JP2000133834A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2000133834A
JP2000133834A JP30581698A JP30581698A JP2000133834A JP 2000133834 A JP2000133834 A JP 2000133834A JP 30581698 A JP30581698 A JP 30581698A JP 30581698 A JP30581698 A JP 30581698A JP 2000133834 A JP2000133834 A JP 2000133834A
Authority
JP
Japan
Prior art keywords
lens
light
light emitting
light receiving
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30581698A
Other languages
Japanese (ja)
Inventor
Hideo Kunii
秀雄 国井
Kiyoshi Takada
清 高田
Akira Ochiai
公 落合
Hiroshi Inoguchi
浩 井野口
Tsutomu Ishikawa
勉 石川
Satoshi Sekiguchi
智 関口
Hiroshi Kobori
浩 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30581698A priority Critical patent/JP2000133834A/en
Publication of JP2000133834A publication Critical patent/JP2000133834A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To provide an optical semiconductor device with high signal intensity by employing the focal design of a lens which takes into consideration the reflection on a reflective surface, related to a device wherein an optical signal is deflected on a reflective surface with a lens provided on the side surface of a sealing body. SOLUTION: Light-receiving elements 2 and 3 are fixed on islands 21 and 22, which is molded with a transparent resin to provide a sealing body 24. A groove 26 is formed at the upper part of each element 2 and 3 to form a reflecting surface 27, and a signal light 6 is reflected on the reflecting surface 27 and allowed to enter/exit from one side surface 25b of the sealing body 25. A lens 28 is provided on one side surface. A centerline 41 of the lens 28 is positioned almost at the center of the pattern of a photodiode PD and the reflecting surface 27. The focal point of the lens 28 is positioned almost on the surface of these elements after taking deflection on the reflection surface 27 into due consideration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光素子と受光素
子とを樹脂封止した半導体装置に関するものであり、特
に装置の薄形化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a light emitting element and a light receiving element are sealed with a resin, and more particularly to a thin device.

【0002】[0002]

【従来の技術】最近、サブノートパソコン、携帯情報端
末、電子スチルカメラ等のマルチメディア機器がめざま
しい発展を遂げている。これらの機器は、携帯性を求め
られることから外部とのデータ送受信にも簡便なものが
要求され、赤外線等の光信号を用いることによりコード
レスで外部機器と本体とを接続する装置を備えたものが
多い。その中でも光信号として波長が870nmの赤外
線を用いるIrDA(Infrared Data Association)規格
が最も普及している。
2. Description of the Related Art Recently, multimedia equipment such as a sub-notebook personal computer, a portable information terminal, and an electronic still camera has been remarkably developed. These devices are required to be easy to transmit and receive data to and from the outside because they are required to be portable, and equipped with a device that connects the external device and the main unit in a cordless manner by using optical signals such as infrared rays. There are many. Among them, the IrDA (Infrared Data Association) standard using infrared light having a wavelength of 870 nm as an optical signal is most widely used.

【0003】IrDA規格によるデータ通信を利用する
ためには、接続すべき両方の機器に、赤外線信号を発す
る発光素子と、赤外線信号を受ける受光素子とを備える
必要がある。発光素子と受光素子とは、それぞれ別個の
パッケージとして電子機器に組み込まれる場合もある
し、両者が1つのパッケージに収納されたモジュールと
して供給される場合もある。
In order to use data communication according to the IrDA standard, both devices to be connected need to be provided with a light emitting element for emitting an infrared signal and a light receiving element for receiving an infrared signal. The light emitting element and the light receiving element may be incorporated in the electronic device as separate packages, respectively, or both may be supplied as a module housed in one package.

