JP2000164248A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000164248A
JP2000164248A JP10333836A JP33383698A JP2000164248A JP 2000164248 A JP2000164248 A JP 2000164248A JP 10333836 A JP10333836 A JP 10333836A JP 33383698 A JP33383698 A JP 33383698A JP 2000164248 A JP2000164248 A JP 2000164248A
Authority
JP
Japan
Prior art keywords
volume
carbonate
secondary battery
formula
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10333836A
Other languages
Japanese (ja)
Inventor
Hitoshi Suzuki
仁 鈴木
Minoru Kotado
稔 古田土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10333836A priority Critical patent/JP2000164248A/en
Publication of JP2000164248A publication Critical patent/JP2000164248A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent drop in conductivity, prevent decomposition of an electrolyte with an inexpensive additive by including a specified amount of cyclic carbonate in a nonaqueous solvent of an electrolyte in which a lithium salt is dissolved. SOLUTION: A compound of 0.05% or more but less than 5% by volume represented by the formula is contained in a nonaqueous solvent. In the formula, R1, R2 show each 1-3C alkyl group. For example, 4,5-dimethyl-1,3-oxole-2-one, 4-5-diethyl-1,3-oxole-2-one and the like are listed. The nonaqueous solvent contains 20% or more of cyclic alkylene carbonate having 2-4C alkylene group (for example, ethylene carbonate) and 20% or more of chain carbonate of dialkyl carbonate having 1-4C alkyl group (for example, dimethyl carbonate), and a mixture solvent containing 70% or more these carbonates of the total solvent is used. As a lithium salt, LiClO4, LiPF6 and the like are listed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はサイクル特性に優れ
た非水電解液二次電池に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery having excellent cycle characteristics.

【0002】[0002]

【従来の技術】近年、電気製品の軽量化、小型化に伴
い、高いエネルギー密度を有するリチウム二次電池の開
発が進められつつある。現在、主として開発が進められ
つつあるリチウム二次電池は、負極活物質としてリチウ
ム金属やリチウムを吸蔵・放出する黒鉛を用い、正極活
物質としてLiCoO2 、LiNiO2 、LiMn2
4などのリチウムを含む複合酸化物を用い、電解液とし
て有機溶媒にリチウム塩を溶解した非水電解液を用いた
ものである。なかでも安全性の点からして、黒鉛を負極
活物質とするリチウム二次電池が有望と考えられてい
る。
2. Description of the Related Art In recent years, with the reduction in weight and size of electric appliances, development of lithium secondary batteries having a high energy density has been promoted. Currently, lithium secondary batteries, which are being developed mainly, use lithium metal or graphite that absorbs and releases lithium as a negative electrode active material, and LiCoO 2 , LiNiO 2 , and LiMn 2 O as positive electrode active materials.
A non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent is used as an electrolyte using a lithium-containing composite oxide such as 4 . Among them, lithium secondary batteries using graphite as a negative electrode active material are considered promising from the viewpoint of safety.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、黒鉛を
負極活物質とするリチウム二次電池には、充放電を反復
していると電池容量が漸次低下するという問題がある。
これは負極活物質である黒鉛表面で電解液の分解が生じ
て、充放電効率が十分高くならないためと考えられてお
り、その対策として特開平7−122296号公報に
は、非水溶媒に式(1)で示される化合物を添加した混
合溶媒を用いることが提案されている。
However, a lithium secondary battery using graphite as a negative electrode active material has a problem that the battery capacity gradually decreases when charging and discharging are repeated.
It is considered that this is because the decomposition of the electrolytic solution occurs on the surface of graphite as the negative electrode active material, and the charge / discharge efficiency does not become sufficiently high. As a countermeasure, JP-A-7-122296 discloses that It has been proposed to use a mixed solvent to which the compound represented by (1) is added.

