JP2000169907A - 転炉炉壁耐火物の損耗抑制方法 - Google Patents

転炉炉壁耐火物の損耗抑制方法

Info

Publication number
JP2000169907A
JP2000169907A JP10357009A JP35700998A JP2000169907A JP 2000169907 A JP2000169907 A JP 2000169907A JP 10357009 A JP10357009 A JP 10357009A JP 35700998 A JP35700998 A JP 35700998A JP 2000169907 A JP2000169907 A JP 2000169907A
Authority
JP
Japan
Prior art keywords
converter
blown
exhaust gas
secondary combustion
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10357009A
Other languages
English (en)
Inventor
Etsuro Udagawa
悦郎 宇田川
Masato Kumagai
正人 熊谷
Hiroyasu Morioka
宏泰 森岡
Masahiko Kimura
政彦 木村
Shigeyuki Nabeshima
茂之 鍋島
Shigeo Tateno
重穂 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10357009A priority Critical patent/JP2000169907A/ja
Publication of JP2000169907A publication Critical patent/JP2000169907A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

(57)【要約】 【課題】本発明は、炉内での二次燃焼率を高く維持した
状態で、転炉の絞り部での排ガス温度の低下が可能な転
炉炉壁耐火物の損耗抑制方法を提供することを目的とし
ている。 【解決手段】上吹ランスを有する転炉で、炉内生成ガス
を酸素で二次燃焼させ、得られた熱を溶解物に与えて、
その熱補償を行なう転炉操業方法において、前記上吹ラ
ンスを介して、タールピッチ含有量が4重量%以上の石
油系炭化水素を、転炉内に吹き込むようにする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、転炉炉壁耐火物の
損耗抑制方法に係わり、特に、転炉内へ石油系炭化水素
を吹き込み、転炉内の所謂二次燃焼に起因する局所的な
高温による炉壁耐火物の損耗を抑制する技術である。
【0002】
【従来の技術】製鋼用転炉(以下、単に転炉)の鉄スク
ラップ(以下、スクラップ)溶解能力の向上、鉱石類の
還元量の増加を目的として、従来より、炉内での所謂
「二次燃焼」を利用した溶解物への熱付与が行なわれて
いる。それは、転炉に特殊な形状の上吹ランスを設け、
それを介して吹き込んだ酸素ガス・ジェットで転炉内に
発生したCOガスを燃焼させ、その燃焼熱をスクラップ
等の溶解対象物や溶解物(以下、溶湯という)に着熱さ
せる方法である。この方法は、安価であり、溶鋼中の硫
黄濃度(記号:[S])の上昇を伴わない等の利点はあ
るが、二次燃焼反応(CO+1/2 O2 →CO2
は、気相での発熱反応を利用するため、二次燃焼比率
(CO2 /(CO+CO2 ))を上昇させた場合、排ガ
スの温度が非常に高くなり、転炉に内張した耐火物(特
に、絞り部)の損傷が激しくなる短所がある。なお、現
在、転炉炉壁耐火物としては、カーボンを含有したマグ
ネシア系が多用されている。
【0003】また、この二次燃焼は、排ガス中のCO量
を低下してCO2 量を高めるため、排ガスのカロリーを
低下させ、排ガスの再利用に支障を起こすという問題が
あった。そこで、これらの問題を解決するため、特開昭
64−079313号公報は、上吹ランスを介して転炉
内壁に向け、炉壁冷却剤として石炭粉、コークス粉等の
炭材粉を吹き込む方法を提案した。この方法によれば、
排ガスの温度が下り、転炉内壁耐火物の損耗速度が低下
するからである。
【0004】
【発明が解決しようとする課題】前記特開昭64−07
9313号公報に開示されたように、上吹きランスを介
して転炉内壁に石炭粉、コークス粉等の炭材粉を吹き込
