JP2000143388A - Temperature measuring system of single crystal rod in pulling up apparatus - Google Patents
Temperature measuring system of single crystal rod in pulling up apparatusInfo
- Publication number
- JP2000143388A JP2000143388A JP10312133A JP31213398A JP2000143388A JP 2000143388 A JP2000143388 A JP 2000143388A JP 10312133 A JP10312133 A JP 10312133A JP 31213398 A JP31213398 A JP 31213398A JP 2000143388 A JP2000143388 A JP 2000143388A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- rod
- crystal rod
- melt
- pulling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコン単結晶棒
等の単結晶棒を引上げて育成する装置に関する。更に詳
しくは引上げ装置内の単結晶棒の温度を計測するシステ
ムに関するものである。The present invention relates to an apparatus for pulling and growing a single crystal rod such as a silicon single crystal rod. More specifically, the present invention relates to a system for measuring the temperature of a single crystal rod in a pulling device.
【0002】[0002]
【従来の技術】従来、図3に示すように、チャンバ1内
に設けられた石英るつぼ3にシリコン融液2が貯留さ
れ、石英るつぼ3の外周面を包囲するヒータ7がシリコ
ン融液2を加熱し、更にシリコン融液2からシリコン単
結晶棒5が引上げられるように構成された引上げ装置4
が知られている。この装置4では、シリコン単結晶棒5
の外周面と石英るつぼ3の内周面との間にシリコン単結
晶棒5を包囲するように熱遮蔽部材6が挿入される。ま
たチャンバ1の肩部1aには透明石英板1bが挿着され
た窓1cが形成され、この窓1cの外側にはチャンバ1
内を臨む非接触式の温度センサ8が設置される。上記引
上げ装置4により引上げ中のシリコン単結晶棒5の外周
面の温度分布を測定するには、引上げ中のシリコン単結
晶棒5の外周面から発せられた輻射熱を温度センサ8に
より直接捉えて、シリコン単結晶棒5の長手方向の温度
分布を測定している。2. Description of the Related Art Conventionally, as shown in FIG. 3, a silicon melt 2 is stored in a quartz crucible 3 provided in a chamber 1, and a heater 7 surrounding the outer peripheral surface of the quartz crucible 3 applies the silicon melt 2. A pulling device 4 configured to heat and further pull a silicon single crystal rod 5 from the silicon melt 2
It has been known. In this device 4, a silicon single crystal rod 5
A heat shielding member 6 is inserted between the outer peripheral surface of the silicon crucible 3 and the inner peripheral surface of the quartz crucible 3 so as to surround the silicon single crystal rod 5. A window 1c in which a transparent quartz plate 1b is inserted is formed in a shoulder 1a of the chamber 1, and a chamber 1 is provided outside the window 1c.
A non-contact type temperature sensor 8 facing the inside is installed. In order to measure the temperature distribution on the outer peripheral surface of the silicon single crystal rod 5 being pulled by the pulling device 4, the radiant heat generated from the outer peripheral surface of the silicon single crystal rod 5 being pulled is directly captured by the temperature sensor 8, The temperature distribution in the longitudinal direction of the silicon single crystal rod 5 is measured.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来のシ
リコン単結晶棒の温度計測方法では、単結晶棒の外周面
に不規則な凹凸があると、その温度分布を精度良く測定
できない不具合があった。また光沢のあるシリコン単結
晶棒の外周面は迷光、即ち主にヒータからの光を反射す
るため、シリコン単結晶棒からの輻射熱のみを高精度に
測定することは困難であった。本発明の目的は、単結晶
棒の固液界面近傍の温度分布を監視し、その変動を抑制
することにより、品質のばらつきの少ない単結晶棒を再
現性良くかつ効率良く製造することができる、引上げ装
置内の単結晶棒の温度計測システムを提供することにあ
る。本発明の別の目的は、ヒータ等から発せられかつ単
結晶棒で反射した迷光の影響を殆ど受けず、また融液へ
の炭素の混入を避けることができる、引上げ装置内の単
結晶棒の温度計測システムを提供することにある。本発
明の更に別の目的は、チャンバ内の雰囲気に殆ど影響を
与えず、かつ比較的簡便に高輻射率の棒をチャンバ内に
設置することができる、引上げ装置内の単結晶棒の温度
計測システムを提供することにある。However, the conventional method for measuring the temperature of a silicon single crystal rod has a drawback in that the temperature distribution cannot be measured accurately if irregularities are present on the outer peripheral surface of the single crystal rod. Was. Further, since the outer peripheral surface of the glossy silicon single crystal rod reflects stray light, that is, light mainly from the heater, it has been difficult to measure only the radiant heat from the silicon single crystal rod with high accuracy. An object of the present invention is to monitor a temperature distribution in the vicinity of a solid-liquid interface of a single crystal rod and suppress the fluctuation, thereby enabling a single crystal rod with less variation in quality to be manufactured with good reproducibility and efficiency. An object of the present invention is to provide a temperature measurement system for a single crystal rod in a pulling device. Another object of the present invention is to provide a single crystal rod in a pulling apparatus which is hardly affected by stray light emitted from a heater or the like and reflected by the single crystal rod, and which can avoid mixing of carbon into the melt. It is to provide a temperature measurement system. Still another object of the present invention is to measure the temperature of a single crystal rod in a pulling device, which hardly affects the atmosphere in the chamber and can relatively easily set a high emissivity rod in the chamber. It is to provide a system.