【0004】図4に、発光素子と受光素子とを1つのパ
ッケージに収納した赤外線データ通信用の半導体装置の
例を示す(例えば、特開平10−70304号)。この
装置は、装置本体1内に、半導体チップの形態で提供さ
れた受光素子2と発光素子3とを収納したもので、少な
くとも赤外線に対して透明な樹脂で樹脂モールドしたも
のである。特に受光素子2においては、受光用のホトダ
イオードPDと、アンプ回路等の周辺回路とを同一チッ
プ内に集積化する場合もある。
FIG. 4 shows an example of a semiconductor device for infrared data communication in which a light emitting element and a light receiving element are housed in one package (for example, Japanese Patent Application Laid-Open No. H10-70304). In this device, a light receiving element 2 and a light emitting element 3 provided in the form of a semiconductor chip are housed in a device main body 1, and are molded with a resin transparent to at least infrared rays. In particular, in the light receiving element 2, the photodiode PD for light reception and peripheral circuits such as an amplifier circuit may be integrated in the same chip.

【0005】半導体チップで提供された受光素子2のホ
トダイオードPDは、半導体チップの表面に対して垂直
方向に光を受ける構造になっている。そのため、受光素
子2、発光素子3共に、半導体チップに対して垂直に光
信号6を発光/受光する構造になっており、該光信号6
の集光のために各素子の上方に、半球体レンズ4、5を
樹脂で形成している。
The photodiode PD of the light receiving element 2 provided on a semiconductor chip has a structure for receiving light in a direction perpendicular to the surface of the semiconductor chip. Therefore, both the light receiving element 2 and the light emitting element 3 are configured to emit / receive the optical signal 6 perpendicular to the semiconductor chip.
Hemispherical lenses 4 and 5 are formed of resin above each element for condensing light.

【0006】[0006]

【発明が解決しようとする課題】電子機器における軽薄
短小化の要求に対応するためには、プリント基板上に固
着する電子部品自体の高さを制限することが不可欠であ
る。しかしながら、光信号6がプリント基板に対して垂
直方向に導入するように図4の装置本体1を実装する
と、レンズ4、5の存在等により装置本体1の高さが高
く、全体の薄形化が困難である欠点があった。
In order to meet the demand for lighter, thinner and smaller electronic devices, it is essential to limit the height of the electronic component itself fixed on the printed circuit board. However, when the apparatus main body 1 of FIG. 4 is mounted so that the optical signal 6 is introduced in a direction perpendicular to the printed circuit board, the height of the apparatus main body 1 is increased due to the presence of the lenses 4 and 5, and the overall thickness is reduced There was a drawback that was difficult.

【0007】一方、図5に示すようにリードを折り曲げ
てレンズ4、5を横にすることで、プリント基板7に対
して水平方向に光信号6を導入する様にする事も可能で
ある。しかし、受光素子2と発光素子3の半導体チップ
を垂直に立てるようにして実装することから、実装時の
高さを半導体チップの大きさ以下にすることが原理的に
不可能であり、やはり薄形化が困難である欠点があっ
た。
On the other hand, as shown in FIG. 5, it is also possible to introduce the optical signal 6 in the horizontal direction with respect to the printed circuit board 7 by bending the leads to make the lenses 4 and 5 horizontal. However, since the semiconductor chips of the light receiving element 2 and the light emitting element 3 are mounted so as to stand vertically, it is impossible in principle to make the mounting height less than the size of the semiconductor chip. There was a drawback that shaping was difficult.

【0008】[0008]

【課題を解決するための手段】本発明は前述の課題に鑑
みて成され、光信号を電気信号に変換する受光面又は発
光面を有する半導体素子を樹脂層で被覆し、前記半導体
素子の上方に前記樹脂層によって反射面を形成し、前記
反射面にて光信号を屈曲し、前記樹脂層の一側面から前
記光信号の送受信を行う光半導体装置であって、前記樹
脂層の一側面に前記光信号を集光するレンズ体を有し、
前記レンズ体の中心線が、前記反射面を介して、前記半
導体素子の受光面または発光面の中心にほぼ一致するこ
とを特徴とするとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a semiconductor element having a light receiving surface or a light emitting surface for converting an optical signal into an electric signal is covered with a resin layer. An optical semiconductor device that forms a reflection surface with the resin layer, bends an optical signal at the reflection surface, and transmits and receives the optical signal from one side surface of the resin layer, wherein one side surface of the resin layer A lens body for condensing the optical signal,
A center line of the lens body substantially coincides with a center of a light receiving surface or a light emitting surface of the semiconductor element via the reflection surface.

