と第1の溶射膜との間に剥離が生じるおそれの低減を図ることが可能となる。   According to the base material provided with the thermal spray film of the present invention, the porosity PW of the first thermal spray film formed on the surface of the base material is smaller than the second porosity PD. There are few gaps between the film and the adhesion, and it is possible to reduce the possibility of peeling between the substrate and the first sprayed film.

本発明の第1の実施形態に係る溶射部材の模式縦断面図。The schematic longitudinal cross-sectional view of the thermal spray member which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る溶射部材の模式縦断面図。The schematic longitudinal cross-sectional view of the thermal spray member which concerns on the 2nd Embodiment of this invention.

本発明の第1の実施形態に係る溶射部材10及びその製造方法について図面を参照して説明する。   A thermal spray member 10 and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to the drawings.

図1に示すように、溶射部材10は、基材20と、基材20の表面に形成された溶射膜30とから構成されている。溶射部材10は、他に、基材20と溶射膜30との間に形成された電極などを備えるものであってもよい。   As shown in FIG. 1, the thermal spray member 10 includes a base material 20 and a thermal spray film 30 formed on the surface of the base material 20. In addition, the thermal spray member 10 may include an electrode formed between the base material 20 and the thermal spray film 30.

溶射部材10は、内部に埋設された電極に電圧が印加されることによって発生するクーロン力により、基板を載置面である溶射膜30の表面に吸引する静電チャックであってもよい。また、溶射部材10は、内部に埋設された発熱抵抗体によって、載置面である溶射膜30の表面に載置された基板を加熱するヒータであってもよい。また、溶射部材10は、ヒータ機能付きの静電チャックであってもよい。この他、溶射部材10は、ライナーやシャワーヘッド等の半導体製造装置のプロセスチャンバ内で使用される部材であってもよい。   The thermal spray member 10 may be an electrostatic chuck that attracts the substrate to the surface of the thermal spray film 30 as a mounting surface by a Coulomb force generated when a voltage is applied to an electrode embedded therein. The thermal spray member 10 may be a heater that heats a substrate placed on the surface of the thermal spray film 30 that is a placement surface by a heating resistor embedded therein. Further, the thermal spray member 10 may be an electrostatic chuck with a heater function. In addition, the thermal spray member 10 may be a member used in a process chamber of a semiconductor manufacturing apparatus such as a liner or a shower head.

本実施形態において、基材20は、アルミニウムからなる略円板状の部材である。ただし、基材20は、アルミニウム合金、ステンレス鋼、チタン合金、タングステン、シリコン、金属複合材料(MMC)、セラミックスなどからなるものであってもよい。また、基材20の形状は、多角形板状、円板状、楕円板状などの種々の形状であってもよく、複雑形状であってもよい。   In the present embodiment, the base material 20 is a substantially disk-shaped member made of aluminum. However, the base material 20 may be made of aluminum alloy, stainless steel, titanium alloy, tungsten, silicon, metal composite material (MMC), ceramics, or the like. Moreover, the shape of the base material 20 may be various shapes such as a polygonal plate shape, a disk shape, and an elliptical plate shape, or may be a complicated shape.

なお、サンドブラストや機械加工などにより表面粗さがRa1.0μm以上となるように基材20の表面を粗面状態に加工することが好ましい。そして、基材20の表面に、溶射膜30との熱膨張差の緩衝層となるアンダーコート層が被覆されていても、被覆されていなくてもよい。   In addition, it is preferable to process the surface of the base material 20 into a rough state so that the surface roughness becomes Ra 1.0 μm or more by sandblasting or machining. And the undercoat layer used as the buffer layer of the thermal expansion difference with the thermal spray film 30 may be coat | covered on the surface of the base material 20, or it may not be coat | covered.

図示しない溶射装置によって基材20の表面に、複数、本実施形態では、第1の溶射膜31と第2の溶射膜32からなる2層の溶射膜が積層されてなるものを形成する。溶射装置は、アーク溶射法、プラズマ溶射法又は燃料燃焼ガスを用いた高速フレーム溶射法(HVOF溶射法)などの方法で溶射する市販の溶射装置であればよく、特に限定されない。プラズマガスとしては、Ar、Ar+N、Ar+H、Ar+N+H、Ar+CO又はAr+Oなどが用いられる。 A plurality of, in this embodiment, two layers of sprayed films composed of a first sprayed film 31 and a second sprayed film 32 are formed on the surface of the base material 20 by a spraying apparatus (not shown). The thermal spraying apparatus is not particularly limited as long as it is a commercially available thermal spraying apparatus that performs thermal spraying by a method such as arc spraying, plasma spraying, or high-speed flame spraying (HVOF spraying) using a fuel combustion gas. As the plasma gas, Ar, Ar + N 2 , Ar + H 2 , Ar + N 2 + H 2 , Ar + CO 2, Ar + O 2, or the like is used.

本実施形態において、溶射の粉末原料である溶射粒子は、イットリア(Y)からなる。ただし、粉末原料は、アルミナ(Al)、窒化アルミニウム(AlN)、ジルコニア(ZrO2)、アルミナ−ジルコニア(Al−ZrO)、スピネル(MgAl)などの絶縁性セラミックスからなるもの、又はこれらの何れかを主成分とするものであってもよい。 In the present embodiment, the thermal spray particles that are the powder material for thermal spraying are made of yttria (Y 2 O 3 ). However, the powder raw material is an insulating ceramic such as alumina (Al 2 O 3 ), aluminum nitride (AlN), zirconia (ZrO 2), alumina-zirconia (Al 2 O 3 —ZrO 2 ), spinel (MgAl 2 O 4 ), etc. It may be composed of or one of these as a main component.

