JP2000129158A - Eletroconductive microparticle, anisotropic electroconductive adhesive and electroconductive connecting structure - Google Patents

Eletroconductive microparticle, anisotropic electroconductive adhesive and electroconductive connecting structure

Info

Publication number
JP2000129158A
JP2000129158A JP30542398A JP30542398A JP2000129158A JP 2000129158 A JP2000129158 A JP 2000129158A JP 30542398 A JP30542398 A JP 30542398A JP 30542398 A JP30542398 A JP 30542398A JP 2000129158 A JP2000129158 A JP 2000129158A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
coating layer
conductive
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30542398A
Other languages
Japanese (ja)
Other versions
JP4052743B2 (en
Inventor
Takuo Suzuki
卓夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP30542398A priority Critical patent/JP4052743B2/en
Publication of JP2000129158A publication Critical patent/JP2000129158A/en
Application granted granted Critical
Publication of JP4052743B2 publication Critical patent/JP4052743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an insulation coated electroconductive microparticle having high connection reliability and suitable for the conduction between microelectrodes due to no occurrence of damage such as cracking in the coating layer and peeling, etc., of the coating layer and scarce occurrence of leak between the adjacent electrodes when receiving excessive repetition of cold and heat or remarkable deformation. SOLUTION: This insulation coated electroconductive microparticle has a coating layer comprising a metal microparticle and a resin formed on a base material particle having 0.5-1,000 μm average particle diameter, <2 aspect ratio and <=40% value of CV. The coating layer contains 70-99 wt.% of the above metal microparticle having the average particle diameter of <=1/5 of the average particle diameter of the base material particle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細電極間の接続
に用いられる導電性微粒子、異方性導電接着剤、及び、
導電接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive fine particles, anisotropic conductive adhesive,
The present invention relates to a conductive connection structure.

【0002】[0002]

【従来の技術】液晶ディスプレイ、パーソナルコンピュ
ータ、携帯通信機器等のエレクトロニクス製品におい
て、半導体素子等の小型電気部品を基板に電気的に接続
したり、基板同士を電気的に接続するため、いわゆる異
方性導電材料といわれるものが使用されており、異方性
導電材料のなかでは、導電性微粒子をバインダー樹脂に
混合した異方性導電接着剤が広く用いられている。
2. Description of the Related Art In electronic products such as a liquid crystal display, a personal computer, and a portable communication device, a so-called anisotropic device is used to electrically connect small electric components such as semiconductor elements to a substrate or to electrically connect the substrates to each other. What is called a conductive conductive material is used, and among the anisotropic conductive materials, an anisotropic conductive adhesive in which conductive fine particles are mixed with a binder resin is widely used.

【0003】上記異方性導電接着剤に用いられる導電性
微粒子としては、有機基材粒子又は無機基材粒子の表面
に金属メッキを施したものや金属粒子が用いられてき
た。このような導電性微粒子は、例えば、特公平6−9
6771号公報、特開平4−36902号公報、特開平
4−269720号公報、特開平3−257710号公
報等に開示されている。
[0003] As the conductive fine particles used in the anisotropic conductive adhesive, those obtained by applying metal plating to the surfaces of organic base particles or inorganic base particles or metal particles have been used. Such conductive fine particles are described, for example, in JP-B-6-9.
No. 6771, JP-A-4-36902, JP-A-4-269720, JP-A-3-257710 and the like.

【0004】また、このような導電性微粒子をバインダ
ー樹脂と混ぜ合わせてフィルム状又はペースト状にした
異方性導電接着剤は、例えば、特開昭63−23188
9号公報、特開平4−259766号公報、特開平3−
291807号公報、特開平5−75250号公報等に
開示されている。
An anisotropic conductive adhesive formed by mixing such conductive fine particles with a binder resin to form a film or paste is disclosed in, for example, JP-A-63-23188.
9, JP-A-4-259766, JP-A-3-259766
No. 291807 and Japanese Patent Application Laid-Open No. 5-75250.

【0005】このように、異方性導電材料用の導電性微
粒子は、表面に金属メッキ層が形成されたものが多用さ
れてきたが、このような導電性微粒子では、過度の冷熱
繰り返しや、大幅な変形を受けた場合に金属メッキ層に
亀裂が生じ信頼性を損なうという問題があり、特に導電
性微粒子を構成する基材粒子が樹脂等の線膨張率の大き
い物質の場合にはこの傾向が著しかった。
As described above, as the conductive fine particles for the anisotropic conductive material, those having a metal plating layer formed on the surface have been widely used. There is a problem that the metal plating layer is cracked when it undergoes significant deformation and the reliability is impaired. This tendency is particularly observed when the base particles constituting the conductive fine particles are made of a material such as resin which has a large linear expansion coefficient. Was remarkable.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、過度の冷熱繰り返しや大幅な変形を受けた場合で
も、被覆層に亀裂等の破損や、被覆層の剥がれ等が発生
せず、隣接電極間でのリークが発生しにくいため接続信
頼性が高く、微細電極間の導通に適している導電性微粒
子、上記導電性微粒子を含有する異方性導電接着剤、及
び、上記導電性微粒子又は上記異方性導電接着剤が用い
られた導電接続構造体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention does not cause damage such as cracks, peeling of the coating layer, etc. in the coating layer even when it is subjected to excessive cooling / heating and significant deformation. Conductive fine particles suitable for conducting between fine electrodes because leakage between adjacent electrodes is unlikely to occur and high connection reliability, anisotropic conductive adhesive containing the conductive fine particles, and the conductive fine particles Another object of the present invention is to provide a conductive connection structure using the anisotropic conductive adhesive.

【0007】[0007]

【課題を解決するための手段】本発明は、平均粒子径が
0.5〜1000μm、アスペクト比が2未満、CV値
が40%以下の基材粒子の表面に、金属微粒子と樹脂と
からなる被覆層が形成された導電性微粒子であって、上
記被覆層は、上記金属微粒子を70〜99重量%含有す
るものであり、上記金属微粒子は、平均粒子径が上記基
材粒子の平均粒子径の1/5以下であることを特徴とす
る導電性微粒子。以下に、本発明を詳述する。
According to the present invention, metal particles and resin are formed on the surface of base particles having an average particle diameter of 0.5 to 1000 μm, an aspect ratio of less than 2 and a CV value of 40% or less. Conductive fine particles having a coating layer formed thereon, wherein the coating layer contains the metal fine particles in an amount of 70 to 99% by weight, and the metal fine particles have an average particle diameter of the base particles. The conductive fine particles are 1/5 or less of the following. Hereinafter, the present invention will be described in detail.

【0008】本発明の導電性微粒子は、基材粒子の表面
に金属微粒子と樹脂からなる被覆層が形成されたもので
ある。
The conductive fine particles of the present invention are obtained by forming a coating layer comprising fine metal particles and a resin on the surface of base particles.

【0009】上記基材粒子の平均粒子径は、0.5〜1
000μmである。平均粒子径が0.5μm未満では、
基材粒子に均一な被覆層を形成するのが困難であり、1
000μmを超えると、微細電極間の接合が行えないた
め上記範囲に限定される。好ましくは1〜100μmで
あり、より好ましくは2〜40μmであり、更に好まし
くは5〜20μmである。上記平均粒子径は、任意の基
材粒子300個を電子顕微鏡で観察することにより得ら
れる値である。
The average particle diameter of the base particles is 0.5 to 1
000 μm. If the average particle size is less than 0.5 μm,
It is difficult to form a uniform coating layer on the base material particles.
If it exceeds 000 μm, bonding between fine electrodes cannot be performed, so that it is limited to the above range. Preferably it is 1-100 micrometers, More preferably, it is 2-40 micrometers, Still more preferably, it is 5-20 micrometers. The average particle diameter is a value obtained by observing 300 arbitrary base particles with an electron microscope.