【0004】[0004]
【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、チャンバ11内に設けられたるつぼ
13に単結晶棒15となる材料の融液12が貯留され、
このるつぼ13の外周面を包囲するヒータ17が上記融
液12を加熱し、この融液12から単結晶棒15が引上
げられるように構成された引上げ装置の改良である。そ
の特徴ある構成は、単結晶棒15の外周面近傍にこの単
結晶棒15の引上げ軸に平行に設けられ下端が融液12
に接触する高輻射率の棒23と、チャンバ11外に設け
られ上記棒23の長手方向の温度分布を検出する非接触
式の温度センサ24とを備えたところにある。The invention according to claim 1 is
As shown in FIG. 1, a melt 12 of a material to be a single crystal rod 15 is stored in a crucible 13 provided in a chamber 11,
This is an improvement of the pulling device configured so that the heater 17 surrounding the outer peripheral surface of the crucible 13 heats the melt 12 and the single crystal rod 15 is pulled from the melt 12. Its characteristic configuration is that it is provided near the outer peripheral surface of the single crystal rod 15 in parallel with the pulling axis of the single crystal rod 15 and the lower end is
And a non-contact type temperature sensor 24 provided outside the chamber 11 for detecting a temperature distribution in the longitudinal direction of the bar 23.
【0005】この請求項1に記載された単結晶棒の温度
計測システムでは、高輻射率の棒23の下端を融液12
に接触させることにより、単結晶棒15の固液界面にお
ける熱伝導を模することができる。このため棒23の温
度分布が引上げ中の単結晶棒15の長手方向(引上げ方
向)の温度分布に近付く。即ち、棒23の温度分布の変
化を温度センサ24により監視することにより、単結晶
棒15の温度分布の変化を精密に推定することができ
る。In the temperature measuring system for a single crystal rod according to the present invention, the lower end of the rod 23 having a high emissivity is connected to the melt 12.
, It is possible to imitate the heat conduction at the solid-liquid interface of the single crystal rod 15. Therefore, the temperature distribution of the rod 23 approaches the temperature distribution in the longitudinal direction (pulling direction) of the single crystal rod 15 being pulled. That is, by monitoring the change in the temperature distribution of the rod 23 with the temperature sensor 24, the change in the temperature distribution of the single crystal rod 15 can be accurately estimated.
【0006】請求項2に係る発明は、請求項1に係る発
明であって、更に図1に示すように、高輻射率の棒23
が黒鉛により形成された棒本体23aと、棒本体23a
の下端に取付けられ融液12に接触する高純度石英製の
チップ23bとを有することを特徴とする。この請求項
2に記載された単結晶棒の温度計測システムでは、棒本
体23aを高輻射率の黒鉛により形成したので、ヒータ
17等から発せられかつ単結晶棒15で反射した迷光の
影響を殆ど受けない。また融液12に接触するチップ2
3bを高純度石英により形成したので、融液12への炭
素の混入を避けることができる。The invention according to claim 2 is the invention according to claim 1, and further includes a rod 23 having a high emissivity as shown in FIG.
A rod body 23a formed of graphite, and a rod body 23a
And a chip 23b made of high-purity quartz, which is attached to the lower end of the base material and is in contact with the melt 12. In the temperature measuring system for a single crystal rod according to the second aspect, since the rod main body 23a is formed of graphite having a high emissivity, the influence of stray light emitted from the heater 17 or the like and reflected by the single crystal rod 15 is almost eliminated. I do not receive. A chip 2 that contacts the melt 12
Since 3b is formed of high-purity quartz, it is possible to avoid mixing of carbon into the melt 12.