第1の溶射膜31は、基材20の表面上に形成されている。ただし、前述したように、第1の溶射膜31は、アンダーコート層又はその一部が電極の表面に形成されているものあってもよい。   The first sprayed film 31 is formed on the surface of the substrate 20. However, as described above, the first sprayed film 31 may be one in which the undercoat layer or a part thereof is formed on the surface of the electrode.

第1の溶射膜31は、溶射粒子を溶媒に分散させたスラリーの形態で溶射する湿式溶射を行う第1の溶射工程(第1の工程)によって形成されてなる。溶媒としては、エタノールなどの可燃性有機溶媒又は水などが用いられる。スラリーにおける溶射粒子の割合は、例えば20〜40重量%である。   The first sprayed film 31 is formed by a first spraying process (first process) in which wet spraying is performed in the form of a slurry in which sprayed particles are dispersed in a solvent. As the solvent, a flammable organic solvent such as ethanol or water is used. The ratio of the spray particles in the slurry is, for example, 20 to 40% by weight.

溶射粒子を粉末の形態で溶射する乾式溶射では、溶射粒子が微小過ぎると溶射装置においてガス流に対して溶射粒子を良好に供給できないので、溶射粒子を微小にするには限度がある。一方、湿式溶射においては、このような不具合が発生しないので、溶射粒子の粒径を微小にすることができる。溶射粒子を微小にすれば、この溶射粒子が溶解した状態で堆積されたものが冷却されてなる第1の溶射膜31の気孔率PWが小さなものとなる。   In dry thermal spraying in which the thermal spray particles are sprayed in the form of powder, if the thermal spray particles are too small, the thermal spraying apparatus cannot supply the thermal spray particles favorably to the gas flow, so there is a limit to making the thermal spray particles minute. On the other hand, in wet spraying, since such a problem does not occur, the particle size of the sprayed particles can be made minute. If the thermal spray particles are made minute, the porosity PW of the first thermal spray film 31 formed by cooling the deposited particles in a melted state becomes small.

第1の溶射膜31の気孔率PWは、例えば0.1〜1.5%であり、より好ましくは0.1〜1.2%である。この場合、溶射粒子の平均粒径は、例えば1.0〜8.0μm、より好ましくは2.0〜6.0μmとすればよい。   The porosity PW of the first sprayed film 31 is, for example, 0.1 to 1.5%, and more preferably 0.1 to 1.2%. In this case, the average particle diameter of the spray particles may be, for example, 1.0 to 8.0 μm, and more preferably 2.0 to 6.0 μm.

このように湿式溶射で形成された第1の溶射膜31の気孔率PWが小さいので、乾式溶射で形成された溶射膜を基材20に直接形成する場合と比較して、基材20との密着性の向上を図ることが可能となる。さらに、基材20の粗面化した表面に溶解した微小な溶射粒子が入り込み、これが冷却されてアンカー効果により基材20と第1の溶射膜31との密着性の向上を図ることが可能となる。これらにより、基材20と第1の溶射膜31との間に剥離が生じるおそれの低減を図ることができる。   Thus, since the porosity PW of the first sprayed film 31 formed by wet spraying is small, compared with the case of directly forming the sprayed film formed by dry spraying on the base material 20, It becomes possible to improve the adhesion. Further, fine spray particles dissolved in the roughened surface of the base material 20 enter, and this is cooled, and it is possible to improve the adhesion between the base material 20 and the first thermal spray film 31 by the anchor effect. Become. By these, reduction of a possibility that peeling may arise between substrate 20 and the 1st thermal spray film 31 can be aimed at.

第1の溶射膜31の厚さTWは、120μm以下であり、好ましくは10〜60μmである。これは、一般的に湿式溶射で形成した溶射膜は、厚さが120μmを超えると、形成時にクラックなどの欠陥が発生するおそれが高くなるからである。本実施形態では、第1の溶射膜31の厚さは120μm以下であるので、欠陥が発生するおそれの抑制を図ることが可能となる。   The thickness TW of the first sprayed film 31 is 120 μm or less, preferably 10 to 60 μm. This is because a sprayed film generally formed by wet spraying is liable to cause defects such as cracks when formed when the thickness exceeds 120 μm. In the present embodiment, since the thickness of the first sprayed film 31 is 120 μm or less, it is possible to suppress the possibility of occurrence of defects.

第2の溶射膜32は、第1の溶射膜31の表面に、溶射粒子を粉末の形態で溶射する乾式溶射を行う第2の溶射工程(第2の工程)によって形成されてなる。   The second sprayed film 32 is formed on the surface of the first sprayed film 31 by a second spraying process (second process) in which dry spraying is performed by spraying sprayed particles in the form of powder.

第2の溶射膜32の厚さTDは、好ましくは10〜1000μmである。第2の溶射膜32の気孔率PDは、1.5〜8.0%であり、より好ましくは1.5〜5.0%である。さらに、第1の溶射膜31の気孔率PWと第2の溶射膜32の気孔率PDは、PW/PD≦0.5、より好ましくはPW/PD≦0.3の関係を満たすことが好ましい。   The thickness TD of the second sprayed film 32 is preferably 10 to 1000 μm. The porosity PD of the second sprayed film 32 is 1.5 to 8.0%, more preferably 1.5 to 5.0%. Furthermore, the porosity PW of the first sprayed film 31 and the porosity PD of the second sprayed film 32 preferably satisfy the relationship of PW / PD ≦ 0.5, more preferably PW / PD ≦ 0.3. .