【0004】[0004]

【化2】 Embedded image

【0005】(式中、R1 及びR2 は、それぞれ独立し
て炭素数1〜3のアルキル基を示す) 同公報には、ジメチルカーボネートに式(1)の化合物
を、その占める容量%が0〜100%となるように添加
した混合溶媒に、LiPF6 を溶解したものを電解液と
したリチウム二次電池について、充放電を反復した場合
の放電容量を示す図が掲載されており、式(1)の化合
物の占める容積が10〜50容量%の範囲を外れると、
放電容量が急速に低下することが示されている。しかし
ながら式(1)の化合物は、高濃度に添加すると電解液
の電導度の低下が大きく、また常用の他の溶媒に比較し
て高価なので、電導度を低下せず且つより安価な添加物
により電解液の分解を阻止する方法の開発が求められて
いる。
(In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms.) The same publication discloses that dimethyl carbonate contains a compound of formula (1), A diagram showing the discharge capacity when charging and discharging are repeated for a lithium secondary battery using LiPF 6 dissolved in a mixed solvent added to be 0 to 100% as an electrolytic solution is described by the following equation. When the volume occupied by the compound of (1) is out of the range of 10 to 50% by volume,
It is shown that the discharge capacity decreases rapidly. However, when the compound of the formula (1) is added in a high concentration, the conductivity of the electrolytic solution is greatly reduced, and the compound is more expensive than other commonly used solvents. There is a need to develop a method to prevent the decomposition of the electrolyte.

【0006】[0006]

【課題を解決するための手段】本発明者らは式(1)の
化合物の添加量が電池の充放電特性に及ぼす影響につい
て詳細に検討した結果、意外にも式(1)の化合物は5
容量%未満の少量の方がむしろ好ましいことを見出し、
本発明に到達した。すなわち本発明によれば、少くとも
黒鉛を活物質の一部とする負極と、正極と、非水溶媒に
リチウム塩を溶解してなる電解液とから構成されている
非水電解液二次電池において、非水溶媒中に0.05容
量%以上で5容量%未満の式(1)で示される化合物を
含有させることにより、その充放電特性をより優れたも
のとすることができる。
The present inventors have studied in detail the effect of the addition amount of the compound of the formula (1) on the charge / discharge characteristics of the battery.
It has been found that a small amount of less than volume% is more preferable,
The present invention has been reached. That is, according to the present invention, a nonaqueous electrolyte secondary battery comprising at least a negative electrode containing graphite as a part of the active material, a positive electrode, and an electrolyte obtained by dissolving a lithium salt in a nonaqueous solvent In the above, by adding a compound represented by the formula (1) in a nonaqueous solvent in an amount of 0.05% by volume or more and less than 5% by volume, the charge / discharge characteristics can be further improved.

【0007】[0007]