【0007】請求項3に係る発明は、請求項1又は2に
係る発明であって、更に図1に示すように、高輻射率の
棒23が単結晶棒15の外周面を包囲する熱遮蔽部材2
2にステー26を介して取付けられたことを特徴とす
る。この請求項3に記載された単結晶棒の温度計測シス
テムでは、チャンバ11内の雰囲気に殆ど影響を与え
ず、かつ比較的簡便に高輻射率の棒23をチャンバ11
内に設置することができる。A third aspect of the present invention is the invention according to the first or second aspect, wherein the high emissivity rod 23 surrounds the outer peripheral surface of the single crystal rod 15 as shown in FIG. Member 2
2 is attached via a stay 26. In the temperature measurement system for a single crystal rod according to the third aspect, the rod 23 having a high emissivity is relatively easily applied to the chamber 11 without substantially affecting the atmosphere in the chamber 11.
It can be installed inside.
【0008】[0008]
【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1及び図2に示すように、シリコ
ン単結晶棒15の引上げ装置10のチャンバ11内に
は、シリコン融液12を貯留する石英るつぼ13が設け
られ、この石英るつぼ13の外面は黒鉛サセプタ14に
より被覆される。石英るつぼ13の下面は上記黒鉛サセ
プタ14を介して支軸16の上端に固定され、この支軸
16の下部はるつぼ駆動手段(図示せず)に接続される
(図1)。るつぼ駆動手段は図示しないが石英るつぼ1
3を回転させる第1回転用モータと、石英るつぼ13を
昇降させる昇降用モータとを有し、これらのモータによ
り石英るつぼ13が所定の方向に回転し得るとともに、
上下方向に移動可能となっている。石英るつぼ13の外
周面は石英るつぼ13から所定の間隔をあけてヒータ1
7により包囲され、このヒータ17の外周面はヒータ1
7から所定の間隔をあけて保温筒18により包囲され
る。ヒータ17は石英るつぼ13に投入された高純度の
シリコン多結晶体を加熱・融解してシリコン融液12に
する。Embodiments of the present invention will now be described with reference to the drawings. As shown in FIGS. 1 and 2, a quartz crucible 13 for storing a silicon melt 12 is provided in a chamber 11 of a pulling device 10 for pulling a silicon single crystal rod 15, and the outer surface of the quartz crucible 13 is a graphite susceptor 14. Coated. The lower surface of the quartz crucible 13 is fixed to the upper end of the support shaft 16 via the graphite susceptor 14, and the lower portion of the support shaft 16 is connected to crucible driving means (not shown) (FIG. 1). Although the crucible driving means is not shown, the quartz crucible 1
3 has a first rotation motor for rotating 3 and a lifting / lowering motor for raising / lowering the quartz crucible 13, and these motors can rotate the quartz crucible 13 in a predetermined direction,
It can be moved up and down. The outer peripheral surface of the quartz crucible 13 is spaced apart from the quartz crucible 13 by a predetermined distance.
7 and the outer peripheral surface of the heater 17 is the heater 1
At a predetermined interval from 7, it is surrounded by a heat retaining cylinder 18. The heater 17 heats and melts the high-purity polycrystalline silicon charged into the quartz crucible 13 to form the silicon melt 12.
【0009】またチャンバ11の上端には円筒状のケー
シング19が接続される。このケーシング19には引上
げ手段21が設けられる。引上げ手段21はケーシング
19の上端部に水平状態で旋回可能に設けられた引上げ
ヘッド(図示せず)と、このヘッドを回転させる第2回
転用モータ(図示せず)と、ヘッドから石英るつぼ13
の回転中心に向って垂下されたワイヤケーブル21a
と、上記ヘッド内に設けられワイヤケーブル21aを巻
取り又は繰出す引上げ用モータ(図示せず)とを有す
る。ワイヤケーブル21aの下端にはシリコン融液12
に浸してシリコン単結晶棒15を引上げるための種結晶
21bが取付けられる。A cylindrical casing 19 is connected to the upper end of the chamber 11. The casing 19 is provided with a pulling means 21. The pulling means 21 includes a pulling head (not shown) rotatably provided at the upper end of the casing 19 in a horizontal state, a second rotation motor (not shown) for rotating the head, and a quartz crucible 13 from the head.
Wire cable 21a hanging down toward the center of rotation
And a pulling motor (not shown) provided in the head for winding or feeding the wire cable 21a. A silicon melt 12 is provided at the lower end of the wire cable 21a.
A seed crystal 21b for mounting the silicon single crystal rod 15 by immersion in the substrate is attached.