PW/PDが0.5を超える場合には、第2の溶射膜32の気孔率PDが小さくなり過ぎる場合と第1の溶射膜31の気孔率PWが大きくなり過ぎる場合とが含まれる。PW/PDが1に近づくと、第1の溶射膜31と第2の溶射膜32の組織が近くなるため、第1の溶射膜31と第2の溶射膜32との間の密着性は向上する。   When PW / PD exceeds 0.5, the case where the porosity PD of the second sprayed film 32 becomes too small and the case where the porosity PW of the first sprayed film 31 becomes too large are included. When PW / PD approaches 1, the structures of the first sprayed film 31 and the second sprayed film 32 become closer, and thus the adhesion between the first sprayed film 31 and the second sprayed film 32 is improved. To do.

しかしながら、第2の溶射膜32の気孔率PDが小さくなり過ぎる場合については、第2の溶射膜32が乾式溶射により形成されることから、そもそも気孔率PDを一定の値よりも小さくすることが困難である。一方で、第1の溶射膜31の気孔率PWが大きくなり過ぎる場合には、基材20と第1の溶射膜31との間の密着性が十分に確保することができなくなる。   However, when the porosity PD of the second sprayed film 32 becomes too small, the second sprayed film 32 is formed by dry spraying, so that the porosity PD can be made smaller than a certain value in the first place. Have difficulty. On the other hand, when the porosity PW of the first sprayed film 31 becomes too large, the adhesion between the substrate 20 and the first sprayed film 31 cannot be sufficiently ensured.

第2の溶射膜32の厚さTDは、10μm以上であり、好ましくは10〜1000μmである。これは、乾式溶射で形成した溶射膜は、厚さが厚くなっても、形成時にクラックなどの欠陥が発生するおそれは非常に低いからである。そして、第2の溶射膜32の表面が、溶射膜30の最表面になっている。   The thickness TD of the second sprayed film 32 is 10 μm or more, preferably 10 to 1000 μm. This is because a thermal sprayed film formed by dry spraying has a very low risk of occurrence of defects such as cracks during formation even when the thickness is increased. The surface of the second sprayed film 32 is the outermost surface of the sprayed film 30.

さらに、第1の溶射膜31の厚さTWと第2の溶射膜32の厚さTDは、TW/TD≦0.5、より好ましくは0.001≦TW/TD≦0.3の関係を満たすことが好ましい。これは、後述する実施例及び比較例から分かるように、この関係を満たさない場合、湿式溶射によって形成される溶射膜のうち最も表側に位置する溶射膜にクラックが生じるおそれが高まるからである。   Furthermore, the thickness TW of the first sprayed film 31 and the thickness TD of the second sprayed film 32 have a relationship of TW / TD ≦ 0.5, more preferably 0.001 ≦ TW / TD ≦ 0.3. It is preferable to satisfy. This is because, as will be understood from Examples and Comparative Examples described later, when this relationship is not satisfied, there is an increased risk of cracks occurring in the sprayed film located on the most front side among the sprayed films formed by wet spraying.

即ち、TW/TD>0.3になると、湿式溶射によって形成される第1の溶射膜31と乾式溶射によって形成される第2の溶射膜32の物性値の差によって誘起される内部応力が大きくなるためクラックが生じるおそれが高まる。   That is, when TW / TD> 0.3, the internal stress induced by the difference in physical property values between the first sprayed film 31 formed by wet spraying and the second sprayed film 32 formed by dry spraying becomes large. Therefore, there is an increased risk of cracking.

TW/TD<0.001になると、基材20と乾式溶射によって形成される第2の溶射膜32の距離が近くなり過ぎて、基材20と湿式溶射によって形成される第1の溶射膜31の密着している界面に対し、基材20と第2の溶射膜32の物性値の差によって誘起される内部応力が作用することで密着力が阻害され溶射膜30が剥離するおそれが高まる。   When TW / TD <0.001, the distance between the base material 20 and the second thermal spray film 32 formed by dry spraying becomes too close, and the first thermal spray film 31 formed by the base material 20 and wet thermal spraying. The internal stress induced by the difference in the physical property values of the base material 20 and the second sprayed film 32 acts on the interface where the sprayed film 30 is in close contact with each other.

また、湿式溶射は、乾式溶射と比較して、溶射効率に劣るので、湿式溶射により形成した第1の溶射膜31の厚さTWを乾式溶射により形成した第2の溶射膜32の厚さTDよりも薄くすることがコスト低減の観点から好ましい。   Further, since wet spraying is inferior in thermal spraying efficiency compared to dry spraying, the thickness TW of the first sprayed film 31 formed by wet spraying is the thickness TD of the second sprayed film 32 formed by dry spraying. It is preferable from the viewpoint of cost reduction.

また、第1の溶射膜31の厚さTWと第2の溶射膜32の厚さTDとの合計厚さ、すなわち溶射膜30の厚さは、好ましくは150μm以上、より好ましくは200μm以上である。これは、溶射膜30が厚いほど、基材20をプラズマ腐食から確実に保護することが可能となるからである。   Further, the total thickness of the thickness TW of the first sprayed film 31 and the thickness TD of the second sprayed film 32, that is, the thickness of the sprayed film 30 is preferably 150 μm or more, more preferably 200 μm or more. . This is because the thicker the sprayed film 30, the more reliably the substrate 20 can be protected from plasma corrosion.

このように構成された溶射部材10においては、上述したように、基材20と第1の溶射膜30との間に剥離が生じるおそれは低く、かつ、第1及び第2の溶射膜31,32は溶射粒子の材質が同じであるため密着性は良好であるので、基材20及び溶射膜30の間で剥離が生じるおそれの低減を図ることが可能となる。   In the thermal spray member 10 configured as described above, as described above, there is a low possibility that peeling occurs between the base material 20 and the first thermal spray film 30, and the first and second thermal spray films 31, Since the material of the thermal spray particles 32 is the same, the adhesiveness is good, so that it is possible to reduce the possibility of peeling between the substrate 20 and the thermal spray film 30.