む方法では、確かに排ガス温度が下がり、転炉内壁耐火
物の損耗速度は低下する。しかしながら、別途、以下の
ような問題点が生じた。まず、その方法では、排ガスの
改質効率が低い。すなわち、吹き込んだ炭材粉のうちす
べてのカーボン分が、Solution loss反応
(CO2 +C→2CO、吸熱反応)を起こすのではな
く、その一部は、未反応のまま排ガス中に捕捉され、集
塵粉として回収されていた。逆に、吹き込み炭材粉を削
減するために、吹き込み炭材粉の供給速度を低下させる
と、必要とされる排ガス温度の低下効果が得られない。
つまり、この方法では、カーボン系ダスト発生量の増加
が避けられなかった。また、炭材粉そのものが高価であ
るため、二次燃焼に要するコストが高いという問題もあ
った。本発明は、上記事情に鑑み、炉内での二次燃焼率
を高く維持した状態で、転炉の絞り部での排ガス温度の
低下が可能な転炉炉壁耐火物の損耗抑制方法を提供する
ことを目的としている。
【0005】
【課題を解決するための手段】発明者は、上記目的を達
成するため、転炉へ吹き込む物質の種類を鋭意検討し、
その成果を本発明に具現化した。すなわち、本発明は、
上吹ランスを有する転炉で、炉内生成ガスを酸素で二次
燃焼させ、得られた熱を溶解物に与えて、その熱補償を
行なう転炉操業方法において、前記上吹ランスを介し
て、タールピッチ含有量が4重量%以上の石油系炭化水
素を、転炉内に吹き込むことを特徴とする転炉炉壁耐火
物の損耗抑制方法である。また、本発明は、上記転炉炉
壁耐火物が、カーボンを含有したマグネシア質レンガで
あることを特徴とする転炉炉壁耐火物の損耗抑制方法で
ある。
【0006】さらに、本発明は、上記石油系炭化水素が
重油であることを特徴とする転炉炉壁耐火物の損耗抑制
方法でもある。本発明では、上吹ランスを介して転炉内
に流体である石油系炭化水素を吹き込むようにしたの
で、固体の炭材粉よりも飛躍的に反応界面積がかせげる
ようになり、吹き込んだすべての炭化水素が排ガスの改
質に寄与するようになる。その結果、転炉の排ガス組成
に全く悪影響を及ぼさずに、排ガス温度の低下が達成で
きる。また、石油系であるため、含まれるわずかなター
ル分(残留カーボン)で炉壁耐火物の保護膜が形成され
るようになり、カーボン含有マグネシア質レンガに特有
の問題である高温でのマグネシアとカーボンの反応(1
式)によるレンガの劣化(ポーラスになる)を防止でき
る。さらに、該炭化水素に重油を選択すれば、それは、
比較的安価であるので、炉壁耐火物の損耗抑制コストの
低減が可能になる。 MgO(固)+C(固)→Mg(気)+CO(気) −(1)
【0007】
【発明の実施の形態】図1は、本発明に係る損耗防止方
法を実施する転炉の構造を説明する図である。図1にお
いて、1は転炉、2は底吹きノズル、3は溶湯、4は溶
湯3の表面に発生する溶融スラグ、5は上吹ランス、6
は上吹ランス5先端より噴射される酸素ガス・ジェッ
ト、7は上吹ランス5の外周部より噴出される石油系炭
化水素である。
【0008】図2は、本発明に係る損耗防止方法の実施
に用いる上吹ランス5の拡大断面図である。この上吹ラ
ンス5は、酸素ライン10及び酸素ノズル11によって
構成され、これら酸素ライン及び酸素ノズルは、通常の
転炉操業に使用される上吹ランスと同様、冷却水入側ラ
イン8より導入した冷却水を循環し、冷却水出側ライン
より排出する水冷構造の外周壁を備えている。そして、
本発明に係る損耗防止方法の実施に使用する場合には、
さらに冷却水出側ライン9に内包される形で、炭化水素
ライン12を有し、その先端には、炭化水素の噴出ノズ
ル13が設置してある。また、この冷却剤ライン12
は、上吹ランスの構造上可能ならば、冷却水入側ライン
8内に設置しても差し支えない。さらに、これらに限ら
ず、炭化水素を専用ランスを、操業で用いる上吹きラン
スに独立させて、別途に設けても良い。次に、本発明で
は、これらのランスから転炉内壁に向けて吹込む石油系
炭化水素として、タールピッチ含有量(残留カーボン)
が4重量%以上含有したものを使用することに限定し
た。その理由は、4重量未満では、耐火物表面上に析出
するカーボン量が不足し、ランスの損耗抑制効果が十分
に発揮できないからである。
【0009】
【実施例】150ton規模の上底吹き転炉を用いて、
本発明に係る損耗抑制方法を実施した。70tonのス
クラップを投入した転炉に、予め脱珪・脱りん処理した
溶銑(1220℃)を90ton装入した。次に、該転