【0010】上記基材粒子のアスペクト比は2未満であ
る。アスペクト比が2以上では、粒子径が不揃いとなる
ため、導電性微粒子を介して電極同士を接続させる際
に、接続に関与しない導電性微粒子が多数発生し、隣接
電極間でのリーク現象が発生するため上記範囲に限定さ
れる。好ましくは1.3未満であり、より好ましくは
1.2未満であり、更に好ましくは1.1未満であり、
特に好ましくは1.05未満である。上記アスペクト比
とは、任意の基材粒子300個を電子顕微鏡で観察する
ことにより得られる微粒子の平均長径を平均短径で割っ
た値である。
[0010] The aspect ratio of the base particles is less than 2. If the aspect ratio is 2 or more, the particle diameters become uneven, so when connecting electrodes via conductive fine particles, a large number of conductive fine particles not involved in the connection are generated, and a leak phenomenon occurs between adjacent electrodes. Therefore, it is limited to the above range. Preferably less than 1.3, more preferably less than 1.2, even more preferably less than 1.1,
Particularly preferably, it is less than 1.05. The aspect ratio is a value obtained by dividing an average major axis of fine particles obtained by observing 300 arbitrary base particles with an electron microscope by an average minor axis.

【0011】上記微粒子は、CV値が40%以下であ
る。CV値が40%を超えると、粒子径が不揃いとなる
ため、導電性微粒子を介して電極同士を接続させる際
に、接続に関与しない導電性微粒子が多数発生し、隣接
電極間でのリーク現象が発生するため上記範囲に限定さ
れる。好ましくは30%以下であり、より好ましくは2
0%以下であり、更に好ましくは10%以下であり、特
に好ましくは5%以下である。
The fine particles have a CV value of 40% or less. If the CV value exceeds 40%, the particle diameters become uneven, so that when connecting the electrodes via the conductive fine particles, a large number of conductive fine particles not involved in the connection are generated, and a leak phenomenon occurs between adjacent electrodes. Is generated, so that it is limited to the above range. It is preferably at most 30%, more preferably 2%.
It is 0% or less, more preferably 10% or less, and particularly preferably 5% or less.

【0012】上記CV値とは、下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)で表される値である。上記標準偏差及
び上記数平均粒子径は、任意の基材粒子300個を電子
顕微鏡で観察することにより得られる値である。
The CV value is defined by the following equation (1); CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter) , Dn represent the number average particle diameter). The standard deviation and the number average particle diameter are values obtained by observing 300 arbitrary base particles with an electron microscope.

【0013】上記基材粒子の材料としては、特に限定さ
れず、例えば、高分子材料、無機物、有機物、これらの
混合物や化合物、金属等が挙げられる。これらのなかで
は、アスペクト比やCV値の小さいものが得やすく、弾
性変形により電極と充分に接触面積を確保することがで
き、反発力により接続信頼性を保つことができる点か
ら、高分子材料が好ましい。
The material of the base particles is not particularly limited, and includes, for example, a polymer material, an inorganic substance, an organic substance, a mixture or compound thereof, a metal and the like. Among them, polymer materials having a small aspect ratio and a small CV value can be easily obtained, a sufficient contact area with an electrode can be secured by elastic deformation, and connection reliability can be maintained by a repulsive force. Is preferred.

【0014】上記高分子材料の材質としては特に限定さ
れず、例えば、ポリエチレン、ポリプロピレン、ポリメ
チルペンテン、ポリ塩化ビニル、ポリテトラフルオロエ
チレン、ポリスチレン、ポリメチルメタクリレート、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリアミド、ポリイミド、ポリスルフォン、ポリフ
ェニレンオキサイド、ポリアセタール等の線状又は架橋
高分子重合体;エポキシ樹脂、フェノール樹脂、メラミ
ン樹脂、ベンゾグアナミン樹脂、不飽和ポリエステル樹
脂、ジビニルベンゼン重合体、ジビニルベンゼン−スチ
レン共重合体、ジビニルベンゼン−アクリル酸エステル
共重合体、ジアリルフタレート重合体、トリアリルイソ
シアヌレート重合体等の架橋構造を有する樹脂等が挙げ
られる。
The material of the above polymer material is not particularly limited, and examples thereof include polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polytetrafluoroethylene, polystyrene, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyamide, Polyimide, polysulfone, polyphenylene oxide, linear or cross-linked polymer such as polyacetal; epoxy resin, phenol resin, melamine resin, benzoguanamine resin, unsaturated polyester resin, divinylbenzene polymer, divinylbenzene-styrene copolymer, Resins having a crosslinked structure such as a divinylbenzene-acrylate copolymer, a diallyl phthalate polymer, and a triallyl isocyanurate polymer are exemplified.

【0015】上記被覆層を構成する金属微粒子の材料と
しては特に限定されないが、酸化等による劣化を受けに
くい点から貴金属が好ましく、電極との接触抵抗が低
く、高い長期信頼性を得ることができる点から金がより
好ましい。上記金属微粒子の平均粒子径は、上記基材粒
子の平均粒子径の1/5以下である。平均粒子径が1/
5を超えると、衝撃や変形を受けた場合に基材粒子の表
面から被覆層が剥がれるため上記範囲に限定される。好
ましくは1/10以下であり、より好ましくは1/30
以下である。
The material of the metal fine particles constituting the coating layer is not particularly limited, but is preferably a noble metal because it is hardly deteriorated by oxidation or the like, has low contact resistance with an electrode, and can provide high long-term reliability. Gold is more preferred from this point. The average particle diameter of the metal fine particles is 1/5 or less of the average particle diameter of the base particles. Average particle size is 1 /
If it exceeds 5, the coating layer is peeled off from the surface of the base particles when subjected to impact or deformation, so that the range is limited to the above range. Preferably it is 1/10 or less, more preferably 1/30.
It is as follows.

【0016】上記被覆層を構成する樹脂としては特に限
定されず、例えば、ポリエチレン、エチレン/酢酸ビニ
ル共重合体、エチレン/アクリル酸エステル共重合体等
のポリオレフィン類;ポリメチル(メタ)アクリレー
ト、ポリエチル(メタ)アクリレート、ポリブチル(メ
タ)アクリレート等の(メタ)アクリレート重合体又は
共重合体;ポリスチレン、スチレン/アクリル酸エステ
ル共重合体、SB型スチレン/ブタジエンブロック共重
合体、SBS型スチレン/ブタジエンブロック共重合
体、これらの水添加物等のブロックポリマー;ポリビニ
ルアルコール等のビニル系重合体、ポリビニルブチラー
ル等のビニル系共重合体等の熱可塑性樹脂、エポキシ樹
脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂、
これらの混合物等が挙げられる。これらの被覆層を構成
する樹脂は、金属微粒子の分散性に優れるものが好まし
いことから、カルボニル基、ヒドロキシル基、エポキシ
基又はエーテル結合を含有する樹脂が好ましく、ポリビ
ニルアルコールやポリビニルブチラールがより好まし
い。上記被覆層に樹脂強度が必要な場合には、分散媒に
可溶な樹脂を用いて被覆層を形成した後に、架橋等の方
法により不溶性にしてもよい。
The resin constituting the coating layer is not particularly restricted but includes, for example, polyolefins such as polyethylene, ethylene / vinyl acetate copolymer, ethylene / acrylate copolymer; polymethyl (meth) acrylate, polyethyl ( (Meth) acrylate polymers or copolymers such as meth) acrylate and polybutyl (meth) acrylate; polystyrene, styrene / acrylate copolymer, SB type styrene / butadiene block copolymer, and SBS type styrene / butadiene block copolymer Block polymers such as polymers and their water additives; thermoplastic resins such as vinyl polymers such as polyvinyl alcohol, vinyl copolymers such as polyvinyl butyral, and thermosetting resins such as epoxy resins, phenol resins and melamine resins. resin,
These mixtures and the like can be mentioned. The resin constituting these coating layers is preferably a resin having excellent dispersibility of metal fine particles. Therefore, a resin containing a carbonyl group, a hydroxyl group, an epoxy group or an ether bond is preferable, and polyvinyl alcohol and polyvinyl butyral are more preferable. When the coating layer needs resin strength, the coating layer may be formed using a resin soluble in a dispersion medium and then made insoluble by a method such as crosslinking.

【0017】上記被覆層を構成する樹脂の数平均分子量
は、1万以上が好ましい。樹脂の数平均分子量が、1万
未満では、被覆層の強度が弱く、そのため、導電性微粒
子を介して電極同士を接合した際に被覆層に破れが生
じ、導通をとれなくなる場合があるため上記範囲が好ま
しい。より好ましくは5万以上である。
The resin constituting the coating layer preferably has a number average molecular weight of 10,000 or more. When the number average molecular weight of the resin is less than 10,000, the strength of the coating layer is weak, and therefore, when the electrodes are bonded to each other via the conductive fine particles, the coating layer may be broken, and conduction may not be obtained. A range is preferred. More preferably, it is 50,000 or more.