以下、本発明の第2の実施形態に係る溶射部材10A及びその製造方法について図面を参照して説明する。   Hereinafter, a thermal spray member 10A and a manufacturing method thereof according to a second embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る溶射部材10Aは、上述した溶射部材10と比較して、溶射膜30Aが2層の溶射膜31,32からでなく3層の溶射膜31〜33から形成されている点においてのみ相違する。   The thermal spray member 10A according to this embodiment is different from the thermal spray member 10 described above in that the thermal spray film 30A is formed not from the two thermal spray films 31 and 32 but from the three thermal spray films 31 to 33. Only the difference.

ここで、第1及び第2の溶射膜31,32は、上述した第1及び第2の溶射膜31,32と同様に形成されている。   Here, the first and second sprayed films 31 and 32 are formed in the same manner as the first and second sprayed films 31 and 32 described above.

そして、第3の溶射膜33は、第2の溶射膜32の表面に形成されており、上述した第1の溶射膜31と同様に、湿式溶射を行う第3の溶射工程(第3の工程)によって形成されてなる。   And the 3rd thermal spray film 33 is formed in the surface of the 2nd thermal spray film 32, and the 3rd thermal spray process (3rd process) which performs wet thermal spraying similarly to the 1st thermal spray film 31 mentioned above. ).

第3の溶射膜33は、第1の溶射膜31と同様の気孔率PW、厚さTWとなっている。ただし、第1の溶射膜31と第3の溶射膜33の気孔率PW及び厚さTWは、同じであっても、相違していてもよい。   The third sprayed film 33 has the same porosity PW and thickness TW as the first sprayed film 31. However, the porosity PW and the thickness TW of the first sprayed film 31 and the third sprayed film 33 may be the same or different.

本実施形態に係る溶射部材10Aは、上述した溶射部材10と同様に効果を奏する。さらに、湿式溶射による緻密性が優れた第3の溶射膜33が溶射膜30の最表面に存在するので、この表面を研磨加工又は研削加工したとき、露出する面の表面粗さの低減を図ることが可能となると共に、パーティクル発生の抑制を図ることが可能となる。   The thermal spray member 10A according to the present embodiment has the same effects as the thermal spray member 10 described above. Further, since the third sprayed film 33 excellent in denseness by wet spraying is present on the outermost surface of the sprayed film 30, the surface roughness of the exposed surface is reduced when this surface is polished or ground. This makes it possible to suppress the generation of particles.

また、本発明は上述した実施形態に係る溶射部材10,10Aに限定されない。例えば、溶射部材10は溶射膜30が2つの溶射膜31,32が積層されてなり、溶射部材10Aは溶射膜30が3つの溶射膜31〜33が積層されてなるが、これらに限定されず、4層以上の溶射膜が積層されてなる溶射膜を備えたものであってもよい。   Moreover, this invention is not limited to the thermal spray member 10 and 10A which concern on embodiment mentioned above. For example, the thermal spray member 10 is formed by laminating two thermal spray films 31 and 32, and the thermal spray member 10A is constructed by laminating three thermal spray films 31 to 33, but is not limited thereto. It may be provided with a thermal spray film formed by laminating four or more thermal spray films.

(実施例1)
基材20として、アルミニウム合金(A6061)からなり、直径100mm、厚さ20mmの円板状のものを用意した。基材20の表面をサンドブラストによって粗面化した。
Example 1
As the base material 20, a disc-shaped material made of an aluminum alloy (A6061) and having a diameter of 100 mm and a thickness of 20 mm was prepared. The surface of the substrate 20 was roughened by sandblasting.

乾式溶射の際に使用する溶射原料(溶射材料)として、メディアン径D50が25μmのイットリア粉末を用意した。湿式溶射の際に使用する溶射原料として、メディアン径D50が3μmのイットリア粉末を用いた。   Yttria powder having a median diameter D50 of 25 μm was prepared as a thermal spraying material (spraying material) used for dry spraying. Yttria powder having a median diameter D50 of 3 μm was used as a thermal spraying raw material used in wet spraying.

そして、図1を参照し、溶射装置によって上記溶射材料を30重量%の割合で水を用いて分散させたスラリーを基材20の表面に溶射して基材20の表面に、厚さTWが40μmの第1の溶射膜31を湿式溶射によって形成した。   Then, referring to FIG. 1, a slurry in which the thermal spray material is dispersed with water at a ratio of 30 wt% by a thermal spraying apparatus is sprayed on the surface of the base material 20, and the thickness TW is formed on the surface of the base material 20. A 40 μm first sprayed film 31 was formed by wet spraying.

次いで、溶射装置によって上記溶射材料を第1の溶射膜31の表面に溶射して第1の溶射膜31の表面に、厚さTDが120μmの第2の溶射膜32を乾式溶射によって形成した。   Next, the above-mentioned sprayed material was sprayed on the surface of the first sprayed film 31 by a spraying device, and a second sprayed film 32 having a thickness TD of 120 μm was formed on the surface of the first sprayed film 31 by dry spraying.

第1及び第2の溶射膜31,32には、クラックなどの欠陥は目視で確認できなかった。   Defects such as cracks could not be visually confirmed in the first and second sprayed films 31 and 32.