【0010】またシリコン単結晶棒15の外周面と石英
るつぼ13の内周面との間にはシリコン単結晶棒15の
外周面を包囲する熱遮蔽部材22が設けられる(図1及
び図2)。この熱遮蔽部材22は円筒状に形成されヒー
タ17からの輻射熱を遮る筒部22a(図1)と、筒部
22aの下縁に連設され下方に向かうに従って直径が小
さくなるコーン部22b(図1及び図2)と、筒部22
aの上縁に連設され外方に略水平方向に張り出すフラン
ジ部22c(図1)とを有する。上記フランジ部22c
を保温筒18上に載置することにより、コーン部22b
の下縁がシリコン融液12表面から所定の距離だけ上方
に位置するように熱遮蔽部材22がチャンバ11内に固
定される(図1)。上記熱遮蔽部材22は黒鉛により形
成される。A heat shielding member 22 surrounding the outer peripheral surface of the silicon single crystal rod 15 is provided between the outer peripheral surface of the silicon single crystal rod 15 and the inner peripheral surface of the quartz crucible 13 (FIGS. 1 and 2). . The heat shielding member 22 is formed in a cylindrical shape and blocks a cylindrical portion 22a (FIG. 1) that blocks radiant heat from the heater 17, and a cone portion 22b (see FIG. 1) connected to the lower edge of the cylindrical portion 22a and having a diameter decreasing downward. 1 and FIG. 2) and the tubular portion 22
and a flange portion 22c (FIG. 1), which is connected to the upper edge of a and protrudes outward in a substantially horizontal direction. The flange portion 22c
Is placed on the heat retaining tube 18 so that the cone portion 22b
The heat shield member 22 is fixed in the chamber 11 such that the lower edge of the heat shield member is located above the surface of the silicon melt 12 by a predetermined distance (FIG. 1). The heat shielding member 22 is formed of graphite.
【0011】本実施の形態の特徴ある構成は、シリコン
単結晶棒15の外周面近傍にこのシリコン単結晶棒15
の引上げ軸に平行に設けられた高輻射率の棒23と、チ
ャンバ11外に設けられ上記棒23の長手方向の温度分
布を検出する非接触式の温度センサ24とを備えたとこ
ろにある(図1及び図2)。上記棒23はその下端がシ
リコン融液12に接触し、棒本体23aと、この棒本体
23aの下端に取付けられたチップ23bとを有する。
棒本体23aは高輻射率の材料、例えば黒鉛、SiC等
により形成されるが、黒鉛により形成されることが好ま
しい。チップ23bはシリコン融液12に接触するよう
に構成され、高純度石英により形成されることが好まし
い。また上記棒本体23a及びチップ23bの外径は4
〜12mm、好ましくは8mm程度の小径に形成され、
チップ23bはこの実施の形態では棒本体23aの下端
に螺合される。なお、棒本体23aを高輻射率の材料に
より形成したのはヒータ17等からの迷光の影響を避け
るためであり、チップ23bを高純度石英により形成し
たのはシリコン融液12への炭素の混入を避けるためで
ある。The present embodiment is characterized in that the silicon single crystal rod 15 is disposed near the outer peripheral surface of the silicon single crystal rod 15.
And a non-contact type temperature sensor 24 which is provided outside the chamber 11 and detects a temperature distribution in the longitudinal direction of the bar 23 provided in parallel with the pulling shaft of 1 and 2). The lower end of the rod 23 comes into contact with the silicon melt 12 and has a rod body 23a and a tip 23b attached to the lower end of the rod body 23a.
The rod body 23a is formed of a material having a high emissivity, for example, graphite, SiC or the like, but is preferably formed of graphite. The tip 23b is configured to be in contact with the silicon melt 12, and is preferably formed of high-purity quartz. The outer diameter of the rod body 23a and the tip 23b is 4
~ 12mm, preferably formed in a small diameter of about 8mm,
The tip 23b is screwed to the lower end of the rod body 23a in this embodiment. The rod body 23a was formed of a material having a high emissivity in order to avoid the influence of stray light from the heater 17 and the like. The chip 23b was formed of high-purity quartz because carbon was mixed into the silicon melt 12. To avoid.