【0018】上記被覆層は、上記金属微粒子を含有する
ものであり、金属微粒子の含有量は、70〜98重量%
である。金属微粒子の含有量が、70重量%未満では、
導電性微粒子を介して電極同士を接合した際に、充分な
電気容量が得られなかったり、導通不良を起こしたりす
るし、98重量%を超えると、被覆層が基材粒子から剥
がれるため上記範囲に限定される。好ましくは、80〜
95重量%である。
The coating layer contains the fine metal particles, and the content of the fine metal particles is 70 to 98% by weight.
It is. When the content of the metal fine particles is less than 70% by weight,
When the electrodes are joined to each other via the conductive fine particles, sufficient electric capacity cannot be obtained or conduction failure occurs. When the amount exceeds 98% by weight, the coating layer is peeled off from the base particles, so that the above range is not satisfied. Is limited to Preferably, 80-
95% by weight.

【0019】上記被覆層の厚さは、上記基材粒子の平均
粒子径の1/4以下が好ましい。被覆層の厚さが平均粒
子径の1/4を超えると、後述する、基材粒子と被覆物
と分散媒とを混合して混合物を調整後、分散媒を徐々に
揮発させながら取り除き、被覆層を形成する際に、基材
粒子間が被覆物で充填された状態となり、空隙がなくな
るため単粒子化が困難となったり、単粒子化する際に、
被覆層の厚さの隔たりが大きくなったり、被覆物のみの
塊ができたりすることがある。また、上記基材粒子の物
理的な特性を活かすため、被覆層の厚さは、基材粒子の
平均粒子径の1/10以下と薄い方がより好ましく、基
材粒子の平均粒子径の1/30以下が更に好ましい。こ
のため、基材粒子の平均粒子径の1/4よりも厚い被覆
層を形成する際には、下記する方法を用いて、被覆層を
形成する工程を複数回繰り返すのが好ましい。また、被
覆層が1/4より薄い層を形成する場合でも、下記する
方法を用いて被覆層を形成する工程を複数回繰り返して
もよい。
The thickness of the coating layer is preferably 1/4 or less of the average particle diameter of the base particles. When the thickness of the coating layer exceeds 1/4 of the average particle diameter, after mixing the base particles, the coating material, and the dispersion medium to prepare a mixture, which will be described later, the dispersion medium is removed while being gradually volatilized. When the layer is formed, the space between the base particles becomes filled with the coating material, and it becomes difficult to form a single particle because there is no void.
In some cases, the thickness difference of the coating layer may increase, or a lump of the coating alone may be formed. Further, in order to make use of the physical characteristics of the base particles, the thickness of the coating layer is more preferably as thin as 1/10 or less of the average particle diameter of the base particles. / 30 or less is more preferable. For this reason, when forming a coating layer thicker than 1/4 of the average particle diameter of the base particles, it is preferable to repeat the step of forming the coating layer a plurality of times using the following method. Further, even when the coating layer forms a layer thinner than 1/4, the step of forming the coating layer using the following method may be repeated a plurality of times.

【0020】上記被覆層は、上記基材粒子、樹脂と金属
微粒子とから構成される被覆物、及び、分散媒を混合し
て混合物を調製後、上記分散媒を徐々に揮発させながら
取り除くことにより形成されたものが好ましい。上記被
覆層は、また、上記方法と同様の方法により混合物を調
製した後、該混合物をインクジェット方式を用いて空中
に噴霧することにより形成されたものであってもよい。
The above-mentioned coating layer is prepared by mixing the above-mentioned base particles, a coating composed of resin and fine metal particles, and a dispersion medium to prepare a mixture, and then removing the dispersion medium while gradually volatilizing it. Those formed are preferred. The coating layer may be formed by preparing a mixture by the same method as described above, and then spraying the mixture into the air using an inkjet method.

【0021】上記分散媒としては、混合物を調製する際
に液状であるものであれば特に限定されず、例えば、溶
剤ハンドブック(講談社)等に記載されている通常の有
機溶媒、水、無機溶媒、これらの混合物や化合物等が挙
げられる。上記分散媒を徐々に揮発させながら取り除く
場合には、分散媒は、分散媒を揮発させる気圧での沸点
が60〜200℃のものが好ましい。沸点が60℃未満
では、揮発が急激に起こるため、基材粒子間が被覆物で
緻密に充填されるとともに、基材粒子も緻密に凝集し、
単粒子化しなくなったり、被覆層が発泡したりすること
があり、200℃を超えると、揮発するのに時間がかか
り過ぎ、生産性が著しく低下したり、被覆層が劣化した
りすることがあるため上記範囲が好ましい。より好まし
くは90〜150℃である。
The dispersion medium is not particularly limited as long as it is liquid at the time of preparing the mixture. Examples of the dispersion medium include ordinary organic solvents, water, inorganic solvents, and the like described in Solvent Handbook (Kodansha) and the like. These mixtures and compounds are exemplified. When the dispersion medium is removed while being gradually volatilized, the dispersion medium preferably has a boiling point of 60 to 200 ° C. at a pressure at which the dispersion medium is volatilized. If the boiling point is less than 60 ° C., since volatilization occurs rapidly, the space between the base particles is densely filled with the coating, and the base particles are also densely aggregated,
When it does not become single particles or the coating layer may foam, if it exceeds 200 ° C., it takes too much time to volatilize, productivity may be significantly reduced, or the coating layer may be deteriorated Therefore, the above range is preferable. The temperature is more preferably 90 to 150 ° C.

【0022】分散媒を徐々に揮発させながら取り除く方
法としては特に限定されず、例えば、上記分散媒の沸点
より60℃以上低い温度で揮発させる方法、−300m
mHg以上減圧せず、即ち、大気圧より300mmHg
以上圧力を低くしない条件で揮発させる方法等が挙げら
れる。
The method of removing the dispersion medium while volatilizing it gradually is not particularly limited. For example, a method of volatilizing at a temperature lower than the boiling point of the dispersion medium by 60 ° C. or more, -300 m
Do not depressurize more than mHg, that is, 300 mmHg above atmospheric pressure
The method of volatilizing under the condition that the pressure is not lowered as described above is exemplified.

【0023】分散媒を徐々に揮発させながら取り除く際
には、基材粒子間に空隙を発生させるのが好ましい。こ
れは、空隙を発生させることにより、均一な被覆層が形
成されるからである。また、単粒子化された導電性微粒
子を得るためには、少なくとも分散媒の大部分が揮発に
より取り除かれ空隙が発生した状態で、外力により被覆
物の一部、又は、被覆された基材粒子同士の界面を破壊
するのが好ましい。
When the dispersion medium is removed while being volatilized gradually, it is preferable to generate voids between the base particles. This is because a uniform coating layer is formed by generating voids. Further, in order to obtain the conductive fine particles in the form of single particles, in a state where at least most of the dispersion medium is removed by volatilization and voids are generated, a part of the coating material by external force, or coated base particles. It is preferable to break the interface between them.

【0024】空隙を発生させる方法としては、例えば、
上記混合物の分散媒を徐々に揮発させながら薄膜状、細
線状、微小塊状等の形状にする方法等が挙げられる。こ
れらのなかでは、適切な間隔の空隙を得やすいことか
ら、分散媒を徐々に揮発させながら微小塊状にする方法
が好ましい。
As a method of generating a void, for example,
A method of gradually evaporating the dispersion medium of the above mixture to form a thin film, a thin line, a fine lump, or the like, may be used. Among these, a method of forming a fine lump while gradually volatilizing the dispersion medium is preferable because it is easy to obtain voids at appropriate intervals.

【0025】適切な間隔の空隙を得る方法としては、例
えば、分散媒を徐々に揮発させながら取り除く際に、基
材粒子間の間隔が、上記基材粒子の平均粒子径以下であ
る基材粒子が少なくとも半数以上存在するように、上記
混合物を調製する際に、基材粒子と被覆物と分散媒との
混合比率を調整する方法等が挙げられる。
As a method of obtaining voids at appropriate intervals, for example, when the dispersion medium is removed while being volatilized gradually, the distance between the base particles is equal to or less than the average particle diameter of the base particles. In preparing the above mixture, there is a method of adjusting the mixing ratio of the base particles, the coating material, and the dispersion medium so that at least half or more are present.