第1の溶射膜31の気孔率PWは1.2%であり、第2の溶射膜32の気孔率PDは3.5%であった。なお、気孔率PW,PDは、面積気孔率として算出することができる。詳述すると、面積気孔率は、第1の溶射膜31、第2の溶射膜32のそれぞれについて、走査型電子顕微鏡(SEM)を用いて1000倍に拡大した断面画像を撮影し、2値化処理して得られた断面画像に占める気孔の面積割合を算出することにより求めることができる。このとき、画像解析ソフトとしてImage J等の汎用ソフトウェアを用いることで組織のエッジ検出、面積の数値化及び面積割合の算出を容易に行うことができる。   The porosity PW of the first sprayed film 31 was 1.2%, and the porosity PD of the second sprayed film 32 was 3.5%. The porosity PW and PD can be calculated as area porosity. Specifically, the area porosity is binarized by taking a cross-sectional image magnified 1000 times using a scanning electron microscope (SEM) for each of the first sprayed film 31 and the second sprayed film 32. It can be obtained by calculating the area ratio of pores in the cross-sectional image obtained by processing. At this time, by using general-purpose software such as Image J as image analysis software, tissue edge detection, area quantification, and area ratio calculation can be easily performed.

引っ張りにより基材20と第1の溶射膜31とが剥離する強度、すなわち密着強度を、JIS H8666に準じた試験方法によって測定した。密着強度は22MPaであった。   The strength at which the base material 20 and the first sprayed film 31 were peeled off by pulling, that is, the adhesion strength was measured by a test method according to JIS H8666. The adhesion strength was 22 MPa.

(実施例2)
上述した実施例1と比較して、図2を参照し、溶射膜30Aが2つの溶射膜31,32が積層してなるものではなく、3つの溶射膜31〜33が積層してなるものからなることのみが相違する。
(Example 2)
Compared with the first embodiment described above, referring to FIG. 2, the sprayed film 30 </ b> A is not formed by stacking two sprayed films 31 and 32, but is formed by stacking three sprayed films 31 to 33. The only difference is that

実施例2では、第2の溶射膜32まで形成した実施例1の溶射部材10に対して、溶射装置によって上記溶射材料を30重量%の割合で水を用いて分散させたスラリーを第2の溶射膜32の表面に溶射して第2の溶射膜32の表面に、厚さTWが40μmの第3の溶射膜33を湿式溶射によって形成した。これにより、溶射部材10Aが完成した。   In the second embodiment, a slurry obtained by dispersing the above-mentioned sprayed material with water at a rate of 30 wt% by a spraying device is applied to the second sprayed member 10 of the first embodiment in which the second sprayed film 32 is formed. A third sprayed film 33 having a thickness TW of 40 μm was formed on the surface of the second sprayed film 32 by wet spraying. Thereby, the thermal spray member 10A was completed.

第1乃至第3の溶射膜31〜33には、クラックなどの欠陥は目視で確認できなかった。   Defects such as cracks could not be visually confirmed in the first to third sprayed films 31 to 33.

第1及び第3の溶射膜31,33の気孔率PWは1.2%であり、第2の溶射膜32の気孔率PDは3.5%であった。基材20と第1の溶射膜31との密着強度は22MPaであった。   The porosity PW of the first and third sprayed films 31 and 33 was 1.2%, and the porosity PD of the second sprayed film 32 was 3.5%. The adhesion strength between the substrate 20 and the first sprayed film 31 was 22 MPa.

(実施例3)
上述した実施例2とは、溶射膜が3つの溶射膜31〜33ではなく5つの溶射膜が積層してなることのみ相違する。
(Example 3)
The second embodiment is different from the above-described second embodiment only in that the sprayed film is formed by stacking five sprayed films instead of the three sprayed films 31 to 33.

実施例3では、第3の溶射膜33まで形成した実施例2の溶射部材10Aに対して、溶射装置によって上記溶射材料を第3の溶射膜33の表面に溶射して第3の溶射膜33の表面に、厚さTDが120μmの第4の溶射膜を乾式溶射によって形成した。   In Example 3, the thermal spray material is sprayed onto the surface of the third thermal spray film 33 by the thermal spraying apparatus on the thermal spray member 10A of Example 2 formed up to the third thermal spray film 33, and the third thermal spray film 33 is formed. A fourth sprayed film having a thickness TD of 120 μm was formed on the surface by dry spraying.

次いで、溶射装置によって上記溶射材料を30重量%の割合で水を用いて分散させたスラリーを第4の溶射膜の表面に溶射して上記溶射材料を第4の溶射膜の表面に溶射して第4の溶射膜の表面に、厚さTWが40μmの第5の溶射膜を湿式溶射によって形成した。これにより、溶射部材が完成した。   Next, a slurry in which the thermal spray material is dispersed at a rate of 30% by weight with water using a thermal spraying apparatus is sprayed onto the surface of the fourth thermal spray film, and the thermal spray material is sprayed onto the surface of the fourth thermal spray film. A fifth sprayed film having a thickness TW of 40 μm was formed on the surface of the fourth sprayed film by wet spraying. Thereby, the thermal spray member was completed.

第1乃至第5の溶射膜には、クラックなどの欠陥は目視で確認できなかった。   In the first to fifth sprayed films, defects such as cracks could not be visually confirmed.

第1、第3及び第5の溶射膜の気孔率PWは1.2%であり、第2及び第4の溶射膜Aの気孔率PDは3.5%であった。   The porosity PW of the first, third and fifth sprayed films was 1.2%, and the porosity PD of the second and fourth sprayed films A was 3.5%.

(実施例4)
上述した実施例3とは、溶射膜が5つの溶射膜ではなく6つの溶射膜が積層してなることのみ相違する。
Example 4
The third embodiment is different from the above-described third embodiment only in that the sprayed film is formed by stacking six sprayed films instead of five sprayed films.