炉に上記上吹ランス5をセットしたが、その先端高さ
は、静止溶鋼面から4.2mで、且つ炭化水素の噴出ノ
ズルの先端高さは、静止溶鋼面から5.7mの位置にな
るようにした。転炉での精錬操業は、上吹き酸素量を5
50Nm3 /min、底吹き酸素量を50Nm3 /mi
n、底吹き窒素量を20Nm3 /minとする条件で行
なわれた。また、その精錬中には、溶銑温度が1550
℃になるまで、炭材が1.25kg/Nm3 −O2 の比
率で供給された。なお、本発明に係る損耗抑制方法の実
施(実施例という)では、上記ランスから石油系炭化水
素として重油を30kg/minの供給速度で噴出し
た。また、他の条件をすべて同じにして、まったく何も
吹き込まない(比較例1)場合及び炉壁耐火物の冷却剤
として粉コークスを115kg/minで吹き込む(比
較例2)場合も実施した。
【0010】このような精錬操業において調査した排ガ
ス温度、昇熱能力及びカーボン系ダスト発生量を表1に
示す。表1の実施例及び比較例2で示すように、上吹ラ
ンスを介して石油系炭化水素及び粉コークスを噴出させ
ると、昇熱能力を維持しつつ排ガス温度が低下してい
る。また、本発明の実施例が示すように、タール分(残
留カーボン)の多い炭化水素系液体である重油を使用す
ると、耐火物表面にカーボンの保護膜が形成され、上述
したマグネシアとカーボンの反応によるレンガの劣化が
抑制できる。
【0011】
【表1】
【0012】このことを立証するため、図3に、実施例
のように、重油を吹き付けた場合に比較して、軽油を吹
き付けた場合の耐火物レンガ表面の写真を示す。重油の
場合には、レンガ表面に不定形のカーボンが蒸着してお
り、この蒸着層には、レンガ中から分解して再析出した
マグネシア(MgO)、フォルステライト(Mg2 Si
4 )及びスピネル(MgAl24 )が観察された。
また、レンガの内部は、健全な状態であったが、軽油を
吹き付けた場合は、レンガ表面にカーボン蒸着物は見ら
れず、レンガ内部は、カーボンが消失して脆くなると思
われる層が観察されている。さらに、表1より、本発明
によれば、カーボン系ダスト発生量を増加することな
く、かつ、大幅な損耗防止コストの増加を招くことな
く、排ガス温度を低下することができると共に、レンガ
表面に形成される保護膜によって、カーボン含有マグネ
シア質レンガ特有の高温での劣化が抑制できることが明
らかである。
【0013】
【発明の効果】以上説明したように、本発明により、上
吹ランスを有する転炉において、上吹ランスを介して転
炉内に石油系炭化水素を吹き込むことで、転炉における
二次燃焼の発熱反応の際に生じる高温な排ガスによる転
炉耐火物損耗の問題、及び、排ガス中のCOの低下、C
2 の上昇による排ガスのカロリー低下の問題を、転炉
本来の昇温機能を低下させることなく解決できる。ま
た、これまで提案された従来方法に生じるカーボン系ダ
スト発生量の増加問題、カーボン含有マグネシア質レン
ガの劣化の問題、及び、損耗抑制コストの大幅な増加の
問題を伴うことなく、二次燃焼法の目的を十分発揮でき
ると共に、転炉の耐火物保護効果を発揮することができ
る。
【図面の簡単な説明】
【図1】本発明方法を実施する転炉構造を示す図であ
る。
【図2】本発明方法に使用する上吹ランスの一例を示す
図である。
【図3】レンガ表面のカーボン蒸着層形成状況を示す図
であり、(a)は、重油を(b)は軽油を吹き付けた場
合である。
【符号の説明】
1 転炉 2 底吹きノズル 3 溶湯 4 溶融スラグ 5 上吹ランス 6 酸素ガスジェット 7 石油系炭化水素 8 冷却水入側ライン 9 冷却水出側ライン 10 酸素ライン 11 酸素ノズル 12 石油系炭化水素ライン 13 石油系炭化水素の噴出ノズル
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森岡 宏泰 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 木村 政彦 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 鍋島 茂之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 舘野 重穂 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K002 AC04 AC05 AD02 BA01 BC01 BC03