【0026】上記混合物をインクジェット方式を用いて
空中に噴霧する方法において、上記インクジェット方式
としては特に限定されず、例えば、バブルジェット方
式、圧電素子を用い、該圧電素子を振動させ噴霧する方
式等が挙げられる。
In the method of spraying the mixture into the air using an ink jet method, the ink jet method is not particularly limited, and examples thereof include a bubble jet method and a method in which a piezoelectric element is used and the piezoelectric element is vibrated and sprayed. No.

【0027】上記インクジェット方式を用いる際のノズ
ル径は、基材粒子の平均粒子径の1.1〜3倍が好まし
い。上記ノズル径が基材粒子の平均粒子径の1.1倍未
満では、目詰まりを起こす場合があり、基材粒子の平均
粒子径の3倍を超えると、被覆層の制御が難しくなるた
め上記範囲が好ましい。より好ましくは1.2〜2倍で
ある。
The diameter of the nozzle when the above-mentioned ink jet system is used is preferably 1.1 to 3 times the average particle diameter of the base particles. When the nozzle diameter is less than 1.1 times the average particle diameter of the base particles, clogging may occur. When the nozzle diameter exceeds 3 times the average particle diameter of the base particles, it becomes difficult to control the coating layer. A range is preferred. More preferably, it is 1.2 to 2 times.

【0028】本発明の導電性微粒子は、基材粒子の表面
に形成された被覆層が金属微粒子と樹脂とからなるた
め、大幅な変形があっても被覆層が破壊されにくく、冷
熱繰り返しによる歪みを原因とする疲労も少ない。ま
た、基材粒子が高分子材料からなる従来の導電性微粒子
では、金属メッキ等の被覆層と高分子材料との線膨張係
数の差が大きく、割れが生じ易かったが、本発明の導電
性微粒子は、被覆層が金属微粒子と樹脂とからなるため
割れが生じにくく信頼性が高い。更に、上記導電性微粒
子は、アスペクト比やCV値が小さいため、隣接電極間
でリークが発生しにくく、微細電極の導通に適してい
る。
In the conductive fine particles of the present invention, since the coating layer formed on the surface of the base particles is composed of metal fine particles and a resin, the coating layer is hardly broken even if there is a large deformation, and the distortion due to the repetition of cooling and heating. There is less fatigue due to. In the case of conventional conductive fine particles in which the base particles are made of a polymer material, the difference in the coefficient of linear expansion between the coating layer such as metal plating and the polymer material is large, and cracks are likely to occur. Since the coating layer is made of metal fine particles and a resin, the fine particles are less likely to crack and have high reliability. Further, since the conductive fine particles have a small aspect ratio and a small CV value, leakage hardly occurs between adjacent electrodes, which is suitable for conducting fine electrodes.

【0029】本発明の導電性微粒子は、主として、相対
向する2つの電極を電気的に接続する際に用いられる。
上記導電性微粒子を用いて相対向する2つの電極を電気
的に接続する方法としては、例えば、上記導電性微粒子
をバインダー樹脂中に分散させて異方性導電接着剤を調
製し、上記異方性導電接着剤を使用して2つの電極を接
着、接続する方法、バインダー樹脂と上記導電性微粒子
とを別々に使用して接続する方法等が挙げられる。
The conductive fine particles of the present invention are mainly used for electrically connecting two electrodes facing each other.
As a method of electrically connecting two electrodes facing each other using the conductive fine particles, for example, the conductive fine particles are dispersed in a binder resin to prepare an anisotropic conductive adhesive, and the anisotropic conductive adhesive is prepared. A method of bonding and connecting two electrodes using a conductive conductive adhesive, and a method of connecting separately using a binder resin and the conductive fine particles separately.

【0030】本明細書において、異方性導電接着剤と
は、異方性導電膜、異方性導電ペースト、異方性導電イ
ンキ等を含むものとする。
In the present specification, the anisotropic conductive adhesive includes an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive ink and the like.

【0031】上記異方性導電接着剤を構成するバインダ
ー樹脂としては特に限定されず、例えば、アクリレート
樹脂、エチレン/酢酸ビニル樹脂、スチレン/ブタジエ
ンブロック共重合体等の熱可塑性樹脂;グリシジル基を
有するモノマーやオリゴマーとイソシアネート等の硬化
剤との反応により得られる硬化性樹脂組成物等の熱や光
によって硬化する組成物等が挙げられる。好ましくは、
上記硬化性樹脂組成物のなかでも低温で硬化する低温硬
化性樹脂、及び、光硬化性樹脂である。
The binder resin constituting the anisotropic conductive adhesive is not particularly restricted but includes, for example, a thermoplastic resin such as an acrylate resin, an ethylene / vinyl acetate resin, a styrene / butadiene block copolymer; A composition curable by heat or light, such as a curable resin composition obtained by reacting a monomer or oligomer with a curing agent such as isocyanate, and the like, may be mentioned. Preferably,
Among the curable resin compositions, a low-temperature curable resin that cures at a low temperature and a photocurable resin.

【0032】上記異方性導電接着剤として異方性導電膜
を使用した場合、上記導電性微粒子は、ランダムに分散
されていてもよく、特定の位置に配置されていてもよ
い。導電性微粒子がランダムに分散された導電膜は、通
常、汎用的な用途に使用される。また、上記導電性微粒
子が所定の位置に配置された異方性導電膜は、効率的な
電気接合を行うことができる。上記異方性導電接着剤の
塗工膜厚は特に限定されないが、10〜数百μmが好ま
しい。このような異方性導電接着剤も本発明の1つであ
る。
When an anisotropic conductive film is used as the anisotropic conductive adhesive, the conductive fine particles may be dispersed at random or may be arranged at a specific position. A conductive film in which conductive fine particles are randomly dispersed is generally used for general-purpose applications. In addition, the anisotropic conductive film in which the conductive fine particles are arranged at predetermined positions can perform efficient electrical bonding. The coating thickness of the anisotropic conductive adhesive is not particularly limited, but is preferably from 10 to several hundreds of μm. Such an anisotropic conductive adhesive is also one of the present invention.

【0033】上記導電性微粒子、及び、異方性導電接着
剤により接続される対象物としては、例えば、表面に電
極部が形成された基板、半導体等の電気部品等が挙げら
れる。上記基板は、フレキシブル基板とリジッド基板と
に大別される。上記フレキシブル基板としては、例え
ば、50〜500μmの厚さの樹脂シートが挙げられ
る。上記樹脂シートの材質としては、例えば、ポリイミ
ド、ポリアミド、ポリエステル、ポリスルホン等が挙げ
られる。
Examples of the above-mentioned conductive fine particles and an object to be connected by an anisotropic conductive adhesive include a substrate having an electrode portion formed on a surface thereof, and an electric component such as a semiconductor. The above substrate is roughly classified into a flexible substrate and a rigid substrate. Examples of the flexible substrate include a resin sheet having a thickness of 50 to 500 μm. Examples of the material of the resin sheet include polyimide, polyamide, polyester, and polysulfone.

【0034】上記リジッド基板は、樹脂製のものとセラ
ミック製のものとに大別される。上記樹脂製のものとし
ては、例えば、ガラス繊維強化エポキシ樹脂、フェノー
ル樹脂、セルロース繊維強化フェノール樹脂等が挙げら
れる。上記セラミック製のものとしては、例えば、二酸
化ケイ素、アルミナ、ガラス等が挙げられる。
The rigid substrates are roughly classified into those made of resin and those made of ceramic. Examples of the above-mentioned resin include glass fiber reinforced epoxy resin, phenol resin, cellulose fiber reinforced phenol resin and the like. Examples of the ceramic material include silicon dioxide, alumina, and glass.

【0035】上記基板の構成は特に限定されず、単層の
ものであってもよく、単位面積当たりの電極数を増加さ
せるために、例えば、複数の層が形成され、スルーホー
ル形成等の手段により、これらの層が相互に電気的に接
続されている多層基板であってもよい。
The structure of the substrate is not particularly limited, and may be a single layer. In order to increase the number of electrodes per unit area, for example, a plurality of layers are formed, Accordingly, a multilayer substrate in which these layers are electrically connected to each other may be used.

【0036】上記電気部品としては特に限定されず、例
えば、トランジスタ、ダイオード、IC、LSI等の半
導体等の能動部品;抵抗、コンデンサ、水晶振動子等の
受動部品等が挙げられる。上記基板又は電気部品の表面
に形成される電極の形状としては特に限定されず、例え
ば、縞状、ドット状、任意形状のもの等が挙げられる。
The electric components are not particularly limited, and include, for example, active components such as semiconductors such as transistors, diodes, ICs, and LSIs; and passive components such as resistors, capacitors, and crystal oscillators. The shape of the electrode formed on the surface of the substrate or the electric component is not particularly limited, and examples thereof include a stripe shape, a dot shape, and an arbitrary shape.