【0009】[0009]

【発明の実施の形態】以下、本発明の第1の実施の形態
を、図面を参照しながら詳細に説明する。本実施の形態
は受光素子2と発光素子3とを1つのパッケージに収納
したもので、図1は本発明の構造を示す平面図、図2
(A)は発光素子3部分の断面図を示す断面図、図2
(B)は受光素子2部分の断面図を各々示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, the light receiving element 2 and the light emitting element 3 are housed in one package. FIG. 1 is a plan view showing the structure of the present invention.
FIG. 2A is a cross-sectional view showing a cross-sectional view of the light emitting element 3 and FIG.
(B) is a sectional view of the light receiving element 2 part.

【0010】これらの図中、21は受光素子2を搭載す
るアイランド、22は発光素子3を搭載するアイラン
ド、23は外部接続用のリード端子を各々示している。
これらは鉄または銅系の素材からなるリードフレームに
よって提供されており、各アイランド21、22の表面
に受光素子2と発光素子3が半田などの接着剤で固着さ
れている。
In these figures, 21 is an island on which the light receiving element 2 is mounted, 22 is an island on which the light emitting element 3 is mounted, and 23 is a lead terminal for external connection.
These are provided by a lead frame made of an iron or copper-based material, and the light receiving element 2 and the light emitting element 3 are fixed to the surface of each of the islands 21 and 22 with an adhesive such as solder.

【0011】受光素子2は、半導体チップとして提供さ
れたPINホトダイオード等であり、周辺の駆動回路等
を同一チップ上に集積化したものでもよい。図中の符号
PDは受光素子2のホトダイオード部分(受光面)を示
している。半導体チップの表面にはアルミニウム電極パ
ッド30が形成され、ボンディングワイヤ24によって
電極パッド30とリード端子23とが接続されている。
The light receiving element 2 is a PIN photodiode or the like provided as a semiconductor chip, and a peripheral driving circuit or the like may be integrated on the same chip. Reference numeral PD in the drawing indicates a photodiode portion (light receiving surface) of the light receiving element 2. Aluminum electrode pads 30 are formed on the surface of the semiconductor chip, and the electrode pads 30 and the lead terminals 23 are connected by bonding wires 24.

【0012】発光素子3は、半導体チップとして提供さ
れた、例えば波長870nmの赤外光を発光するLED
チップである。LEDはチップの全体で発光し、全方位
に光が発散する素子である。そのため、チップを固着す
るアイランド22を円錐形の「お椀」のような形状に加
工し、アイランド22の中心部に固着した発光素子3か
らの光信号6を前記「お椀」の傾斜した側壁で反射させ
て、光を一方向に集めるような構造としている。前記ア
イランド22は発光素子3のアノード(A)またはカソ
ード(B)の一方の端子となり、チップ表面に形成した
電極パッド30が他方の端子となる。
The light emitting element 3 is an LED provided as a semiconductor chip and emitting, for example, infrared light having a wavelength of 870 nm.
Chip. An LED is an element that emits light in the entire chip and emits light in all directions. Therefore, the island 22 to which the chip is fixed is processed into a shape like a conical “bowl”, and the optical signal 6 from the light emitting element 3 fixed to the center of the island 22 is reflected by the inclined side wall of the “bowl”. In this way, the light is collected in one direction. The island 22 serves as one terminal of the anode (A) or the cathode (B) of the light emitting element 3, and the electrode pad 30 formed on the chip surface serves as the other terminal.

【0013】各アイランド21、22に固着された発光
素子2と受光素子3は、リード23の先端部を含めて少
なくとも赤外光に対して透明な樹脂でトランスファーモ
ールドされる。樹脂層は封止体25を構成し、封止体2
5の一表面にはアイランド21、22の裏面が封止体2
5表面と同一平面を成して露出する。
The light emitting element 2 and the light receiving element 3 fixed to each of the islands 21 and 22 are transfer-molded with a resin transparent to at least infrared light, including the tip of the lead 23. The resin layer forms the sealing body 25 and the sealing body 2
5, the back surface of the islands 21 and 22 is the sealing body 2
5 Exposed in the same plane as the surface.