【0012】またチャンバ11の肩部11aには透明石
英板11bが挿着された窓11cが形成され、上記温度
センサ24はこの窓11cの外側にチャンバ11内を臨
むように設置される(図1)。温度センサ24はこの実
施の形態ではCCD(ChargeCoupled Device:電荷結合
素子)センサである。更に上記棒23は熱遮蔽部材22
のコーン部22bにステー26を介して取付けられる
(図1及び図2)。ステー26は略直角三角形の細い枠
状に形成される。図2に詳しく示すように、棒23はス
テー26の斜辺部26aに平行にかつ斜辺部26aから
所定の間隔をあけてボルト27及びナット28により取
付けられ、ステー26は短辺部26bをボルト29によ
りコーン部22b上面に固定することにより熱遮蔽部材
22に取付けられる。上記のようにステー26を形成す
ることにより、チャンバ11内の雰囲気に殆ど影響を与
えず、かつ比較的簡便に高輻射率の棒23をチャンバ1
1内に設置することができるようになっている。A window 11c into which a transparent quartz plate 11b is inserted is formed in a shoulder 11a of the chamber 11, and the temperature sensor 24 is installed outside the window 11c so as to face the inside of the chamber 11 (see FIG. 1). 1). In this embodiment, the temperature sensor 24 is a CCD (Charge Coupled Device) sensor. Further, the rod 23 is a heat shielding member 22.
(See FIGS. 1 and 2). The stay 26 is formed in a thin frame shape of a substantially right triangle. As shown in detail in FIG. 2, the rod 23 is attached to the stay 26 by a bolt 27 and a nut 28 in parallel with the oblique side 26a and at a predetermined interval from the oblique side 26a, and the stay 26 connects the short side 26b to the bolt 29. By being fixed to the upper surface of the cone portion 22b, it is attached to the heat shielding member 22. By forming the stay 26 as described above, the bar 23 having a high emissivity is relatively easily applied to the chamber 1 without substantially affecting the atmosphere in the chamber 11.
1 can be installed.
【0013】一方、チャンバ11にはこのチャンバ11
のシリコン単結晶棒側に不活性ガスを供給しかつ上記不
活性ガスをチャンバ11のるつぼ内周面側から排出する
ガス給排手段(図示せず)が接続される。また引上げ用
モータの出力軸(図示せず)にはロータリエンコーダ
(図示せず)が設けられ、るつぼ駆動手段には石英るつ
ぼ13内のシリコン融液12の重量を検出する重量セン
サ(図示せず)と、支軸16の昇降位置を検出するリニ
ヤエンコーダ(図示せず)とが設けられる。ロータリエ
ンコーダ、重量センサ及びリニヤエンコーダの各検出出
力はコントローラ(図示せず)の制御入力に接続され、
コントローラの制御出力は引上げ手段21の引上げ用モ
ータ及びるつぼ駆動手段の昇降用モータにそれぞれ接続
される。またコントローラにはメモリ(図示せず)が設
けられ、このメモリにはロータリエンコーダの検出出力
に対するワイヤケーブル21aの巻取り長さ、即ちシリ
コン単結晶棒15の引上げ長さが第1マップとして記憶
され、重量センサの検出出力に対する石英るつぼ13内
のシリコン融液12の液面レベルが第2マップとして記
憶される。コントローラは重量センサの検出出力に基づ
いて石英るつぼ13内のシリコン融液12の液面を常に
一定のレベルに保つように、るつぼ駆動手段の昇降用モ
ータを制御するように構成される。On the other hand, the chamber 11
Gas supply / discharge means (not shown) for supplying an inert gas to the silicon single crystal rod side and discharging the inert gas from the inner peripheral surface side of the crucible of the chamber 11 is connected. A rotary encoder (not shown) is provided on an output shaft (not shown) of the pulling motor, and a weight sensor (not shown) for detecting the weight of the silicon melt 12 in the quartz crucible 13 is provided on the crucible driving means. ), And a linear encoder (not shown) for detecting the elevation position of the support shaft 16. Each detection output of the rotary encoder, the weight sensor and the linear encoder is connected to a control input of a controller (not shown),
The control output of the controller is connected to a pulling motor of the pulling means 21 and a lifting motor of the crucible driving means, respectively. Further, the controller is provided with a memory (not shown), in which the winding length of the wire cable 21a with respect to the detection output of the rotary encoder, that is, the pulling length of the silicon single crystal rod 15 is stored as a first map. The liquid level of the silicon melt 12 in the quartz crucible 13 with respect to the detection output of the weight sensor is stored as a second map. The controller is configured to control the motor for raising and lowering the crucible driving means so as to always keep the liquid level of the silicon melt 12 in the quartz crucible 13 at a constant level based on the detection output of the weight sensor.