【0037】上記電極の材質としては、例えば、金、
銀、銅、ニッケル、パラジウム、カーボン、アルミニウ
ム、ITO等が挙げられる。接触抵抗を低減させるため
に、銅、ニッケル等の上に更に金が被覆された電極を用
いることができる。上記電極の厚さは、0.1〜100
μmであることが好ましく、上記電極の幅は、1〜50
0μmであることが好ましい。
As the material of the electrode, for example, gold,
Silver, copper, nickel, palladium, carbon, aluminum, ITO and the like can be mentioned. In order to reduce the contact resistance, an electrode in which gold is further coated on copper, nickel, or the like can be used. The thickness of the electrode is 0.1 to 100.
μm, and the width of the electrode is 1 to 50 μm.
It is preferably 0 μm.

【0038】上記導電性微粒子と上記基板又は部品等と
の接合としては、例えば、表面に電極が形成された基板
又は電気部品の上に、上記導電性微粒子を含有する異方
性導電膜を配置し、その上に、他の基板又は電気部品の
電極を置き、加熱、加圧する方法が挙げられる。上記異
方性導電膜の代わりに、スクリーン印刷やディスペンサ
ー等の印刷手段により、上記導電性微粒子を含有する異
方性導電ペーストを所定量用いることもできる。上記加
熱、加圧には、ヒーターが付いた圧着機やボンディング
マシーン等が用いられる。
The bonding between the conductive fine particles and the substrate or component is performed, for example, by disposing an anisotropic conductive film containing the conductive fine particles on a substrate or an electrical component having electrodes formed on the surface. Then, there is a method in which an electrode of another substrate or an electric component is placed thereon and heated and pressed. Instead of the anisotropic conductive film, a predetermined amount of the anisotropic conductive paste containing the conductive fine particles can be used by a printing means such as screen printing or a dispenser. For the above-mentioned heating and pressurizing, a crimping machine equipped with a heater, a bonding machine or the like is used.

【0039】上記異方性導電膜及び上記異方性導電ペー
ストを用いない方法も可能であり、例えば、導電性微粒
子を介して貼り合わせた2つの電極部の隙間に液状のバ
インダーを注入した後、硬化させる方法等を用いること
ができる。
It is also possible to use a method that does not use the anisotropic conductive film and the anisotropic conductive paste. For example, after injecting a liquid binder into a gap between two electrode portions bonded together via conductive fine particles. And a method of curing.

【0040】上記基板又は電気部品の電極部同士が、上
記導電性微粒子又は上記異方性導電接着剤を用いて接続
された導電接続構造体もまた、本発明の1つである。
The present invention also includes a conductive connection structure in which the electrodes of the substrate or the electric component are connected to each other using the conductive fine particles or the anisotropic conductive adhesive.

【0041】上述のように、本発明の異方性導電接着剤
及び導電接続構造体は、基材粒子の表面に金属微粒子と
樹脂とからなる被覆層が形成された導電性微粒子を用い
ることを特徴としている。このため、上記異方性導電接
着剤及び導電接続構造体は、過度の冷熱繰り返しや大幅
な変形を受けた場合でも、被覆層に亀裂等が発生しない
導電性微粒子が用いられているため、高い接続信頼性を
有し、微細電極間の導通に適している。
As described above, the anisotropic conductive adhesive and conductive connecting structure of the present invention use conductive fine particles having a coating layer made of metal fine particles and resin formed on the surface of base particles. Features. For this reason, the anisotropic conductive adhesive and the conductive connection structure are made of conductive fine particles that do not generate cracks or the like in the coating layer even when subjected to excessive cooling / heating and significant deformation. It has connection reliability and is suitable for conduction between fine electrodes.

【0042】[0042]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0043】実施例1 平均粒子径8μm、アスペクト比1.04、CV値4%
のジビニルベンゼン系微球10gと平均粒子径100n
mの金微粒子6gと分子量10万、ケン化度88%のポ
リビニルアルコール0.4gを水溶媒中に均一に分散し
混合物を得た。次に、得られた混合物をバットの中で薄
膜状に延ばし、徐々に水を揮発させながら、薄膜状の混
合物をヘラを用いて網目状にカットしていき微小塊状に
した。更に、微小塊が互いに合着しない程度まで分散媒
が揮発した状態で、乳鉢で擦り潰しながら、残りの水を
揮発させて単粒子化し、樹脂と金属微粒子とからなる被
覆層が形成された導電性微粒子を得た。得られた導電性
微粒子は、被覆の厚さが約100nm、平均粒子径8.
2μm、アスペクト比1.05、CV値6%であり、こ
の導電性微粒子は、25%変形させても被覆層が破れる
ことはなかった。
Example 1 Average particle diameter 8 μm, aspect ratio 1.04, CV value 4%
Of divinylbenzene microspheres of 10g and average particle diameter of 100n
6 g of gold microparticles and 0.4 g of polyvinyl alcohol having a molecular weight of 100,000 and a saponification degree of 88% were uniformly dispersed in an aqueous solvent to obtain a mixture. Next, the obtained mixture was spread into a thin film in a vat, and while gradually evaporating water, the thin film mixture was cut into a mesh using a spatula to form a fine lump. Furthermore, while the dispersion medium is volatilized to such an extent that the fine lumps do not coalesce with each other, the remaining water is volatilized while being crushed in a mortar, and the remaining water is volatilized into single particles. Functional fine particles were obtained. The obtained conductive fine particles have a coating thickness of about 100 nm and an average particle diameter of 8.
The conductive fine particles were 2 μm, the aspect ratio was 1.05, and the CV value was 6%. Even when the conductive fine particles were deformed by 25%, the coating layer was not broken.

【0044】また、この導電性微粒子を熱硬化性エポキ
シ樹脂をトルエンに溶解させたバインダー溶液に混合、
分散させた。その後、導電性微粒子分散溶液を離型フィ
ルム上に一定の厚さで塗布し、トルエンを蒸発させ、異
方性導電膜を得た。得られた異方性導電膜の膜厚は30
μmであった。更に、得られた異方性導電膜をガラス−
エポキシ銅張り基板(配線幅:50μm、電極ピッチ:
80μm)に貼り付け、この上に同一の基板を位置合わ
せした後重ね合わせ、160℃で2分間加熱、加圧し、
導電接続構造体を作製した。この導電接続構造体は、接
続抵抗が充分低く、隣接する電極間の接続抵抗は、1×
109 Ω以上で、線間絶縁性は充分保たれていた。ま
た、120℃のオイルバスに浸けるヒートショックテス
トを100回繰り返したが、変化はみられなかった。
The conductive fine particles are mixed with a binder solution obtained by dissolving a thermosetting epoxy resin in toluene.
Dispersed. Thereafter, a conductive fine particle dispersion was applied on the release film at a constant thickness, and toluene was evaporated to obtain an anisotropic conductive film. The thickness of the obtained anisotropic conductive film is 30.
μm. Furthermore, the obtained anisotropic conductive film was
Epoxy copper-clad board (wiring width: 50 μm, electrode pitch:
80 μm), the same substrate is positioned thereon, then superposed, heated and pressed at 160 ° C. for 2 minutes,
A conductive connection structure was produced. This conductive connection structure has sufficiently low connection resistance, and the connection resistance between adjacent electrodes is 1 ×
At 10 9 Ω or more, the line insulation was sufficiently maintained. The heat shock test of immersion in a 120 ° C. oil bath was repeated 100 times, but no change was observed.