【発明の実施の形態】本発明では、電解液として、非水
溶媒中に式(1)で示される化合物を少量溶解したもの
に、リチウム塩を溶解してなる非水電解液を用いる。溶
媒としては、従来から非水電解液の溶媒として知られて
いるエチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート等の環状カーボネート;ジメチル
カーボネート、ジエチルカーボネート、ジ−n−プロピ
ルカーボネート、メチルエチルカーボネート、メチル−
n−プロピルカーボネート、エチル−n−プロピルカー
ボネート等の鎖状カーボネート、γ−ブチロラクトン、
γ−バレロラクトン等のラクトン、酢酸メチル、プロピ
オン酸メチル等の鎖状カルボン酸エステル、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、テトラヒド
ロピラン等の環状エーテル、ジメトキシエタン、ジエト
キシエタン等の鎖状エーテル、スルフォラン、ジエチル
スルホン等の含硫黄化合物などが用いられる。好ましく
は、環状カーボネートと鎖状カーボネートとを主体と
し、それぞれが20容量%以上を占める混合溶媒を用い
る。混合溶媒中には、所望により、他の溶媒を含有して
いてもよいが、その量はカーボネート溶媒の特性を損わ
ないように、特別の理由のない限り全体の30容量%未
満とすべきである。混合溶媒中の他の溶媒は、全体の2
0容量%以下、特に10容量%以下とするのが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a non-aqueous electrolyte obtained by dissolving a lithium salt in a small amount of a compound represented by the formula (1) dissolved in a non-aqueous solvent is used as an electrolyte. As the solvent, ethylene carbonate, propylene carbonate, which is conventionally known as a solvent of the non-aqueous electrolyte,
Cyclic carbonates such as butylene carbonate; dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, methyl ethyl carbonate, methyl-
chain carbonates such as n-propyl carbonate, ethyl-n-propyl carbonate, γ-butyrolactone,
lactone such as γ-valerolactone, methyl acetate, chain carboxylate such as methyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, cyclic ether such as tetrahydropyran, dimethoxyethane, chain ether such as diethoxyethane, sulfolane, A sulfur-containing compound such as diethyl sulfone is used. Preferably, a mixed solvent mainly composed of a cyclic carbonate and a chain carbonate, each of which accounts for 20% by volume or more is used. If desired, other solvents may be contained in the mixed solvent, but the amount thereof should be less than 30% by volume unless otherwise specified so as not to impair the properties of the carbonate solvent. It is. Other solvents in the mixed solvent are the total 2
It is preferably 0% by volume or less, particularly preferably 10% by volume or less.

【0008】なお、本明細書において容量%は全て室
温、すなわち25℃で測定した値である。但し25℃で
固体のものは融点まで加熱して溶融状態で測定するもの
とする。溶媒中には、4,5−ジメチル−1,3−ジオ
キソール−2−オン、4,5−ジエチル−1,3−ジオ
キソール−2−オン、4,5−ジ−n−プロピル−1,
3−ジオキソール−2−オン、4−エチル−5−メチル
−1,3−ジオキソール−2−オン、4−メチル−5−
n−プロピル−1,3−ジオキソール−2−オン、4−
エチル−5−n−プロピル−1,3−ジオキソール−2
−オンなどの式(1)で示される化合物を、0.05容
量%以上で5容量%未満となるように添加する。式
(1)で示される化合物としては、R1 及びR2 がそれ
ぞれメチル基又はエチル基である化合物を用いるのが好
ましい。
[0008] In this specification, all the volume percentages are values measured at room temperature, that is, 25 ° C. However, those solid at 25 ° C. are heated to the melting point and measured in a molten state. In the solvent, 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4,5-di-n-propyl-1,
3-dioxol-2-one, 4-ethyl-5-methyl-1,3-dioxol-2-one, 4-methyl-5
n-propyl-1,3-dioxol-2-one, 4-
Ethyl-5-n-propyl-1,3-dioxole-2
A compound represented by the formula (1), such as -one, is added in an amount of 0.05% by volume or more and less than 5% by volume. As the compound represented by the formula (1), a compound in which R 1 and R 2 are each a methyl group or an ethyl group is preferably used.

【0009】本発明者らの検討によれば、式(1)の化
合物の添加量が多過ぎると、これを溶媒とする電解液を
用いて製作した電池の充放電効率がむしろ悪化する。ま
た、式(1)の化合物の添加量が0.05容量%より少
ないと、式(1)の化合物を添加する効果が殆んど発現
しない。式(1)の化合物の好ましい添加量は0.1容
量%以上で4容量%以下、特に0.3容量%以上で3.
5容量%以下である。
According to the study of the present inventors, if the amount of the compound of the formula (1) is too large, the charge / discharge efficiency of a battery manufactured using an electrolytic solution containing the compound as a solvent is rather deteriorated. If the amount of the compound of the formula (1) is less than 0.05% by volume, the effect of adding the compound of the formula (1) is hardly exhibited. The preferable addition amount of the compound of the formula (1) is 0.1% by volume or more and 4% by volume or less, particularly 0.3% by volume or more.
5% by volume or less.