【0014】リード端子23は封止体25の他側面25
aから外部に導出され、表面実装用途に適するように、
Z字型に折り曲げられている。
The lead terminal 23 is connected to the other side surface 25 of the sealing body 25.
derived from a to be suitable for surface mounting applications,
It is bent in a Z-shape.

【0015】発光素子3の上部には、封止体25の樹脂
を所定の深さに凹ませて溝26を形成し、溝26の側壁
によって平坦な反射面27を構成している。この反射面
27は、封止体25をトランスファーモールドする際
に、金型に溝26に対応する雄型部分を形成しておくこ
とによって形成するか、あるいは完成後に封止体25の
表面を削ることで形成される。そして、反射面27は、
発光素子3から発光された信号光6を反射面27で反射
し、封止体25の一側面25bから外部に出射する機能
を有する。
A groove 26 is formed in the upper part of the light emitting element 3 by denting the resin of the sealing body 25 to a predetermined depth, and a flat reflecting surface 27 is formed by the side wall of the groove 26. The reflection surface 27 is formed by forming a male portion corresponding to the groove 26 in a mold when transfer molding the sealing body 25, or shaving the surface of the sealing body 25 after completion. It is formed by things. And the reflection surface 27
The signal light 6 emitted from the light emitting element 3 has a function of being reflected by the reflection surface 27 and emitted from one side surface 25b of the sealing body 25 to the outside.

【0016】封止体25の一側面25bには、発光され
た光信号6を集光する為のレンズ28が封止体25と一
体的に形成されている。レンズ28は例えば所定の半径
で設計された半球体であり、その焦点は反射面27での
反射を考慮した上で、発光素子3の表面近傍に位置す
る。
On one side face 25b of the sealing body 25, a lens 28 for condensing the emitted light signal 6 is formed integrally with the sealing body 25. The lens 28 is, for example, a hemisphere designed with a predetermined radius, and its focal point is located near the surface of the light emitting element 3 in consideration of the reflection on the reflection surface 27.

【0017】一方、発光素子3と同様に、受光素子2側
にもその上方に溝26と反射面27を形成する。受光素
子3の上部に形成した反射面27は、封止体25の一側
面25bから導入させた光信号6を、反射面27で反射
させて受光素子2のホトダイオード部分PDに到達させ
る機能を果たす。封止体25の一側面25bには同じく
樹脂層によってレンズ28が形成され、外部から入射さ
れる光信号6を集光する。
On the other hand, similarly to the light emitting element 3, a groove 26 and a reflection surface 27 are formed above the light receiving element 2 side. The reflecting surface 27 formed on the upper part of the light receiving element 3 has a function of reflecting the optical signal 6 introduced from one side surface 25b of the sealing body 25 on the reflecting surface 27 and reaching the photodiode portion PD of the light receiving element 2. . A lens 28 is also formed of a resin layer on one side surface 25b of the sealing body 25, and collects an optical signal 6 incident from the outside.

【0018】これらの反射面27は、その境界における
材料の屈折率の違いにより反射面となる。そのために、
封止体25の全体が梨地加工されているのに対して、反
射面27とレンズ28表面はそれより表面荒さが小さい
鏡面加工としている。反射率を向上するために反射面2
7の表面を遮光性の金属被膜などで覆っても良い。
These reflecting surfaces 27 become reflecting surfaces due to the difference in the refractive index of the material at the boundary. for that reason,
While the entire sealing body 25 is matte-finished, the surfaces of the reflection surface 27 and the lens 28 are mirror-finished with smaller surface roughness. Reflective surface 2 to improve reflectivity
7 may be covered with a light-shielding metal film or the like.

【0019】また、反射面27は半導体チップ表面に対
して約45度の傾斜角度を有し、平面視(図1の様に観
測して)でホトダイオード部PDの全表面及び発光素子
3のチップ全表面を覆う様に形成されている。この結
果、溝26の最深部は発光素子3と受光素子2のホトダ
イオード部PDに対して、他側面25a側に位置する。
溝26の最深部は、発光素子3側と受光素子2側とで位
置が概ね一致している。
The reflecting surface 27 has an inclination angle of about 45 degrees with respect to the surface of the semiconductor chip, and the entire surface of the photodiode portion PD and the chip of the light emitting element 3 are viewed in plan view (observed as shown in FIG. 1). It is formed so as to cover the entire surface. As a result, the deepest portion of the groove 26 is located on the other side surface 25a side with respect to the photodiode portion PD of the light emitting element 3 and the light receiving element 2.
The position of the deepest part of the groove 26 substantially coincides with the light emitting element 3 side and the light receiving element 2 side.