【0045】実施例2 平均粒子径20μm、アスペクト比1.3、CV値15
%のジビニルベンゼン系微球と平均粒子径100nmの
金微粒子85重量部と分子量2万、ケン化度88%のポ
リビニルアルコール15重量部とを水溶媒中に均一に分
散した混合物をインクジェット法により空中に噴霧し、
樹脂と金属微粒子とからなる被覆層が形成された導電性
微粒子を得た。得られた導電性微粒子は、被覆層の厚さ
が約800nm、平均粒子径22μm、アスペクト比
1.3、CV値15%であり、この導電性微粒子は、2
5%変形させても被覆層が破れることはなかった。ま
た、この導電性微粒子を用いて、実施例1と同様に異方
性導電膜及び導電接続構造体を作製したところ、この導
電接続構造体は、接続抵抗が充分低く、隣接する電極間
の接続抵抗は、1×109 Ω以上で、線間絶縁性は充分
保たれていた。更に、120℃のオイルバスに浸けるヒ
ートショックテストを100回繰り返したところ、導電
性微粒子の一部にひびが見られたものの、問題となるほ
どではなかった。
Example 2 Average particle diameter 20 μm, aspect ratio 1.3, CV value 15
% Of divinylbenzene microspheres, 85 parts by weight of gold fine particles having an average particle diameter of 100 nm, and 15 parts by weight of polyvinyl alcohol having a molecular weight of 20,000 and a saponification degree of 88% are uniformly dispersed in an aqueous solvent by an ink jet method. Spray
Conductive fine particles having a coating layer made of resin and metal fine particles were obtained. The obtained conductive fine particles had a coating layer thickness of about 800 nm, an average particle size of 22 μm, an aspect ratio of 1.3, and a CV value of 15%.
Even when deformed by 5%, the coating layer was not broken. Further, an anisotropic conductive film and a conductive connection structure were produced using the conductive fine particles in the same manner as in Example 1. The connection resistance of the conductive connection structure was sufficiently low, and the connection between adjacent electrodes was reduced. The resistance was 1 × 10 9 Ω or more, and the line insulation was sufficiently maintained. Further, when the heat shock test in which the sample was immersed in an oil bath at 120 ° C. was repeated 100 times, cracks were found in some of the conductive fine particles, but were not so great as to cause a problem.

【0046】実施例3 平均粒子径10μm、アスペクト比1.05、CV値5
%のベンゾグアナミン系微球10gと平均粒子径400
nmの金微粒子10gと分子量20万のメチルメタクリ
レート系共重合体0.8gを酢酸ブチルに均一に分散し
た混合物を得た。得られた混合物を噴霧法を繰り返すこ
とにより、樹脂と金属微粒子とからなる被覆層が形成さ
れた導電性微粒子を得た。得られた導電性微粒子は、被
覆の厚さが約400nm、平均粒子径11μm、アスペ
クト比1.08、CV値8%であり、この導電性微粒子
は、25%変形させても被覆層が破れることはなかっ
た。また、この導電性微粒子を用いて、実施例1と同様
に異方性導電膜及び導電接続構造体を作製したところ、
この導電接続構造体は、接続抵抗が充分低く、隣接する
電極間の接続抵抗は、1×109 Ω以上で、線間絶縁性
は充分保たれていた。更に、120℃のオイルバスに浸
けるヒートショックテストを100回繰り返したが、変
化はみられなかった。
Example 3 Average particle diameter 10 μm, aspect ratio 1.05, CV value 5
% Of benzoguanamine-based microspheres and an average particle size of 400
A mixture of 10 g of gold fine particles having a diameter of 0.8 nm and 0.8 g of a methyl methacrylate copolymer having a molecular weight of 200,000 was uniformly dispersed in butyl acetate. The obtained mixture was repeatedly sprayed to obtain conductive fine particles on which a coating layer composed of a resin and metal fine particles was formed. The obtained conductive fine particles have a coating thickness of about 400 nm, an average particle diameter of 11 μm, an aspect ratio of 1.08, and a CV value of 8%. Even if the conductive fine particles are deformed by 25%, the coating layer is broken. I never did. Further, an anisotropic conductive film and a conductive connection structure were produced using the conductive fine particles in the same manner as in Example 1, and
This conductive connection structure had sufficiently low connection resistance, the connection resistance between adjacent electrodes was 1 × 10 9 Ω or more, and the line insulation was sufficiently maintained. Further, the heat shock test of immersion in a 120 ° C. oil bath was repeated 100 times, but no change was observed.

【0047】比較例1 平均粒子径8μm、アスペクト比1.04、CV値4%
のジビニルベンゼン系微球に蒸着により金を100nm
被覆し、被覆層が形成された導電性微粒子を得た。得ら
れた導電性微粒子を25%変性させたところ、被覆層が
破れてしまった。また、この導電性微粒子を用いて、実
施例1と同様に異方性導電膜及び導電接続構造体を作製
したところ、この導電接続構造体は、接続抵抗が充分低
く、隣接する電極間の接続抵抗は、1×109 Ω以上
で、線間絶縁性は充分保たれていた。しかし、120℃
のオイルバスに浸けるヒートショックテストを100回
繰り返したところ、被覆層がめくれて導通不良が発生し
た。
Comparative Example 1 Average particle diameter 8 μm, aspect ratio 1.04, CV value 4%
100nm gold by evaporation on divinylbenzene microspheres
The coating was performed to obtain conductive fine particles on which a coating layer was formed. When the obtained conductive fine particles were modified by 25%, the coating layer was broken. Further, an anisotropic conductive film and a conductive connection structure were produced using the conductive fine particles in the same manner as in Example 1. The connection resistance of the conductive connection structure was sufficiently low, and the connection between adjacent electrodes was reduced. The resistance was 1 × 10 9 Ω or more, and the line insulation was sufficiently maintained. However, 120 ° C
When the heat shock test of immersion in an oil bath was repeated 100 times, the coating layer was turned up and poor conduction occurred.

【0048】比較例2 平均粒子径8μm、アスペクト比1.04、CV値4%
のジビニルベンゼン系微球に無電解メッキによりニッケ
ルを150nm被覆し、更に、置換メッキにより金を5
0nm被覆し、被覆層が形成された導電性微粒子を得
た。得られた導電性微粒子を25%変性させたところ、
被覆層が破れてしまった。また、この導電性微粒子を用
いて、実施例1と同様に異方性導電膜及び導電接続構造
体を作製したところ、この導電接続構造体は、接続抵抗
が充分低く、隣接する電極間の接続抵抗は、1×109
Ω以上で、線間絶縁性は充分保たれていた。しかし、1
20℃のオイルバスに浸けるヒートショックテストを1
00回繰り返したところ、被覆層に割れがみとめられ
た。
Comparative Example 2 Average particle diameter 8 μm, aspect ratio 1.04, CV value 4%
Of divinylbenzene-based microspheres is coated with 150 nm of nickel by electroless plating, and further plated with gold by displacement plating.
Conductive fine particles coated with 0 nm to form a coating layer were obtained. When the obtained conductive fine particles were modified by 25%,
The coating layer has been torn. Further, an anisotropic conductive film and a conductive connection structure were produced using the conductive fine particles in the same manner as in Example 1. The connection resistance of the conductive connection structure was sufficiently low, and the connection between adjacent electrodes was reduced. The resistance is 1 × 10 9
Above Ω, the line insulation was sufficiently maintained. However, 1
One heat shock test in a 20 ° C oil bath
After repeated 00 times, cracks were found in the coating layer.

【0049】比較例3 平均粒子径0.4μm以下のジビニルベンゼン系微球を
用いた以外は、実施例1と同様にして、導電性微粒子を
作製しようとしたが、単粒子化することができなかっ
た。
COMPARATIVE EXAMPLE 3 Except that divinylbenzene microspheres having an average particle diameter of 0.4 μm or less were used, the same procedure as in Example 1 was repeated to prepare conductive fine particles. Did not.

【0050】比較例4 平均粒子径1200μmのジビニルベンゼン系微球を用
いた以外は、実施例1と同様にして、導電性微粒子を得
た。得られた導電性微粒子は25%変形させても被覆層
が破れることはなかった。しかし、この導電性微粒子を
用いて、実施例1と同様に異方性導電膜及び導電接続構
造体を作製したところ、この導電接続構造体は、隣接す
る電極間でショートが発生した。
Comparative Example 4 Conductive fine particles were obtained in the same manner as in Example 1 except that divinylbenzene microspheres having an average particle size of 1200 μm were used. Even if the obtained conductive fine particles were deformed by 25%, the coating layer was not broken. However, when an anisotropic conductive film and a conductive connection structure were produced using the conductive fine particles in the same manner as in Example 1, a short circuit occurred between adjacent electrodes in the conductive connection structure.