【0010】溶媒に溶解させるリチウム塩としては、L
iClO4 、LiPF6 、LiBF 4 等の無機酸リチウ
ム塩、又はLiCF3 SO3 、LiN(CF3 SO2
2 、LiN(C2 5 SO2 2 、LiN(CF3 SO
2 )(C4 9 SO2 )、LiC(CF3 SO2 3
の有機酸リチウム塩など、従来から非水電解液の電解質
として知られているものを用いることができる。これら
は所望ならばいくつかを併用してもよい。電解液中のリ
チウム塩の濃度は通常0.5〜2モル/リットルであ
る。
As a lithium salt to be dissolved in a solvent, L
iCLOFour, LiPF6, LiBF FourInorganic acid such as lithium
Salt or LiCFThreeSOThree, LiN (CFThreeSOTwo)
Two, LiN (CTwoFFiveSOTwo)Two, LiN (CFThreeSO
Two) (CFourF9SOTwo), LiC (CFThreeSOTwo)Threeetc
Non-aqueous electrolytes such as lithium organic acid salts
Can be used. these
May be used in combination if desired. The electrolyte in the electrolyte
The concentration of the salt is usually 0.5 to 2 mol / l.
You.

【0011】本発明に係る非水電解液二次電池は、上述
の非水電解液を用いる以外は、通常の非水電解液二次電
池と同様にして製作することができる。正極活物質とし
ては、LiCoO2 、LiNiO2 、LiMn2 4
の、リチウムを吸蔵・放出可能なリチウム遷移金属複合
酸化物が用いられる。正極用集電体としては、アルミニ
ウム、チタン、タンタル等の金属又はその合金が用いら
れる。なかでもアルミニウム又はその合金を用いるのが
好ましい。
The non-aqueous electrolyte secondary battery according to the present invention can be manufactured in the same manner as a normal non-aqueous electrolyte secondary battery except that the above-mentioned non-aqueous electrolyte is used. As the positive electrode active material, a lithium transition metal composite oxide capable of inserting and extracting lithium, such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , is used. As the positive electrode current collector, a metal such as aluminum, titanium, and tantalum or an alloy thereof is used. Among them, it is preferable to use aluminum or its alloy.

【0012】負極活物質としては黒鉛を用いるのが好ま
しい。黒鉛としては人造黒鉛及び精製天然黒鉛のいずれ
をも用いることができる。また、これらの黒鉛にピッチ
などで表面処理したものを用いるのも好ましい。黒鉛の
なかでも好ましいのは、学振法によるX線回折で求めた
格子面(002面)のd値(層間距離)が0.335〜
0.34nm、特に0.335〜0.337nmのもの
である。なお、所望ならば、負極活物質として知られて
いる他の材料を上記の黒鉛と併用することもできる。こ
のような材料としてはリチウム金属やその合金、非黒鉛
系炭素、酸化錫や酸化珪素等の金属酸化物などが挙げら
れる。負極用集電体としては銅、ニッケル、ステンレス
鋼などが用いられる。なかでも銅を用いるのが好まし
い。
It is preferable to use graphite as the negative electrode active material. As the graphite, either artificial graphite or purified natural graphite can be used. It is also preferable to use those obtained by subjecting these graphites to surface treatment with a pitch or the like. Among the graphites, the d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is 0.335 to 0.335.
It is 0.34 nm, especially 0.335 to 0.337 nm. If desired, another material known as a negative electrode active material can be used in combination with the above graphite. Examples of such a material include lithium metal and alloys thereof, non-graphite carbon, and metal oxides such as tin oxide and silicon oxide. Copper, nickel, stainless steel, or the like is used as the negative electrode current collector. Among them, it is preferable to use copper.