【0020】レンズ28は、例えば封止体25の高さ
(図2(A):図示t)が2.5mmであるときに、半
径が1.8mmの球面体で形成され、上下にはみ出た部
分は平坦面25aにカットされている。平面視で見たと
き(図1のように観測して)に、レンズ28の最先端部
40とレンズ28の焦点とを結ぶ中心線41は、反射面
27で反射してホトダイオードPDの受光パターンのほ
ぼ中心に到達する。また、中心線41に沿って断面視で
見たとき(図2(B)の様に観測して)に、レンズ28
の最先端部40とレンズ28の焦点とを結ぶ中心線41
は、反射面27で反射して同じくホトダイオードPDの
受光パターンのほぼ中心に到達する。この設計に合致し
ない箇所は、溝26の第2の斜面27aのように、反射
光が各素子に到達しないような傾斜角度を持たせてい
る。
The lens 28 is formed of a spherical body having a radius of 1.8 mm, for example, when the height of the sealing body 25 (FIG. 2A: t in the drawing) is 2.5 mm, and protrudes upward and downward. The portion is cut into a flat surface 25a. When viewed in a plan view (observed as shown in FIG. 1), the center line 41 connecting the foremost portion 40 of the lens 28 and the focal point of the lens 28 is reflected by the reflection surface 27 and the light receiving pattern of the photodiode PD. To reach almost the center of. When viewed in a cross-sectional view along the center line 41 (observed as shown in FIG. 2B), the lens 28
A center line 41 connecting the foremost portion 40 of the lens and the focal point of the lens 28
Is reflected by the reflection surface 27 and reaches almost the center of the light receiving pattern of the photodiode PD. Locations that do not conform to this design are provided with an inclination angle such that the reflected light does not reach each element, like the second slope 27a of the groove 26.

【0021】図3に、封止体25の一側面25b側から
レンズ28を観測したときの状態を示した。レンズ28
の中心線41は反射面27の中心に位置し、且つ反射面
27に投影されたホトダイオードPDの受光パターンの
ほぼ中心に位置する。また、発光素子3側でも状況を同
じくしており、レンズ28の中心線41が反射面27の
ほぼ中心に位置し且つ反射面に投影された発光素子3の
パターンのほぼ中心に到達するように3者の位置関係を
設計している(図2(A)に示した)。そして、これら
の中心線41に沿って、レンズ28から反射面までの距
離と、反射面27からホトダイオードPD表面又は発光
素子2の表面までの距離の合計が、レンズ28の焦点に
ほぼ合致するような設計が成されている。
FIG. 3 shows a state in which the lens 28 is observed from one side surface 25b of the sealing body 25. Lens 28
Is located at the center of the reflecting surface 27 and substantially at the center of the light receiving pattern of the photodiode PD projected on the reflecting surface 27. The situation is the same on the light emitting element 3 side, so that the center line 41 of the lens 28 is located substantially at the center of the reflection surface 27 and reaches almost the center of the pattern of the light emitting element 3 projected on the reflection surface 27. The positional relationship between the three is designed (shown in FIG. 2A). Then, along these center lines 41, the sum of the distance from the lens 28 to the reflecting surface and the distance from the reflecting surface 27 to the surface of the photodiode PD or the surface of the light emitting element 2 substantially match the focal point of the lens 28. Design is made.