【0051】比較例5 アスペクト比3、CV値45%のジビニルベンゼン系粉
体を用いた以外は、実施例1と同様にして、異方性導電
膜及び導電接続構造体を作製した。この導電接続構造体
は、接続抵抗は低かったが、隣接する電極間で一部ショ
ートがみられた。
Comparative Example 5 An anisotropic conductive film and a conductive connection structure were produced in the same manner as in Example 1, except that divinylbenzene-based powder having an aspect ratio of 3 and a CV value of 45% was used. This conductive connection structure had a low connection resistance, but some short-circuits were observed between adjacent electrodes.

【0052】比較例6 平均粒子径100nmの金微粒子に変えて、平均粒子径
2μmの金微粒子を用いた以外は、実施例1と同様にし
て、導電性微粒子を得た。得られた導電性微粒子は25
%変形させた際に金微粒子が欠落した。また、この導電
性微粒子を用いて、実施例1と同様に異方性導電膜及び
導電接続構造体を作製したところ、異方性導電膜を作製
する際に金微粒子が欠落した。更に、この導電接続構造
体は、導通不良を起こした。
Comparative Example 6 Conductive fine particles were obtained in the same manner as in Example 1 except that gold fine particles having an average particle diameter of 2 μm were used instead of gold fine particles having an average particle diameter of 100 nm. The obtained conductive fine particles were 25
%, The fine gold particles were missing. In addition, when an anisotropic conductive film and a conductive connection structure were manufactured using the conductive fine particles in the same manner as in Example 1, gold fine particles were missing when the anisotropic conductive film was manufactured. Further, this conductive connection structure caused poor conduction.

【0053】比較例7 ポリビニルアルコールの混合量を10倍に変えた以外
は、実施例1と同様にして、導電性微粒子を得た。得ら
れた導電性微粒子は25%変形させても被覆層が破れる
ことはなかった。しかし、この導電性微粒子を用いて、
実施例1と同様に異方性導電膜及び導電接続構造体を作
製したところ、この導電接続構造体は、導通不良を起こ
した。
Comparative Example 7 Conductive fine particles were obtained in the same manner as in Example 1 except that the mixing amount of polyvinyl alcohol was changed to 10 times. Even if the obtained conductive fine particles were deformed by 25%, the coating layer was not broken. However, using these conductive fine particles,
When an anisotropic conductive film and a conductive connection structure were produced in the same manner as in Example 1, the conductive connection structure caused poor conduction.

【0054】[0054]

【発明の効果】本発明の導電性微粒子は、上述の構成か
らなるので、過度の冷熱繰り返しや大幅な変形を受けた
際に、被覆層に亀裂等の破損や、被覆層の剥がれ等が発
生せず、隣接電極間でのリークが発生しにくいため接続
信頼性が高く、微細電極間の導通に適している。また、
本発明の異方性導電接着剤は、上述の構成からなるの
で、隣接電極間でのリークが発生しにくい接続信頼性の
高いものであり、微細電極間の導通に適している。ま
た、本発明の導電接続構造体は、上述の構成からなるの
で、隣接電極間でのリークが発生しにくい接続信頼性の
高いものであり、微細電極間の導通に適している。
As described above, the conductive fine particles of the present invention have the above-mentioned structure, and when subjected to excessive cooling and heating or undergoing significant deformation, damage such as cracks or peeling of the coating layer occurs in the coating layer. Without this, leakage between adjacent electrodes is unlikely to occur, so connection reliability is high, and this is suitable for conduction between fine electrodes. Also,
Since the anisotropic conductive adhesive of the present invention has the above-described configuration, it has high connection reliability in which leakage between adjacent electrodes hardly occurs, and is suitable for conduction between fine electrodes. In addition, since the conductive connection structure of the present invention has the above-described configuration, it has high connection reliability in which leakage between adjacent electrodes hardly occurs, and is suitable for conduction between fine electrodes.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J037 CA03 DD05 DD09 DD13 4J040 DE031 DF041 DF051 DM011 EF041 EF151 EF261 HA066 JA03 JA05 JA09 JB01 JB02 JB08 JB10 KA03 KA07 KA32 LA03 LA06 LA09 MA01 MA02 MA04 MA05 MA10 MB04 MB05 NA19 NA20 PA21 PA23 PA24 PA28 5F044 KK01 LL09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J037 CA03 DD05 DD09 DD13 4J040 DE031 DF041 DF051 DM011 EF041 EF151 EF261 HA066 JA03 JA05 JA09 JB01 JB02 JB08 JB10 KA03 KA07 KA32 LA03 LA06 LA09 MA01 MA02 MA04 MA05 MA10 PA24 PA28 5F044 KK01 LL09