実施例4では、第5の溶射膜まで形成した実施例3の完成品である溶射部材に対して、溶射装置によって上記溶射材料を第5の溶射膜の表面に溶射して第5の溶射膜の表面に、厚さTDが120μmの第6の溶射膜を乾式溶射によって形成した。これにより、溶射部材が完成した。   In Example 4, the sprayed material is sprayed onto the surface of the fifth sprayed film by the spraying apparatus on the sprayed member which is the finished product of Example 3 formed up to the fifth sprayed film. A sixth sprayed film having a thickness TD of 120 μm was formed on the surface of the film by dry spraying. Thereby, the thermal spray member was completed.

第1乃至第6の溶射膜には、クラックなどの欠陥は目視で確認できなかった。   Defects such as cracks could not be visually confirmed in the first to sixth sprayed films.

第1、第3及び第5の溶射膜の気孔率PWは1.2%であり、第2、第4及び第6の溶射膜の気孔率PDは3.5%であった。   The porosity PW of the first, third, and fifth sprayed films was 1.2%, and the porosity PD of the second, fourth, and sixth sprayed films was 3.5%.

(実施例5)
上述した実施例2とは、基材20がアルミニウム合金(A6061)からなるものではなく、アルミナ(Al)焼結体からなることのみ相違する。
(Example 5)
The difference from Example 2 described above is that the base material 20 is not made of an aluminum alloy (A6061) but is made of an alumina (Al 2 O 3 ) sintered body.

第1乃至第3の溶射膜31〜33には、クラックなどの欠陥は目視で確認できなかった。   Defects such as cracks could not be visually confirmed in the first to third sprayed films 31 to 33.

第1及び第3の溶射膜31,33の気孔率PWは1.2%であり、第2の溶射膜32の気孔率PDは3.5%であった。基材20と第1の溶射膜31との密着強度は23MPaであった。   The porosity PW of the first and third sprayed films 31 and 33 was 1.2%, and the porosity PD of the second sprayed film 32 was 3.5%. The adhesion strength between the substrate 20 and the first sprayed film 31 was 23 MPa.

(実施例6)
上述した実施例2と比較して、第2の溶射膜32の厚さTDが120μmではなく70μmであることのみが相違する。
(Example 6)
Compared with the second embodiment described above, the only difference is that the thickness TD of the second sprayed film 32 is 70 μm instead of 120 μm.

第3の溶射膜33にクラックが目視で確認された。   Cracks were visually confirmed in the third sprayed film 33.

(実施例7)
上述した実施例3と比較して、第2及び第4の溶射膜の厚さTDが120μmではなく70μmであることのみが相違する。
(Example 7)
Compared to the third embodiment described above, the only difference is that the thickness TD of the second and fourth sprayed films is 70 μm, not 120 μm.

第5の溶射膜にクラックが目視で確認された。   Cracks were visually confirmed in the fifth sprayed film.

(比較例1)
上述した実施例1と同じ、基材20並びに湿式及び乾式溶射に用いる溶射材料を用意した。
(Comparative Example 1)
The same substrate 20 as in Example 1 described above and a thermal spray material used for wet and dry thermal spraying were prepared.

そして、溶射装置によって上記溶射材料を基材20の表面に溶射して基材20の表面に、厚さTDが120μmの第1の溶射膜を乾式溶射によって形成した。   And the said thermal spray material was sprayed on the surface of the base material 20 with the thermal spraying apparatus, and the 1st thermal spray film with thickness TD of 120 micrometers was formed on the surface of the base material 20 by the dry-type thermal spraying.

次いで、溶射装置によって上記溶射材料を30重量%の割合で水を用いて分散させたスラリーを上記第1の溶射膜の表面に溶射して当該第1の溶射膜の表面に、厚さTWが60μmの第2の溶射膜を湿式溶射によって形成した。これにより、溶射部材が完成した。   Next, a slurry in which the thermal spray material is dispersed at a rate of 30% by weight with water using a thermal spraying apparatus is sprayed on the surface of the first thermal spray film, and a thickness TW is formed on the surface of the first thermal spray film. A 60 μm second sprayed film was formed by wet spraying. Thereby, the thermal spray member was completed.

第1及び第2の溶射膜には、クラックなどの欠陥は目視で確認できなかった。   In the first and second sprayed films, defects such as cracks could not be visually confirmed.

第1の溶射膜の気孔率PDは3.5%であり、第2の溶射膜の気孔率PWは1.2%であった。   The porosity PD of the first sprayed film was 3.5%, and the porosity PW of the second sprayed film was 1.2%.

基材と第1の溶射膜とが剥離する密着強度を測定した。密着強度は11MPaであり、実施例1と比較して半分に低下した。   The adhesion strength at which the substrate and the first sprayed film peeled was measured. The adhesion strength was 11 MPa, which was reduced to half compared to Example 1.

(比較例2)
上述した実施例1と同じ、基材並びに湿式及び乾式溶射に用いる溶射材料を用意した。
(Comparative Example 2)
The same substrate as in Example 1 described above and a thermal spray material used for wet and dry thermal spraying were prepared.

そして、溶射装置によって上記溶射材料を基材の表面に溶射して基材の表面に、厚さTDが120μmの第1の溶射膜を乾式溶射によって形成した。   And the said thermal spray material was thermally sprayed on the surface of the base material with the thermal spraying apparatus, and the 1st thermal spray film with thickness TD of 120 micrometers was formed on the surface of the base material by dry spraying.

次いで、溶射装置によって上記溶射材料を30重量%の割合で水を用いて分散させたスラリーを上記第1の溶射膜の表面に溶射して当該第1の溶射膜の表面に、厚さTWが30μmの第2の溶射膜を湿式溶射によって形成した。   Next, a slurry in which the thermal spray material is dispersed at a rate of 30% by weight with water using a thermal spraying apparatus is sprayed on the surface of the first thermal spray film, and a thickness TW is formed on the surface of the first thermal spray film. A 30 μm second sprayed film was formed by wet spraying.