【0014】このように構成されたシリコン単結晶棒1
5の温度計測システムの動作を説明する。引上げ中のシ
リコン単結晶棒15の外周面近傍に小径の高輻射率の棒
23を設置し、この棒23の下端、即ち高純度石英製の
チップ23bをシリコン融液12に接触させることによ
り、シリコン単結晶棒15の固液界面における熱伝導を
模することができる。このため棒23の温度分布が引上
げ中のシリコン単結晶棒15の長手方向(引上げ方向)
の温度分布に近付く。そこで、棒23の外周面から発せ
られた輻射熱を温度センサ24にて検出することによ
り、この棒23の長手方向の温度分布を測定することが
でき、棒23の温度分布の変化を監視することにより、
シリコン単結晶棒15の温度分布の変化を精密に推定す
ることができる。この結果、測定された棒23の温度分
布が予め定められた温度分布からずれていた場合には、
石英るつぼ13の位置や保温筒18の形状を調節するこ
とにより、或いはシリコン単結晶棒15の引上げ速度を
調整することにより、温度分布を修復して温度分布の変
動を抑制する。これにより品質のばらつきの少ないシリ
コン単結晶棒15を再現性良くかつ効率良く製造するこ
とができる。なお、上記実施の形態では、単結晶棒とし
てシリコン単結晶棒を挙げたが、ゲルマニウムやガリウ
ムヒ素等の単結晶棒でもよい。The silicon single crystal rod 1 constructed as described above
The operation of the temperature measurement system 5 will be described. By placing a small-diameter high-emissivity rod 23 near the outer peripheral surface of the silicon single crystal rod 15 being pulled, and bringing the lower end of this rod 23, that is, a high-purity quartz chip 23b into contact with the silicon melt 12, The heat conduction at the solid-liquid interface of the silicon single crystal rod 15 can be simulated. For this reason, the temperature distribution of the rod 23 has a longitudinal direction (pulling direction) of the silicon single crystal rod 15 being pulled.
Approaching the temperature distribution. Therefore, by detecting the radiant heat generated from the outer peripheral surface of the rod 23 with the temperature sensor 24, the temperature distribution in the longitudinal direction of the rod 23 can be measured, and the change in the temperature distribution of the rod 23 can be monitored. By
A change in the temperature distribution of the silicon single crystal rod 15 can be accurately estimated. As a result, when the measured temperature distribution of the bar 23 is deviated from the predetermined temperature distribution,
By adjusting the position of the quartz crucible 13 and the shape of the heat retaining cylinder 18, or by adjusting the pulling speed of the silicon single crystal rod 15, the temperature distribution is restored and the fluctuation of the temperature distribution is suppressed. As a result, the silicon single crystal rod 15 with less variation in quality can be manufactured with good reproducibility and efficiency. In the above embodiment, a silicon single crystal rod is described as a single crystal rod, but a single crystal rod such as germanium or gallium arsenide may be used.
【0015】[0015]
【発明の効果】以上述べたように、本発明によれば、引
上げ装置内の単結晶棒の外周面近傍にこの単結晶棒の引
上げ軸に平行に高輻射率の棒を設け、この棒の下端を融
液に接触させ、更にチャンバ外に設けられた非接触式の
温度センサが上記棒の長手方向の温度分布を検出するよ
うに構成したので、高輻射率の棒下端の融液への接触に
より、単結晶棒の固液界面における熱伝導を模すること
ができる。このため棒の温度分布が引上げ中の単結晶棒
の長手方向の温度分布に近付く。即ち、棒の温度分布の
変化を温度センサにより監視すれば、単結晶棒の温度分
布の変化を精密に推定することができる。この結果、上
記棒の温度分布が予め定められた温度分布からずれてい
れば、るつぼ位置等を調節したり、単結晶棒の引上げ速
度を調整することにより、温度分布の変動を抑制するこ
とができるので、品質のばらつきの少ない単結晶棒を再
現性良くかつ効率良く製造することができる。As described above, according to the present invention, a rod having a high emissivity is provided near the outer peripheral surface of a single crystal rod in a pulling apparatus in parallel with the pulling axis of the single crystal rod. The lower end is brought into contact with the melt, and a non-contact type temperature sensor provided outside the chamber is configured to detect the temperature distribution in the longitudinal direction of the rod. The contact can simulate the heat conduction at the solid-liquid interface of the single crystal rod. Therefore, the temperature distribution of the rod approaches the temperature distribution in the longitudinal direction of the single crystal rod being pulled. That is, if the change in the temperature distribution of the rod is monitored by the temperature sensor, the change in the temperature distribution of the single crystal rod can be accurately estimated. As a result, if the temperature distribution of the rod deviates from a predetermined temperature distribution, it is possible to suppress the fluctuation of the temperature distribution by adjusting the crucible position or the like or adjusting the pulling speed of the single crystal rod. As a result, a single crystal rod with less variation in quality can be manufactured with good reproducibility and efficiency.