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が0.5〜1000μm、ア
スペクト比が2未満、CV値が40%以下の基材粒子の
表面に、金属微粒子と樹脂とからなる被覆層が形成され
た導電性微粒子であって、前記被覆層は、前記金属微粒
子を70〜98重量%含有するものであり、前記金属微
粒子は、平均粒子径が前記基材粒子の平均粒子径の1/
5以下であることを特徴とする導電性微粒子。
1. A conductive material in which a coating layer composed of fine metal particles and a resin is formed on the surface of base particles having an average particle diameter of 0.5 to 1000 μm, an aspect ratio of less than 2, and a CV value of 40% or less. Fine particles, wherein the coating layer contains the metal fine particles in an amount of 70 to 98% by weight, and the metal fine particles have an average particle diameter of 1/1 / the average particle diameter of the base particles.
Conductive fine particles having a particle size of 5 or less.
【請求項2】 基材粒子は、高分子材料からなるもので
あることを特徴とする請求項1記載の導電性微粒子。
2. The conductive fine particles according to claim 1, wherein the base particles are made of a polymer material.
【請求項3】 金属微粒子は、貴金属からなるものであ
ることを特徴とする請求項1又は2記載の導電性微粒
子。
3. The conductive fine particles according to claim 1, wherein the metal fine particles are made of a noble metal.
【請求項4】 貴金属は、金であることを特徴とする請
求項3記載の導電性微粒子。
4. The conductive fine particles according to claim 3, wherein the noble metal is gold.
【請求項5】 被覆層は、金属微粒子を80〜95重量
%含有するものであることを特徴とする請求項1〜4の
いずれか1項に記載の導電性微粒子。
5. The conductive fine particles according to claim 1, wherein the coating layer contains 80 to 95% by weight of metal fine particles.
【請求項6】 基材粒子は、平均粒子径が1〜100μ
m、アスペクト比が1.3未満、CV値が30%以下で
あることを特徴とする請求項1〜5のいずれか1項に記
載の導電性微粒子。
6. The base particles have an average particle diameter of 1 to 100 μm.
The conductive fine particles according to any one of claims 1 to 5, wherein m, the aspect ratio is less than 1.3, and the CV value is 30% or less.
【請求項7】 基材粒子は、平均粒子径が2〜40μ
m、アスペクト比が1.2未満、CV値が20%以下で
あることを特徴とする請求項1〜6のいずれか1項に記
載の導電性微粒子。
7. The base particles have an average particle diameter of 2 to 40 μm.
The conductive fine particles according to any one of claims 1 to 6, wherein m, the aspect ratio is less than 1.2, and the CV value is 20% or less.
【請求項8】 基材粒子は、平均粒子径が5〜20μ
m、アスペクト比が1.1未満、CV値が10%以下で
あることを特徴とする請求項1〜7のいずれか1項に記
載の導電性微粒子。
8. The base particles have an average particle diameter of 5 to 20 μm.
The conductive fine particles according to any one of claims 1 to 7, wherein m, the aspect ratio is less than 1.1, and the CV value is 10% or less.
【請求項9】 基材粒子は、アスペクト比が1.05未
満、CV値が5%以下であることを特徴とする請求項1
〜8のいずれか1項に記載の導電性微粒子。
9. The base particles have an aspect ratio of less than 1.05 and a CV value of 5% or less.
9. The conductive fine particles according to any one of items 1 to 8, above.
【請求項10】 金属微粒子は、平均粒子径が基材粒子
の平均粒子径の1/10以下であることを特徴とする請
求項1〜9のいずれか1項に記載の導電性微粒子。
10. The conductive fine particles according to claim 1, wherein the metal fine particles have an average particle diameter of 1/10 or less of the average particle diameter of the base particles.
【請求項11】 金属微粒子は、平均粒子径が基材粒子
の平均粒子径の1/30以下であることを特徴とする請
求項1〜10のいずれか1項に記載の導電性微粒子。
11. The conductive fine particles according to claim 1, wherein the metal fine particles have an average particle size of 1/30 or less of the average particle size of the base particles.
【請求項12】 被覆層は、厚さが基材粒子の平均粒子
径の1/4以下であることを特徴とする請求項1〜11
のいずれか1項に記載の導電性微粒子。
12. The coating layer according to claim 1, wherein the thickness of the coating layer is 1/4 or less of the average particle diameter of the base particles.
The conductive fine particles according to any one of the above.
【請求項13】 被覆層は、厚さが基材粒子の平均粒子
径の1/10以下であることを特徴とする請求項1〜1
2のいずれか1項に記載の導電性微粒子。
13. The coating layer according to claim 1, wherein the thickness of the coating layer is 1/10 or less of the average particle diameter of the base particles.
3. The conductive fine particles according to any one of 2.
【請求項14】 被覆層は、厚さが基材粒子の平均粒子
径の1/30以下であることを特徴とする請求項1〜1
3のいずれか1項に記載の導電性微粒子。
14. The coating layer according to claim 1, wherein the thickness of the coating layer is not more than 1/30 of the average particle diameter of the base particles.
4. The conductive fine particles according to any one of 3.
【請求項15】 被覆層を構成する樹脂は、数平均分子
量が1万以上であることを特徴とする請求項1〜14の
いずれか1項に記載の導電性微粒子。
15. The conductive fine particles according to claim 1, wherein the resin constituting the coating layer has a number average molecular weight of 10,000 or more.
【請求項16】 被覆層を構成する樹脂は、数平均分子
量が5万以上であることを特徴とする請求項1〜15の
いずれか1項に記載の導電性微粒子。
16. The conductive fine particles according to claim 1, wherein the resin constituting the coating layer has a number average molecular weight of 50,000 or more.
【請求項17】 被覆層は、基材粒子、樹脂と金属微粒
子とから構成される被覆物、及び、分散媒を混合して混
合物を調製後、前記分散媒を徐々に揮発させながら取り
除くことにより形成されたものであることを特徴とする
請求項1〜16のいずれか1項に記載の導電性微粒子。
17. The coating layer is prepared by mixing a base material, a coating composed of resin and metal fine particles, and a dispersion medium to prepare a mixture, and then removing the dispersion medium while gradually evaporating the dispersion medium. The conductive fine particles according to any one of claims 1 to 16, wherein the conductive fine particles are formed.
【請求項18】 分散媒を徐々に揮発させながら取り除
く際に、混合物を薄膜状、細線状又は微小塊状にするこ
とを特徴とする請求項17記載の導電性微粒子。
18. The conductive fine particles according to claim 17, wherein the mixture is formed into a thin film, a thin line, or a fine lump when the dispersion medium is removed while being volatilized gradually.
【請求項19】 分散媒を徐々に揮発させながら取り除
く際に、基材粒子間の間隔が、前記基材粒子の平均粒子
径以下である基材粒子が少なくとも半数以上存在するよ
うに基材粒子と被覆物と分散媒との混合比率を調整する
ことを特徴とする請求項17又は18記載の導電性微粒
子。
19. A method for removing the dispersion medium while gradually evaporating the dispersion medium, such that at least half or more of the base particles have an interval between the base particles that is equal to or less than the average particle diameter of the base particles. 19. The conductive fine particles according to claim 17, wherein a mixing ratio of the coating, the coating material, and the dispersion medium is adjusted.
【請求項20】 少なくとも分散媒の大部分を取り除い
た後、外力により被覆物の一部、又は、被覆された基材
粒子同士の界面を破壊し、被覆された基材粒子を単粒子
化することを特徴とする請求項17、18又は19記載
の導電性微粒子。
20. After removing at least most of the dispersion medium, a part of the coating material or an interface between the coated base particles is broken by an external force to convert the coated base particles into single particles. 20. The conductive fine particles according to claim 17, 18 or 19.
【請求項21】 被覆層は、基材粒子と被覆物と分散媒
とを混合して混合物を調製後、前記混合物をインクジェ
ット方式を用いて空中に噴霧することにより形成された
ものであることを特徴とする請求項1〜16のいずれか
1項に記載の導電性微粒子。
21. The coating layer is formed by mixing a base particle, a coating, and a dispersion medium to prepare a mixture, and then spraying the mixture into the air using an inkjet method. The conductive fine particles according to any one of claims 1 to 16, characterized in that:
【請求項22】 請求項1〜21のいずれか1項に記載
の導電性微粒子がバインダー樹脂中に分散していること
を特徴とする異方性導電接着剤。
22. An anisotropic conductive adhesive, wherein the conductive fine particles according to claim 1 are dispersed in a binder resin.
【請求項23】 基板又は電気部品を構成する電極部同
士が、請求項1〜21のいずれか1項に記載の導電性微
粒子を介して貼り合わされ、前記導電性微粒子を構成す
る金属微粒子と前記電極部とが接触し、前記電極部同士
の導通が図られていることを特徴とする導電接続構造
体。
23. An electrode portion forming a substrate or an electric component is bonded to each other via the conductive fine particles according to any one of claims 1 to 21, and the metal fine particles forming the conductive fine particles and the metal fine particles are bonded to each other. A conductive connection structure, wherein the conductive portion is in contact with an electrode portion, and conduction between the electrode portions is achieved.
【請求項24】 基板又は電気部品を構成する電極部同
士が、請求項22記載の異方性導電接着剤を介して貼り
合わされ、前記導電性微粒子を構成する金属微粒子と前
記電極部とが接触し、前記電極部同士の導通が図られて
いることを特徴とする導電接続構造体。
24. An electrode portion forming a substrate or an electric component is bonded to each other via the anisotropic conductive adhesive according to claim 22, and the metal fine particles forming the conductive fine particles and the electrode portion are in contact with each other. And a conductive connection structure, wherein conduction between the electrode portions is achieved.
JP30542398A 1998-10-27 1998-10-27 Conductive fine particles Expired - Lifetime JP4052743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30542398A JP4052743B2 (en) 1998-10-27 1998-10-27 Conductive fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30542398A JP4052743B2 (en) 1998-10-27 1998-10-27 Conductive fine particles

Publications (2)

Publication Number Publication Date
JP2000129158A true JP2000129158A (en) 2000-05-09
JP4052743B2 JP4052743B2 (en) 2008-02-27

Family

ID=17944962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30542398A Expired - Lifetime JP4052743B2 (en) 1998-10-27 1998-10-27 Conductive fine particles

Country Status (1)

Country Link
JP (1) JP4052743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507760A (en) * 2001-08-09 2005-03-24 フォルシュンクジンスティトゥート フュール ピヒメンテ ウント ラッケ エー.ファウ. Method for treating the surface of a substrate
JP2005197334A (en) * 2004-01-05 2005-07-21 Seiko Epson Corp Joining structure and joining method for member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507760A (en) * 2001-08-09 2005-03-24 フォルシュンクジンスティトゥート フュール ピヒメンテ ウント ラッケ エー.ファウ. Method for treating the surface of a substrate
JP2005197334A (en) * 2004-01-05 2005-07-21 Seiko Epson Corp Joining structure and joining method for member

Also Published As

Publication number Publication date
JP4052743B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
JP2001011503A (en) New conductive fine particle and its use
JP2007510268A (en) Insulating conductive fine particles and anisotropic conductive film containing the same
JP2010086665A (en) Insulation coated conductive particle, anisotropic conductive material, and connection structure
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JP3103956B2 (en) Anisotropic conductive film
JP2000133050A (en) Anisotropic conductive film and conductive connection structural body
JP2001155539A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connector
JP3679618B2 (en) Insulating coating conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP4052743B2 (en) Conductive fine particles
JP4157627B2 (en) Method for coating fine particles, coated fine particles, anisotropic conductive adhesive, conductive connection structure, and spacer for liquid crystal display element
KR20080098841A (en) Anisotropic electricconnection material and method of circuit connection
JPH11126516A (en) Anisotropic conductive adhesive and conductive connection structure
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JP3782590B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JP2000198880A (en) Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body
JPH087658A (en) Anisotropic conductive adhesive film
JP3869785B2 (en) Insulating coating conductive fine particles and conductive connection structure
JP2002052333A (en) Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure
JPH06283225A (en) Manufacture of three-layer structural anisotropic conductive film member
JP2000030526A (en) Conductive corpuscle, anisotropic conductive adhesive and conductive connection structural body
JP2954241B2 (en) Anisotropic conductive film
JP2001252553A (en) Method for coating fine particle and coated fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

EXPY Cancellation because of completion of term