次いで、溶射装置によって上記溶射材料を第3の溶射膜の表面に溶射して第3の溶射膜の表面に、厚さTDが120μmの第3の溶射膜を乾式溶射によって形成した。   Next, the above-mentioned sprayed material was sprayed on the surface of the third sprayed film by a spraying device, and a third sprayed film having a thickness TD of 120 μm was formed on the surface of the third sprayed film by dry spraying.

次いで、溶射装置によって上記溶射材料を30重量%の割合で水を用いて分散させたスラリーを上記第3の溶射膜の表面に溶射して当該第3の溶射膜の表面に、厚さTWが30μmの第4の溶射膜を湿式溶射によって形成した。これにより、溶射部材が完成した。   Next, a slurry in which the thermal spray material is dispersed with water at a rate of 30% by weight by a thermal spraying apparatus is sprayed on the surface of the third thermal spray film, and a thickness TW is formed on the surface of the third thermal spray film. A fourth sprayed film having a thickness of 30 μm was formed by wet spraying. Thereby, the thermal spray member was completed.

第1乃至第4の溶射膜には、クラックなどの欠陥は目視で確認できなかった。   In the first to fourth sprayed films, defects such as cracks could not be visually confirmed.

第1及び第3の溶射膜の気孔率PDは3.5%であり、第2及び第4の溶射膜の気孔率PWは1.2%であった。   The porosity PD of the first and third sprayed films was 3.5%, and the porosity PW of the second and fourth sprayed films was 1.2%.

基材と上記第1の溶射膜とが剥離する密着強度を測定した。密着強度は11MPaであり、実施例1と比較して半分に低下した。   The adhesion strength at which the substrate and the first sprayed film peeled was measured. The adhesion strength was 11 MPa, which was reduced to half compared to Example 1.

(比較例3)
上述した比較例2とは、基材がアルミニウム合金(A6061)からなるものではなく、アルミナ焼結体からなることのみ相違する。
(Comparative Example 3)
The difference from Comparative Example 2 described above is that the base material is not made of an aluminum alloy (A6061), but is made of an alumina sintered body.

第1乃至第3の溶射膜には、クラックなどの欠陥は目視で確認できなかった。   In the first to third sprayed films, defects such as cracks could not be visually confirmed.

第1及び第3の溶射膜の気孔率PDは3.5%であり、第2の溶射膜の気孔率PWは1.2%であった。基材と第1の溶射膜との密着強度は12MPaであり、実施例5の約半分であった。   The porosity PD of the first and third sprayed films was 3.5%, and the porosity PW of the second sprayed film was 1.2%. The adhesion strength between the substrate and the first sprayed film was 12 MPa, which was about half that of Example 5.

以上の結果を表1にまとめた。表1の密着の欄において、「−」は密着試験を行わなかったことを示している。   The above results are summarized in Table 1. In the column of adhesion in Table 1, “-” indicates that the adhesion test was not performed.

10,10A…溶射部材、20…基材、 30,30A…溶射膜、 31…第1の溶射膜、 32…第2の溶射膜、 33…第3の溶射膜。   DESCRIPTION OF SYMBOLS 10,10A ... Spraying member, 20 ... Base material, 30, 30A ... Spraying film, 31 ... 1st spraying film, 32 ... 2nd spraying film, 33 ... 3rd spraying film.

Claims (5)

基材の表面に、溶射粒子を溶媒に分散させたスラリーの形態で溶射し、厚さ120μm以下の第1の溶射膜を形成する第1の工程と、
前記第1の溶射膜の表面に、溶射粒子を粉末の形態で溶射し、第2の溶射膜を形成する第2の工程とを備えることを特徴とする溶射膜を備えた基材の製造方法。
A first step of spraying the surface of the substrate in the form of a slurry in which spray particles are dispersed in a solvent to form a first sprayed film having a thickness of 120 μm or less;
And a second step of spraying sprayed particles in the form of powder on the surface of the first sprayed film to form a second sprayed film. .
前記第2の溶射膜の表面に、溶射粒子を溶媒に分散させたスラリーの形態で溶射し、厚さ120μm以下の第3の溶射膜を形成する第3の工程をさらに備えることを特徴とする請求項1に記載の溶射膜を備えた基材の製造方法。   The method further comprises a third step of spraying the surface of the second sprayed film in the form of a slurry in which sprayed particles are dispersed in a solvent to form a third sprayed film having a thickness of 120 μm or less. The manufacturing method of the base material provided with the sprayed film of Claim 1. 前記第1の溶射膜の気孔率をPW、前記第2の溶射膜の気孔率をPDとしたとき、
PW/PD≦0.5の関係を満たすことを特徴とする請求項1又は2に記載の溶射膜を備えた基材の製造方法。
When the porosity of the first sprayed film is PW and the porosity of the second sprayed film is PD,
The method for producing a base material provided with a sprayed film according to claim 1, wherein the relationship of PW / PD ≦ 0.5 is satisfied.
前記第1の溶射膜の厚さをTW、前記第2の溶射膜の厚さをTDとしたとき、
TW/TD≦0.5の関係を満たすことを特徴とする請求項1から3の何れか1項に記載の溶射膜を備えた基材の製造方法。
When the thickness of the first sprayed film is TW and the thickness of the second sprayed film is TD,
The method for producing a base material provided with a sprayed film according to any one of claims 1 to 3, wherein a relationship of TW / TD≤0.5 is satisfied.
基材と、
前記基材の表面に形成されている第1の溶射膜と、
前記第1の溶射膜の表面に形成されている第2の溶射膜とを備えた溶射膜を備えた基材であって、
前記第1の溶射膜の気孔率をPW、前記第2の溶射膜の気孔率をPDとしたとき、
PW/PD≦0.5の関係を満たすことを特徴とする溶射膜を備えた基材。
A substrate;
A first sprayed film formed on the surface of the substrate;
A base material comprising a thermal spray film comprising a second thermal spray film formed on the surface of the first thermal spray film,
When the porosity of the first sprayed film is PW and the porosity of the second sprayed film is PD,
The base material provided with the sprayed film characterized by satisfy | filling the relationship of PW / PD <= 0.5.
JP2017181479A 2017-09-21 2017-09-21 Substrate with thermal spray coating and method for manufacturing the same Active JP7284553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181479A JP7284553B2 (en) 2017-09-21 2017-09-21 Substrate with thermal spray coating and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181479A JP7284553B2 (en) 2017-09-21 2017-09-21 Substrate with thermal spray coating and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2019056143A true JP2019056143A (en) 2019-04-11
JP7284553B2 JP7284553B2 (en) 2023-05-31