【0016】また高輻射率の棒の棒本体を黒鉛により形
成し、棒本体の下端に取付けられた高純度石英製のチッ
プが融液に接触するように構成すれば、ヒータ等から発
せられかつ単結晶棒で反射した迷光の影響を殆ど受け
ず、また融液への炭素の混入を避けることができる。更
に高輻射率の棒を単結晶棒の外周面を包囲する熱遮蔽部
材にステーを介して取付ければ、チャンバ内の雰囲気に
殆ど影響を与えず、かつ比較的簡便に高輻射率の棒をチ
ャンバ内に設置することができる。Further, if the rod body of the rod having a high emissivity is formed of graphite and the high-purity quartz chip attached to the lower end of the rod body is configured to come into contact with the melt, the rod is emitted from a heater or the like. It is hardly affected by the stray light reflected by the single crystal rod, and can prevent carbon from being mixed into the melt. Furthermore, if a rod with a high emissivity is attached to a heat shielding member surrounding the outer peripheral surface of the single crystal rod via a stay, it hardly affects the atmosphere in the chamber, and the rod with a high emissivity can be relatively easily formed. It can be installed in the chamber.
【図1】本発明実施形態のシリコン単結晶棒の引上げ装
置を示す断面構成図。FIG. 1 is a cross-sectional configuration diagram showing a silicon single crystal rod pulling apparatus according to an embodiment of the present invention.
【図2】高輻射率の棒を含む引上げ装置の要部拡大断面
図。FIG. 2 is an enlarged sectional view of a main part of a pulling device including a rod having a high emissivity.
【図3】従来例を示す図1に対応する断面構成図。FIG. 3 is a sectional view showing a conventional example and corresponding to FIG.
10 引上げ装置 11 チャンバ 12 シリコン融液 13 石英るつぼ 15 シリコン単結晶棒 17 ヒータ 22 熱遮蔽部材 23 高輻射率の棒 23a 棒本体 23b チップ 26 ステー REFERENCE SIGNS LIST 10 Pulling device 11 Chamber 12 Silicon melt 13 Quartz crucible 15 Silicon single crystal rod 17 Heater 22 Heat shielding member 23 High emissivity rod 23a Rod body 23b Chip 26 Stay
Claims (3)
に単結晶棒(15)となる材料の融液(12)が貯留され、前記
るつぼ(13)の外周面を包囲するヒータ(17)が前記融液(1
2)を加熱し、前記融液(12)から単結晶棒(15)が引上げら
れるように構成された引上げ装置において、 前記単結晶棒(15)の外周面近傍にこの単結晶棒(15)の引
上げ軸に平行に設けられ下端が前記融液(12)に接触する
高輻射率の棒(23)と、 前記チャンバ(11)外に設けられ前記棒(23)の長手方向の
温度分布を検出する非接触式の温度センサ(24)とを備え
たことを特徴とする単結晶棒の温度計測システム。1. A crucible (13) provided in a chamber (11).
A melt (12) of a material to be a single crystal rod (15) is stored therein, and a heater (17) surrounding the outer peripheral surface of the crucible (13) is
2) is heated, and in a pulling device configured to pull up the single crystal rod (15) from the melt (12), the single crystal rod (15) is provided near the outer peripheral surface of the single crystal rod (15). A high-emissivity rod (23) provided parallel to the pulling axis and having a lower end in contact with the melt (12), and a temperature distribution in the longitudinal direction of the rod (23) provided outside the chamber (11). A non-contact temperature sensor (24) for detecting a temperature of a single crystal rod.
た棒本体(23a)と、前記棒本体(23a)の下端に取付けられ
融液(12)に接触する高純度石英製のチップ(23b)とを有
する請求項1記載の単結晶棒の温度計測システム。2. A rod body (23a) having a high emissivity rod made of graphite, and a high-purity quartz rod attached to a lower end of the rod body (23a) and in contact with a melt (12). The single crystal rod temperature measuring system according to claim 1, further comprising a tip (23b).