【0022】斯かる設計によれば、レンズ28で集光し
た光信号6の、光強度の最も高い部分を受光素子2に集
約できるので、ホトダイオードPDの受信感度を増大す
ることができる。また、発光素子3側についても光強度
の高い光信号6を発することができる。更に、反射面2
7との関係においても中心を一致させることにより、中
心線41からずれた方向から光信号6が入射したとき
に、反射面27で受ける事が可能な範囲を広く確保する
ことができる。
According to such a design, a portion having the highest light intensity of the optical signal 6 condensed by the lens 28 can be concentrated on the light receiving element 2, so that the receiving sensitivity of the photodiode PD can be increased. The light signal 6 having a high light intensity can also be emitted from the light emitting element 3 side. Further, the reflection surface 2
By making the centers coincide with each other also with respect to 7, it is possible to secure a wide range that can be received by the reflection surface 27 when the optical signal 6 enters from a direction shifted from the center line 41.

【0023】以上に説明したとおり、本発明の半導体装
置は、光信号6の伝達経路を折り曲げることによって、
封止体25の厚みtが薄い、半導体装置を得ることがで
きる。これによって、係る装置をプリント基板上に表面
実装した時にプリント基板全体の高さを低く抑えること
ができ、更には前記プリント基板に対して水平方向に光
信号6を出入射することができるので、電子機器の薄形
化を推進することができるものである。
As described above, the semiconductor device of the present invention can be configured by bending the transmission path of the optical signal 6
A semiconductor device in which the thickness t of the sealing body 25 is small can be obtained. Thereby, when such a device is surface-mounted on a printed circuit board, the height of the entire printed circuit board can be kept low, and furthermore, the optical signal 6 can be emitted to and emitted from the printed circuit board in the horizontal direction. It can promote the thinning of electronic devices.

【0024】[0024]

【発明の効果】以上、本発明によれば、溝26で反射面
27を設けることにより、樹脂の側面25bから光信号
6の出入射を行える光半導体装置を実現できる利点を有
する。この装置は、封止体25の全体の厚みtを低くで
きるので、プリント基板に実装したときに大幅な薄形化
を実現できるものである。
As described above, according to the present invention, by providing the reflecting surface 27 with the groove 26, there is an advantage that an optical semiconductor device capable of transmitting and receiving the optical signal 6 from the side surface 25b of the resin can be realized. In this device, the overall thickness t of the sealing body 25 can be reduced, so that when the device is mounted on a printed circuit board, the thickness can be significantly reduced.

【0025】更に、レンズ28の焦点設計をホトダイオ
ードPD又は発光素子3のほぼ中心部に合致させること
により、光強度の高い光信号6を受発信できる利点を有
する。
Further, by matching the focus design of the lens 28 to the photodiode PD or the substantially central portion of the light emitting element 3, there is an advantage that the optical signal 6 with high light intensity can be transmitted and received.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明する平面図である。FIG. 1 is a plan view illustrating the present invention.

【図2】本発明を説明する断面図である。FIG. 2 is a sectional view illustrating the present invention.

【図3】本発明を説明する為の図である。FIG. 3 is a diagram for explaining the present invention.

【図4】従来例を説明する斜視図である。FIG. 4 is a perspective view illustrating a conventional example.

【図5】従来例を説明する斜視図である。FIG. 5 is a perspective view illustrating a conventional example.