Family

ID=66107212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181479A Active JP7284553B2 (en) 2017-09-21 2017-09-21 Substrate with thermal spray coating and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP7284553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025093A (en) * 2019-08-06 2021-02-22 日本特殊陶業株式会社 Manufacturing method of flame spray film coated member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087206A (en) * 1998-09-10 2000-03-28 Tocalo Co Ltd Vessel for molten metal and its surface treatment
US20110244216A1 (en) * 2008-02-06 2011-10-06 Alexandra Meyer Thermal barrier coating system and method for the production thereof
WO2013176168A1 (en) * 2012-05-22 2013-11-28 株式会社東芝 Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
US20140065408A1 (en) * 2012-09-05 2014-03-06 Christopher W. Strock Thermal barrier coating for gas turbine engine components
JP2014122418A (en) * 2012-11-22 2014-07-03 Gunma Prefecture Substrate with multilayer coating film and production method thereof
JP2014156651A (en) * 2013-01-18 2014-08-28 Fujimi Inc Sprayed coating and metallic member with coating
JP2015183193A (en) * 2014-03-20 2015-10-22 日本電気硝子株式会社 Anticorrosive coating film, heat transfer pipe and production method thereof
JP2016540890A (en) * 2013-11-26 2016-12-28 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Modified thermal barrier composite coating
JP2017515001A (en) * 2014-05-07 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Slurry plasma spraying of plasma resistant ceramic coating

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087206A (en) * 1998-09-10 2000-03-28 Tocalo Co Ltd Vessel for molten metal and its surface treatment
US20110244216A1 (en) * 2008-02-06 2011-10-06 Alexandra Meyer Thermal barrier coating system and method for the production thereof
WO2013176168A1 (en) * 2012-05-22 2013-11-28 株式会社東芝 Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
US20140065408A1 (en) * 2012-09-05 2014-03-06 Christopher W. Strock Thermal barrier coating for gas turbine engine components
JP2014122418A (en) * 2012-11-22 2014-07-03 Gunma Prefecture Substrate with multilayer coating film and production method thereof
JP2014156651A (en) * 2013-01-18 2014-08-28 Fujimi Inc Sprayed coating and metallic member with coating
JP2016540890A (en) * 2013-11-26 2016-12-28 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Modified thermal barrier composite coating
JP2015183193A (en) * 2014-03-20 2015-10-22 日本電気硝子株式会社 Anticorrosive coating film, heat transfer pipe and production method thereof
JP2017515001A (en) * 2014-05-07 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Slurry plasma spraying of plasma resistant ceramic coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025093A (en) * 2019-08-06 2021-02-22 日本特殊陶業株式会社 Manufacturing method of flame spray film coated member

Also Published As

Publication number Publication date
JP7284553B2 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
JP6378389B2 (en) Manufacturing method of parts for plasma processing apparatus
KR101637801B1 (en) Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
JP5674479B2 (en) Yttrium-containing ceramic coating resistant to reducing plasma
WO2015151857A1 (en) Plasma-resistant component, method for manufacturing plasma-resistant component, and film deposition device used to manufacture plasma-resistant component
TW201719799A (en) Substrate support assembly with deposited surface features
JP2016511796A5 (en)
JP4006535B2 (en) Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof
KR20150099711A (en) Plasma resistant member
JP2002001865A (en) Laminate, corrosion resistant member and halogen gas plasma resistant member
JP2021500480A (en) Manufacturing method of plasma resistant coating film and plasma resistant member formed by this method
JP7284553B2 (en) Substrate with thermal spray coating and method for manufacturing the same
JP6526568B2 (en) Parts for plasma apparatus and method for manufacturing the same
JP2017014569A (en) Ceramic coating film and method for manufacturing the same
US20110220285A1 (en) Methods and systems for texturing ceramic components
KR101559112B1 (en) Ceramic coating film of parts surface &amp; manufacture method thereof
TW200934743A (en) Method of making ceramic reactor components and ceramic reactor component made therefrom
JP2022171973A (en) Method for manufacturing thermal spray member
TWI600797B (en) Internal member for a plasma treatment apparatus and method of manufacturing the same
JP2004002101A (en) Plasma resistant member and its manufacturing process
JP6966339B2 (en) Method of manufacturing thermal spraying member
JP2007277620A (en) Method for depositing spray deposit film on brittle base material
JP7196343B1 (en) Glass base material having base film for film adhesion, and glass part provided with film
JP6934401B2 (en) Manufacturing method of thermal spraying member
JP7162153B1 (en) Quartz glass base material with improved adhesion of thermal spray coating, method for producing same, and method for producing quartz glass parts having thermal spray coating
JP7122206B2 (en) thermal spray film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220309

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220315

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220520

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220524

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220607

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220719

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220913

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230519

R150 Certificate of patent or registration of utility model

Ref document number: 7284553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150