【0013】正極と負極とを隔てるセパレーターとして
は、ポリエチレン、ポリプロピレン等のポリオレフィン
の多孔性フィルム又は不織布などが用いられる。電池の
構造は、シート状の電極とセパレーターとを渦巻き状に
まいたシリンダータイプ、薄片状の電極とセパレーター
とを積層したコインタイプなど、従来公知の任意の構造
とすることができる。
As a separator for separating the positive electrode and the negative electrode, a porous film of a polyolefin such as polyethylene or polypropylene or a nonwoven fabric is used. The structure of the battery may be any conventionally known structure such as a cylinder type in which a sheet-like electrode and a separator are spirally spread, and a coin type in which a flaky electrode and a separator are laminated.

【0014】[0014]

【実施例】以下に実施例により本発明を更に具体的に説
明する。なお、以下の例において、正極と負極とは次の
ようにして作成したものを用いた。 正極:LiCoO2 85重量部にカーボンブラック6重
量部及びポリフッ化ビニリデン(呉羽化学社製品、KF
−1000)9重量を加えてよく混合した。これにN−
メチルピロリドンを加えてスラリー状とし、厚さ20μ
mのアルミニウム箔上に均一な厚さとなる塗布した。こ
れを乾燥したのち、直径12.5mmの円板状に打抜い
て正極とした。 負極:X線回折における格子面(002面)のd値が
0.336nmである天然黒鉛粉末(関西熱化学社製
品、NG−7)94重量部に、ポリフッ化ビニリデン6
重量部を加えてよく混合した。これにN−メチル−2−
ピロリドンを加えてスラリー状とし、厚さ18μmの銅
箔上に均一な厚さとなるように塗布した。これを乾燥し
たのち、直径12.5mmの円板状に打抜いて負極とし
た。
The present invention will be described more specifically with reference to the following examples. In the following examples, the positive electrode and the negative electrode used were prepared as follows. Positive electrode: 85 parts by weight of LiCoO 2, 6 parts by weight of carbon black and polyvinylidene fluoride (product of Kureha Chemical Company, KF
(-1000) 9 weight was added and mixed well. N-
Add methylpyrrolidone to make slurry, thickness 20μ
m of aluminum foil. After this was dried, it was punched into a disk having a diameter of 12.5 mm to obtain a positive electrode. Negative electrode: Polyvinylidene fluoride 6 was added to 94 parts by weight of natural graphite powder (NG-7, manufactured by Kansai Thermochemical Co., Ltd.) having a lattice plane (002 plane) d value of 0.336 nm in X-ray diffraction.
The parts by weight were added and mixed well. N-methyl-2-
Pyrrolidone was added to form a slurry, which was applied on a copper foil having a thickness of 18 μm so as to have a uniform thickness. After this was dried, it was punched into a disk having a diameter of 12.5 mm to obtain a negative electrode.

【0015】実施例1〜2及び比較例1〜4 乾燥アルゴン雰囲気下で、表−1に示す混合溶媒に、式
(1)においてR1 とR2 とが共にメチル基である4,
5−ジメチル−1,3−ジオキソール−2−オンを溶解
させた。これに乾燥アルゴン雰囲気下で十分に乾燥した
六フッ化リン酸リチウム(LiPF6 )を1モル/リッ
トルとなるように溶解させて電解液を調製した。正極導
電体を兼ねるステンレス鋼製の缶体に正極を収容し、そ
の上に電解液を含浸させたセパレーターを介して負極を
載置した。この缶体と負極導電体を兼ねる封口板とを、
絶縁用のガスケットを介してかしめて密封し、コイン型
電池を製作した。このコイン型電池について、25℃に
おいて、0.5mAの定電流で充電終了電圧4.2V、
放電終了電圧2.5Vでの充放電を反復する試験を行っ
た。5サイクル目の充放電効率を表−1に示す。 充放電効率(%)=(放電容量/充電容量)×100
Examples 1 and 2 and Comparative Examples 1 to 4 Under a dry argon atmosphere, a mixed solvent shown in Table 1 was added to a mixed solvent in which both R 1 and R 2 in the formula (1) were methyl groups.
5-Dimethyl-1,3-dioxol-2-one was dissolved. Lithium hexafluorophosphate (LiPF 6 ), which was sufficiently dried in a dry argon atmosphere, was dissolved in the solution to a concentration of 1 mol / liter to prepare an electrolyte solution. The positive electrode was accommodated in a stainless steel can that also served as the positive electrode conductor, and the negative electrode was placed thereon via a separator impregnated with an electrolytic solution. This can body and the sealing plate also serving as the negative electrode conductor,
It was caulked and sealed via an insulating gasket to produce a coin-type battery. For this coin-type battery, at 25 ° C., a charging end voltage of 4.2 V at a constant current of 0.5 mA,
A test was conducted in which charge and discharge at a discharge end voltage of 2.5 V were repeated. Table 1 shows the charge / discharge efficiency at the fifth cycle. Charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100