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 上吹ランスを有する転炉で、炉内生成ガ
    スを酸素で二次燃焼させ、得られた熱を溶解物に与え
    て、その熱補償を行なう転炉操業方法において、 前記上吹ランスを介して、タールピッチ含有量が4重量
    %以上の石油系炭化水素を、転炉内に吹き込むことを特
    徴とする転炉炉壁耐火物の損耗抑制方法。
  2. 【請求項2】 上記転炉炉壁耐火物が、カーボンを含有
    したマグネシア質レンガであることを特徴とする請求項
    1記載の転炉炉壁耐火物の損耗抑制方法。
  3. 【請求項3】 上記石油系炭化水素が重油であることを
    特徴とする請求項1又は2記載の転炉炉壁耐火物の損耗
    抑制方法。
JP10357009A 1998-12-02 1998-12-02 転炉炉壁耐火物の損耗抑制方法 Withdrawn JP2000169907A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10357009A JP2000169907A (ja) 1998-12-02 1998-12-02 転炉炉壁耐火物の損耗抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10357009A JP2000169907A (ja) 1998-12-02 1998-12-02 転炉炉壁耐火物の損耗抑制方法

Publications (1)

Publication Number Publication Date
JP2000169907A true JP2000169907A (ja) 2000-06-20

Family

ID=18451913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357009A Withdrawn JP2000169907A (ja) 1998-12-02 1998-12-02 転炉炉壁耐火物の損耗抑制方法

Country Status (1)

Country Link
JP (1) JP2000169907A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018817A (ko) * 2001-08-31 2003-03-06 주식회사 포스코 카본함유 내화 몰탈 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018817A (ko) * 2001-08-31 2003-03-06 주식회사 포스코 카본함유 내화 몰탈 조성물

Similar Documents

Publication Publication Date Title
JP5408369B2 (ja) 溶銑の予備処理方法
AU734802B2 (en) Process of melting fine grained, direct reduced iron in an electric arc furnace
JP5418733B2 (ja) 溶銑の精錬方法
JP5408379B2 (ja) 溶銑の予備処理方法
WO2020230561A1 (ja) 製鋼スラグの改質方法およびランス
NL8004569A (nl) Werkwijze voor de bereiding van staal uit vaste, metallisch ijzer bevattende grondstoffen.
JP6648711B2 (ja) 溶銑の脱硫方法
JP2000169907A (ja) 転炉炉壁耐火物の損耗抑制方法
JP3726778B2 (ja) 溶銑保持容器
JP4329724B2 (ja) 転炉スクラップ増配方法
RU2468091C2 (ru) Железоплавильная печь с жидкой ванной
JP4120161B2 (ja) 鉄浴型溶融還元炉の操業方法
JP5625238B2 (ja) 溶鉄の精錬方法
GB2071831A (en) Method for cooling tuyeres
WO2021177021A1 (ja) 低炭素フェロマンガンの製造方法
JP2002062057A (ja) 冶金炉の炉壁冷却・保護方法及び炉壁冷却装置
JPH11264008A (ja) 転炉内張り耐火物の溶損防止方法
JP3771635B2 (ja) 転炉精錬方法
JPH10183219A (ja) スラグコーティング方法
KR100225249B1 (ko) 슬로핑 발생 억제를 위한 잔류 슬래그량 조절방법
KR860001523B1 (ko) 제강공정에서 탈탄 정련로의 송풍구의 손상 방지법
JPH11279621A (ja) 製錬容器の炉口金物及び耐火物の冷却方法
SU1036753A1 (ru) Способ выплавки стали
JP2541200B2 (ja) 高温ガスによる炉壁溶損を防止した転炉
JP2000178629A (ja) 転炉内壁の冷却剤及び冷却方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207