フロントページの続き (72)発明者 落合 公 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 井野口 浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 石川 勉 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 関口 智 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 小堀 浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5F041 AA39 AA47 CB32 DA57 EE23 FF16 5F088 AA01 BA15 BB10 EA09 JA11 5F089 AA03 AC10 AC11 BC02 BC11 BC15 BC23 BC24 CA16 CA20 EA04 Continuation of the front page (72) Ko Ochiai 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hiroshi Inoguchi 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Inside Sanyo Electric Co., Ltd. (72) Inventor Tsutomu Ishikawa 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Prefecture Inside Sanyo Electric Co., Ltd. (72) Inventor Satoshi 2-5-2 Keihanhondori, Moriguchi-shi, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Hiroshi Kobori 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5F041 AA39 AA47 CB32 DA57 EE23 FF16 5F088 AA01 BA15 BB10 EA09 JA11 5F089 AA03 AC10 AC11 BC02 BC11 BC15 BC23 BC24 CA16 CA20 EA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光信号を電気信号に変換する受光面又は
発光面を有する半導体素子を樹脂層で被覆し、 前記半導体素子の上方に前記樹脂層によって反射面を形
成し、 前記反射面にて光信号を屈曲し、前記樹脂層の一側面か
ら前記光信号の送受信を行う光半導体装置であって、 前記樹脂層の一側面に前記光信号を集光するレンズ体を
有し、 前記レンズ体の中心線が、前記反射面を介して、前記半
導体素子の受光面または発光面の中心にほぼ一致するこ
とを特徴とする光半導体装置。
1. A semiconductor element having a light receiving surface or a light emitting surface for converting an optical signal into an electric signal is covered with a resin layer, and a reflection surface is formed by the resin layer above the semiconductor element. An optical semiconductor device that bends an optical signal and transmits and receives the optical signal from one side surface of the resin layer, comprising: a lens body that collects the optical signal on one side surface of the resin layer; Wherein the center line substantially coincides with the center of the light receiving surface or the light emitting surface of the semiconductor element via the reflection surface.
【請求項2】 前記レンズ体の中心線が前記反射面の中
心とも一致していることを特徴とする請求項1記載の光
半導体装置。
2. The optical semiconductor device according to claim 1, wherein a center line of said lens body also coincides with a center of said reflection surface.
【請求項3】 前記受光素子が集積回路であり、受光用
のホトダイオード及び前記ホトダイオードの周辺駆動回
路を内蔵したものであることを特徴とする請求項1記載
の光半導体装置。
3. The optical semiconductor device according to claim 1, wherein said light receiving element is an integrated circuit, and includes a photodiode for receiving light and a peripheral driving circuit for said photodiode.
【請求項4】 前記レンズ体が前記樹脂層によって一体
化されていることを特徴とする請求項1記載の半導体装
置。
4. The semiconductor device according to claim 1, wherein said lens body is integrated by said resin layer.
JP30581698A 1998-10-27 1998-10-27 Optical semiconductor device Pending JP2000133834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30581698A JP2000133834A (en) 1998-10-27 1998-10-27 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30581698A JP2000133834A (en) 1998-10-27 1998-10-27 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2000133834A true JP2000133834A (en) 2000-05-12

Family

ID=17949726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30581698A Pending JP2000133834A (en) 1998-10-27 1998-10-27 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2000133834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050788A (en) * 2000-08-01 2002-02-15 Opt Techno:Kk Light-emitting/receiving device
JP2007121973A (en) * 2005-10-31 2007-05-17 Fujikura Ltd Optical connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050788A (en) * 2000-08-01 2002-02-15 Opt Techno:Kk Light-emitting/receiving device
JP4640539B2 (en) * 2000-08-01 2011-03-02 株式会社オプトテクノ Light emitting / receiving device
JP2007121973A (en) * 2005-10-31 2007-05-17 Fujikura Ltd Optical connector

Similar Documents

Publication Publication Date Title
KR100459347B1 (en) Optic semiconductor device and optic semiconductor module mounting optic semiconductor device
TWI257709B (en) Optical communication module
KR101457069B1 (en) Optical proximity sensor with ambient light sensor
JP3948789B2 (en) Infrared data communication module
US20080219673A1 (en) Optical Transceiver with Reduced Height
KR101476994B1 (en) Optical proximity sensor with ambient light sensor and method of making the same
JP3851418B2 (en) Infrared data communication module
JP2000150924A (en) Infrared communication device
JP2000077686A (en) Mounting structure of semiconductor device
JP2000133834A (en) Optical semiconductor device
JP3976420B2 (en) Optical semiconductor device
JP3976419B2 (en) Optical semiconductor device
JP3985363B2 (en) Optical transmission element
JP4159147B2 (en) Semiconductor device
JP2000124479A (en) Optical semiconductor device
JP2000068531A (en) Optical semiconductor device
JPH11330539A (en) Optical semiconductor device
JP2000124476A (en) Optical semiconductor device
TW201108041A (en) Optical device
JP2000077685A (en) Mounting structure of semiconductor device
JP2003075690A (en) Transmitter and receiver
JP4301588B2 (en) Photocoupler device
JP2002222987A (en) Optical signal communication module
JP2000049365A (en) Photosemiconductor device
JP2000133822A (en) Optical semiconductor device