【0016】[0016]

【表1】 [Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少くとも黒鉛を活物質の一部とする負極
と、正極と、非水溶媒にリチウム塩を溶解してなる電解
液とから構成されている非水電解液二次電池において、
非水溶媒が0.05容量%以上で5容量%未満の式
(1)で示される化合物を含有していることを特徴とす
る二次電池。 【化1】 (式中、R1 及びR2 は、それぞれ独立して、炭素数1
〜3のアルキル基を示す)
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode containing graphite as an active material, a positive electrode, and an electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent.
A secondary battery comprising a nonaqueous solvent containing at least 0.05% by volume and less than 5% by volume of a compound represented by the formula (1). Embedded image (Wherein, R 1 and R 2 each independently represent a carbon atom of 1
Represents an alkyl group of 3 to 3)
【請求項2】 非水溶媒が、式(1)で示される化合物
を、0.3容量%以上で3.5容量%以下の濃度で含有
していることを特徴とする請求項1記載の非水電解液二
次電池。
2. The method according to claim 1, wherein the non-aqueous solvent contains the compound represented by the formula (1) at a concentration of 0.3% by volume or more and 3.5% by volume or less. Non-aqueous electrolyte secondary battery.
【請求項3】 非水溶媒が、アルキレン基の炭素数が2
〜4のアルキレンカーボネートからなる群から選ばれた
環状カーボネートと、アルキル基の炭素数が1〜4であ
るジアルキルカーボネートよりなる群から選ばれた鎖状
カーボネートとをそれぞれ20容量%以上含有し、かつ
これらのカーボネートが全体の70容量%以上を占める
混合溶媒であることを特徴とする請求項1又は2記載の
非水電解液二次電池。
3. The non-aqueous solvent comprises an alkylene group having 2 carbon atoms.
A cyclic carbonate selected from the group consisting of alkylene carbonates of 1 to 4 and a chain carbonate selected from the group consisting of dialkyl carbonates having 1 to 4 carbon atoms in the alkyl group, each containing at least 20% by volume, and 3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonate is a mixed solvent occupying 70% by volume or more of the whole.
JP10333836A 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery Pending JP2000164248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10333836A JP2000164248A (en) 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10333836A JP2000164248A (en) 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000164248A true JP2000164248A (en) 2000-06-16

Family

ID=18270493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333836A Pending JP2000164248A (en) 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000164248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP4711639B2 (en) * 2004-03-29 2011-06-29 セントラル硝子株式会社 Nonaqueous electrolyte and lithium secondary battery using the same

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US20080286657A1 (en) Non-aqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2008300180A (en) Nonaqueous electrolyte secondary battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP2002141110A (en) Electrolyte for nonaqueous battery and secondary battery using the same
JPH09147913A (en) Nonaqueous electrolyte battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2008311211A (en) Nonaqueous electrolyte secondary battery
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2000268859A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JP2001126761A (en) Nonaqueous electrolyte secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP4197785B2 (en) Non-aqueous electrolyte secondary battery
JPH0922732A (en) Polymer electrolyte secondary battery
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP2003331922A (en) Cell
JP4036717B2 (en) Nonaqueous electrolyte secondary battery