面を包囲する熱遮蔽部材(22)にステー(26)を介して取付
けられた請求項1又は2記載の単結晶棒の温度計測シス
テム。3. The high emissivity rod (23) is attached via a stay (26) to a heat shielding member (22) surrounding the outer peripheral surface of the single crystal rod (15). Single crystal rod temperature measurement system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31213398A JP3702672B2 (en) | 1998-11-02 | 1998-11-02 | Temperature measurement system for single crystal rod in puller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31213398A JP3702672B2 (en) | 1998-11-02 | 1998-11-02 | Temperature measurement system for single crystal rod in puller |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000143388A true JP2000143388A (en) | 2000-05-23 |
JP3702672B2 JP3702672B2 (en) | 2005-10-05 |
Family
ID=18025659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31213398A Expired - Fee Related JP3702672B2 (en) | 1998-11-02 | 1998-11-02 | Temperature measurement system for single crystal rod in puller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3702672B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368011B2 (en) | 2004-08-03 | 2008-05-06 | Sumitomo Mitsubishi Silicon Corporation | Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal |
US20170226660A1 (en) * | 2014-08-04 | 2017-08-10 | Lg Siltron Inc. | Seed chuck and ingot growing apparatus including same |
CN107830935A (en) * | 2017-11-09 | 2018-03-23 | 肇庆市高新区晓靖科技有限公司 | A kind of temperature measuring mechanism being used in silica crucible production process |
KR20200050299A (en) * | 2018-11-01 | 2020-05-11 | 한국세라믹기술원 | A Temperature measuring method of the melt in solution growth method |
-
1998
- 1998-11-02 JP JP31213398A patent/JP3702672B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368011B2 (en) | 2004-08-03 | 2008-05-06 | Sumitomo Mitsubishi Silicon Corporation | Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal |
US7470326B2 (en) | 2004-08-03 | 2008-12-30 | Sumitomo Mitsubishi Silicon Corporation | Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal |
US20170226660A1 (en) * | 2014-08-04 | 2017-08-10 | Lg Siltron Inc. | Seed chuck and ingot growing apparatus including same |
CN107830935A (en) * | 2017-11-09 | 2018-03-23 | 肇庆市高新区晓靖科技有限公司 | A kind of temperature measuring mechanism being used in silica crucible production process |
KR20200050299A (en) * | 2018-11-01 | 2020-05-11 | 한국세라믹기술원 | A Temperature measuring method of the melt in solution growth method |
KR102154857B1 (en) * | 2018-11-01 | 2020-09-10 | 한국세라믹기술원 | A Temperature measuring method of the melt in solution growth method |
Also Published As
Publication number | Publication date |
---|---|
JP3702672B2 (en) | 2005-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007097071A1 (en) | Position measuring method | |
JPS63112493A (en) | Device for measuring crystal diameter | |
KR950004788B1 (en) | Control system of tubular crystal growth apparatus | |
JP3702672B2 (en) | Temperature measurement system for single crystal rod in puller | |
JP5404264B2 (en) | Single crystal silicon manufacturing method and single crystal silicon manufacturing apparatus | |
JPH11190662A (en) | Method for measuring surface temperature of melt in single crystal pulling furnace and apparatus used for the method | |
KR101283986B1 (en) | Control point proffer device for melt level measuring of ingot growing apparatus | |
JPH11263693A (en) | Raw material additionally-feeding device for single crystal pulling-up equipment | |
JPS6287481A (en) | How to set the initial position of molten metal in single crystal pulling equipment | |
JP4206919B2 (en) | Method and apparatus for pulling single crystal | |
JPH05259082A (en) | Epitaxial growth device and method | |
JP2003055084A (en) | Device and method for pulling single crystal | |
KR20110088164A (en) | Melt gap control system, single crystal growth apparatus and single crystal growth method including the same | |
TW202235699A (en) | Non-contact systems and methods for determining distance between silicon melt and reflector in a crystal puller | |
US12018400B2 (en) | Methods and systems of capturing transient thermal responses of regions of crystal pullers | |
JPH11255590A (en) | Apparatus for pulling silicon single crystal | |
JP2001261484A (en) | Method for detecting gap in single crystal pulling machine and device for controlling the gap | |
JP2011032136A (en) | Method for monitoring height of liquid surface | |
JP2001261483A (en) | Method for detecting gap in single crystal pulling machine and device for controlling the gap | |
JPH11255577A (en) | Apparatus for pulling silicon single crystal and pulling up thereof | |
JP2609712B2 (en) | Single crystal manufacturing method and temperature measuring jig therefor | |
JPH0444215B2 (en) | ||
JP3719329B2 (en) | Silicon single crystal pulling device | |
KR101366725B1 (en) | Meltgap control system and silicon single crystal growth apparatus including the same | |
KR101528483B1 (en) | A weight measuerment device for a growing crystal of crystal growth furmace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050711 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090729 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090729 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100729 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100729 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110729 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120729 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130729 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |