JP2002052333A - Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure - Google Patents

Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure

Info

Publication number
JP2002052333A
JP2002052333A JP2000241316A JP2000241316A JP2002052333A JP 2002052333 A JP2002052333 A JP 2002052333A JP 2000241316 A JP2000241316 A JP 2000241316A JP 2000241316 A JP2000241316 A JP 2000241316A JP 2002052333 A JP2002052333 A JP 2002052333A
Authority
JP
Japan
Prior art keywords
fine particles
coating
coated
anisotropic conductive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000241316A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yoneda
義和 米田
Kazuo Ukai
和男 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000241316A priority Critical patent/JP2002052333A/en
Publication of JP2002052333A publication Critical patent/JP2002052333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating method for fine particles, which has a high production efficiency and can coat fine particles of bad wettability and fine particles of a large specific gravity and make the thickness of coating layer uniform between the particles, a coated fine particle which has a low connection resistance and a large electric capacity in the case of connection and is stable in connection, thereby preventing the generation of a leak phenomenon, an anisotropic conductive adhesive, an anisotropic conductive bonding film, and a conductive connection structure. SOLUTION: In this coating method for fine particles, a mixture consisting of fine particles, a coating material, and a dispersion medium is prepared, and then the dispersion medium is slowly volatilized to be removed, thereby a coating layer is formed on each of the fine particles. The fine particles has a mean particle diameter of 0.2-3,000 μm, an aspect ratio of <5, and a CV value of <=40%. The coating material mainly comprises a water soluble resin and has a thickness of <=1/4 of the mean particle diameter of the fine particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子の被覆方
法、及び、該微粒子の被覆方法を用いて被覆された被覆
微粒子、並びに、微細電極間の接続に用いられる被覆微
粒子、異方性導電接着剤、異方性導電接合膜、及び、導
電接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating fine particles, coated fine particles coated by using the method for coating fine particles, coated fine particles used for connection between fine electrodes, and anisotropic conductive adhesive. The present invention relates to an agent, an anisotropic conductive bonding film, and a conductive connection structure.

【0002】[0002]

【従来の技術】従来、微粒子の被覆方法としては、界面
重合法、微粒子存在下での懸濁重合、乳化重合等の化学
的方法;スプレードライ、ハイブリダイゼーション、静
電付着法、噴霧法、ディッピング、真空蒸着等の物理
的、機械的方法等があった。しかしながら、これらの被
覆方法には、大がかりな装置が必要であること、被覆さ
れない粒子が多量に発生するので効率が悪いこと、多重
粒子が発生すること、粒子間で被覆の厚さが異なるこ
と、膜厚制御が困難であること、大量生産に不向きであ
ること、濡れ性の悪い粒子や重い粒子は被覆できないこ
と等の問題点があった。
2. Description of the Related Art Conventionally, methods for coating fine particles include chemical methods such as interfacial polymerization, suspension polymerization in the presence of fine particles, and emulsion polymerization; spray drying, hybridization, electrostatic adhesion, spraying, and dipping. And physical and mechanical methods such as vacuum deposition. However, these coating methods require large-scale equipment, are inefficient because a large amount of uncoated particles are generated, that multiple particles are generated, that the coating thickness differs between the particles, There were problems such as difficulty in controlling the film thickness, being unsuitable for mass production, and inability to coat particles having poor wettability or heavy particles.

【0003】また、液晶ディスプレイ、パーソナルコン
ピュータ、携帯通信機器等のエレクトロニクス製品にお
いては、半導体素子等の小型電器部品を基板に電気的に
接続したり、基板同士を電気的に接続するので、いわゆ
る異方性導電材料といわれるものが使用されており、異
方性導電材料のなかでは、導電性微粒子とバインダー樹
脂とを混合した異方性導電接着剤又は異方性導電接合膜
が広く用いられている。
In electronic products such as a liquid crystal display, a personal computer, and a portable communication device, small electrical components such as semiconductor elements are electrically connected to the substrates and the substrates are electrically connected to each other. What is called anisotropic conductive material is used. Among the anisotropic conductive materials, anisotropic conductive adhesive or anisotropic conductive bonding film in which conductive fine particles and a binder resin are mixed is widely used. I have.

【0004】上記異方性導電接着剤又は異方性導電接合
膜に用いられる導電性微粒子としては、有機基材粒子又
は無機基材粒子の表面に金属メッキを施したものや金属
粒子が用いられてきた。このような導電性微粒子は、例
えば、特公平6−96771号公報、特開平4−369
02号公報、特開平4−269720号公報、特開平3
−257710号公報等に開示されている。
As the conductive fine particles used in the anisotropic conductive adhesive or the anisotropic conductive bonding film, organic base particles or inorganic base particles whose surfaces are plated with metal or metal particles are used. Have been. Such conductive fine particles are disclosed in, for example, Japanese Patent Publication No. 6-96871, Japanese Patent Laid-Open No. 4-369.
02, JP-A-4-269720, JP-A-3
-257710.

【0005】また、このような導電性微粒子とバインダ
ー樹脂とを混ぜ合わせてフィルム状にした異方性導電接
合膜又はペースト状にした異方性導電接着剤は、例え
ば、特開昭63−231889号公報、特開平4−25
9766号公報、特開平3−291807号公報、特開
平5−75250号公報等に開示されている。
Anisotropic conductive bonding films formed into a film by mixing conductive fine particles and a binder resin or anisotropic conductive adhesive formed into a paste are disclosed in, for example, JP-A-63-231889. No., JP-A-4-25
No. 9766, JP-A-3-291807, JP-A-5-75250 and the like.

【0006】近年、電子機器や電子部品の小型化にとも
ない、基板等の配線がより微細化され、導電性微粒子も
これに対応できるように微粒子化や粒子径精度の向上が
図られてきた。しかしながら、高い粒子径精度を維持し
たまま粒子径を一定値以下にすることは技術的に困難で
ある。また、高い粒子径精度を維持したまま粒子径を一
定値以下にすることが可能となっても、電気容量を充分
大きくしようとすると、ある確率で隣接する粒子が発生
するので、導電性微粒子によるブリッジが発生し、隣接
する電極間でのリークが発生しやすくなるという問題点
があった。
In recent years, with the miniaturization of electronic devices and electronic components, wirings on substrates and the like have become finer, and fine particles and improved particle diameter accuracy have been attempted so that conductive fine particles can cope with this. However, it is technically difficult to reduce the particle diameter to a certain value or less while maintaining high particle diameter accuracy. In addition, even if it is possible to reduce the particle diameter to a certain value or less while maintaining high particle diameter accuracy, if an attempt is made to sufficiently increase the electric capacity, adjacent particles are generated with a certain probability, so that the conductive fine particles There is a problem that a bridge is generated and a leak easily occurs between adjacent electrodes.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に鑑
み、大がかりな装置を必要とせず、被覆されない微粒子
が発生しないので生産効率がよく、多重粒子が発生しに
くく、容易に被覆層の厚さを制御することができ、大量
に微粒子を被覆することができ、濡れ性の悪い微粒子や
比重の大きな微粒子も被覆することができ、粒子間で被
覆層の厚さを均一にすることができる微粒子の被覆方
法、及び、該微粒子の被覆方法を用いて被覆された被覆
微粒子、並びに、接続抵抗が低く、接続時の電気容量が
大きく、接続が安定していて、リーク現象を起こさない
被覆微粒子、異方性導電接着剤、異方性導電接合膜、及
び、導電接続構造体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention does not require a large-scale apparatus, does not generate uncoated fine particles, has a high production efficiency, is less likely to generate multiple particles, and has a thin coating layer. Controllability, it is possible to coat a large amount of fine particles, it is possible to coat fine particles having poor wettability and fine particles having a high specific gravity, and it is possible to make the thickness of the coating layer uniform between the particles. Method for coating fine particles, coated fine particles coated by using the method for coating fine particles, and coated fine particles having low connection resistance, large electric capacity at the time of connection, stable connection, and causing no leak phenomenon It is an object to provide an anisotropic conductive adhesive, an anisotropic conductive bonding film, and a conductive connection structure.

【0008】[0008]

【課題を解決するための手段】本発明は、微粒子と被覆
物質と分散媒とを混合して混合物を調製後、上記分散媒
を徐々に揮発させながら取り除くことにより上記微粒子
に被覆層を形成する微粒子の被覆方法であって、上記微
粒子は、平均粒子径が0.2〜3000μm、アスペク
ト比が5未満、CV値が40%以下であり、上記被覆物
質は、水に可溶な樹脂を主成分とするものであり、か
つ、上記被覆層は、厚さが上記微粒子の平均粒子径の1
/4以下である微粒子の被覆方法である。以下に本発明
を詳述する。
According to the present invention, a coating layer is formed on the fine particles by mixing a fine particle, a coating substance, and a dispersion medium to prepare a mixture, and then gradually volatilizing and removing the dispersion medium. A method for coating fine particles, wherein the fine particles have an average particle diameter of 0.2 to 3000 μm, an aspect ratio of less than 5, and a CV value of 40% or less, and the coating substance is mainly a water-soluble resin. And the thickness of the coating layer is 1% of the average particle diameter of the fine particles.
/ 4 or less. Hereinafter, the present invention will be described in detail.

【0009】本発明の微粒子の被覆方法においては、先
ず、微粒子と被覆物質と分散媒とを混合して混合物を調
製する。この際、被覆物質の溶解速度が遅い場合等に
は、先に被覆物質を分散媒に溶解させた後、微粒子を被
覆物質の溶液中に投入してもよい。
In the method for coating fine particles of the present invention, first, a mixture is prepared by mixing fine particles, a coating substance, and a dispersion medium. At this time, when the dissolution rate of the coating substance is low, for example, the coating substance may be first dissolved in the dispersion medium, and then the fine particles may be introduced into the solution of the coating substance.

【0010】上記微粒子の平均粒子径は、0.2〜30
00μmである。平均粒子径が0.2μm未満では、粒
子同士の接触面積が大きくなるので、単粒子化が困難と
なることがあり、3000μmを超えると、重力の影響
で被覆層が不均一になることがあるので上記範囲に限定
される。好ましくは0.5〜100μmであり、より好
ましくは1〜20μmであり、更に好ましくは2〜10
μmである。上記平均粒子径は、任意の微粒子300個
を電子顕微鏡で観察することにより得られる値である。
The fine particles have an average particle size of 0.2 to 30.
00 μm. When the average particle diameter is less than 0.2 μm, the contact area between the particles becomes large, so that it may be difficult to form a single particle. When the average particle diameter is more than 3000 μm, the coating layer may become uneven due to the influence of gravity. Therefore, it is limited to the above range. It is preferably 0.5 to 100 μm, more preferably 1 to 20 μm, and still more preferably 2 to 10 μm.
μm. The average particle diameter is a value obtained by observing 300 arbitrary fine particles with an electron microscope.

【0011】上記微粒子のアスペクト比は5未満であ
る。アスペクト比が5以上では、粒子径が不揃いとなる
ので、粒子同士の接触面積が大きくなり、単粒子化が困
難となるので上記範囲に限定される。好ましくは2未満
であり、より好ましくは1.4未満であり、更に好まし
くは1.1未満であり、特に好ましくは1.05未満で
ある。上記アスペクト比とは、任意の微粒子300個を
電子顕微鏡で観察することにより得られる微粒子の平均
長径を平均短径で割った値である。
The fine particles have an aspect ratio of less than 5. When the aspect ratio is 5 or more, the particle diameters become uneven, so that the contact area between the particles increases, and it becomes difficult to form a single particle. Therefore, the aspect ratio is limited to the above range. It is preferably less than 2, more preferably less than 1.4, even more preferably less than 1.1, particularly preferably less than 1.05. The aspect ratio is a value obtained by dividing the average major axis of fine particles obtained by observing 300 arbitrary particles with an electron microscope by the average minor axis.

【0012】上記微粒子は、CV値が40%以下であ
る。CV値が40%を超えると、粒子径が不揃いとなる
ので、粒子同士の接触面積が大きくなり、単粒子化が困
難となるので上記範囲に限定される。好ましくは30%
以下であり、より好ましくは20%以下であり、更に好
ましくは10%以下であり、特に好ましくは5%以下で
ある。
The fine particles have a CV value of 40% or less. When the CV value exceeds 40%, the particle diameters become irregular, so that the contact area between the particles becomes large, and it becomes difficult to form a single particle. Therefore, the CV value is limited to the above range. Preferably 30%
Or less, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less.

【0013】上記CV値とは、下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)で表される値である。標準偏差及び数
平均粒子径は、任意の微粒子300個を電子顕微鏡で観
察することにより得られる値である。上記微粒子として
は、なかでも、平均粒子径が2〜10μm、アスペクト
比が1.1未満、CV値が10%以下であるものが好ま
しい。
The CV value is defined by the following equation (1); CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter) , Dn represent the number average particle diameter). The standard deviation and the number average particle diameter are values obtained by observing 300 arbitrary fine particles with an electron microscope. Among them, those having an average particle diameter of 2 to 10 μm, an aspect ratio of less than 1.1 and a CV value of 10% or less are preferred.

【0014】上記微粒子の材質としては特に限定され
ず、例えば、有機物、樹脂等の高分子、無機物、これら
の化合物や混合物、金属等が挙げられる。また、上記微
粒子は、少なくとも表面に導電層が形成された導電性微
粒子であってもよい。
The material of the fine particles is not particularly limited, and examples thereof include organic substances, polymers such as resins, inorganic substances, compounds and mixtures thereof, and metals. Further, the fine particles may be conductive fine particles having a conductive layer formed on at least the surface.

【0015】上記被覆物質としては特に限定されない
が、被覆層が割れたり、剥がれ落ちたりしにくい点か
ら、樹脂を主成分とするものが好ましく、分散媒に可溶
な樹脂を主成分とするものがより好ましい。上記樹脂と
しては、例えば、ポリエチレン、エチレン/酢酸ビニル
共重合体、エチレン/アクリル酸エステル共重合体等の
ポリオレフィン類;ポリメチル(メタ)アクリレート、
ポリエチル(メタ)アクリレート、ポリブチル(メタ)
アクリレート等の(メタ)アクリレート重合体又は共重
合体;ポリスチレン、スチレン/アクリル酸エステル共
重合体、SB型スチレン/ブタジエンブロック共重合
体、SBS型スチレン/ブタジエンブロック共重合体、
SI型スチレン/イソプレンブロック共重合体、SIS
型スチレン/イソプレンブロック共重合体、これらの水
添加物等のブロックポリマー;ポリビニルアルコール、
ビニル系重合体又は共重合体等の熱可塑性樹脂、エポキ
シ樹脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹
脂、これらの混合物等が挙げられる。上記被覆層に樹脂
強度が必要な場合には、分散媒に可溶な樹脂を用いて被
覆層を形成した後に、架橋等の方法により不溶にしても
よい。また、樹脂以外の被覆物質の成分としては、例え
ば、有機物、無機物、これらの化合物や混合物、金属等
が挙げられる。
The coating material is not particularly limited, but is preferably a material containing a resin as a main component, and a material containing a resin soluble in a dispersion medium as a main component, since the coating layer is hardly cracked or peeled off. Is more preferred. Examples of the resin include polyolefins such as polyethylene, ethylene / vinyl acetate copolymer, and ethylene / acrylate copolymer; polymethyl (meth) acrylate;
Polyethyl (meth) acrylate, polybutyl (meth)
(Meth) acrylate polymers or copolymers such as acrylates; polystyrene, styrene / acrylate copolymers, SB-type styrene / butadiene block copolymers, SBS-type styrene / butadiene block copolymers,
SI-type styrene / isoprene block copolymer, SIS
Type styrene / isoprene block copolymers, block polymers of these water additives and the like; polyvinyl alcohol,
Examples thereof include thermoplastic resins such as vinyl polymers and copolymers, thermosetting resins such as epoxy resins, phenol resins, and melamine resins, and mixtures thereof. When the coating layer requires resin strength, the coating layer may be formed using a resin soluble in a dispersion medium and then made insoluble by a method such as crosslinking. The components of the coating substance other than the resin include, for example, organic substances, inorganic substances, compounds and mixtures thereof, and metals.

【0016】特に、被覆物質として水に可溶な樹脂を主
成分とするものを用いた場合、溶媒としては水を使用す
ることができるので、溶媒回収等の必要がなく被覆装置
も簡易にすることができる。水に可溶な樹脂としては、
ポリビニルアルコール(PVA)が好適に用いられる。
PVAはポリエチレン等をはじめとする通常の熱可塑性
樹脂に比べて比較的高い融点を有するので、架橋等の後
処理を行わなくても高い耐熱性が期待できる。
In particular, in the case of using a resin whose main component is a water-soluble resin as the coating substance, water can be used as the solvent, so there is no need to recover the solvent and the like, and the coating apparatus is simplified. be able to. As a resin soluble in water,
Polyvinyl alcohol (PVA) is preferably used.
Since PVA has a relatively high melting point as compared with ordinary thermoplastic resins such as polyethylene, high heat resistance can be expected without post-treatment such as crosslinking.

【0017】上記PVAは、重合度が30〜1万である
ことが好ましい。1万を超えると、分散媒に溶解したと
きの溶液の粘度が高く凹凸のある粒子表面への濡れが低
下し被覆層の密着性低下の一因となることがあり、30
未満であると、被覆強度が低下し実用に適さなくなるこ
とがあるので上記範囲が好ましい。より好ましくは70
〜5000であり、更に好ましくは70〜2500であ
り、特に好ましくは200〜2500である。
The above PVA preferably has a degree of polymerization of 30 to 10,000. If it exceeds 10,000, the viscosity of the solution when dissolved in the dispersion medium is high, and the wettability to the uneven particle surface is reduced, which may cause a decrease in the adhesion of the coating layer.
If it is less than the above range, the coating strength may be reduced and may not be suitable for practical use. More preferably 70
5,000, more preferably 70-2500, particularly preferably 200-2500.

【0018】上記PVAは、ケン化度が50〜100%
であることが好ましい。50%未満であると、分散媒で
ある水への溶解性が低下し被覆の作業性が低下するか、
又は、被覆できる膜厚が薄くなり過ぎるうえ、融点が低
くなり耐熱性も低下することがあるので上記範囲が好ま
しい。上記範囲内において、ケン化度が100%に近い
領域では耐水性、耐湿性、耐熱性が向上し、少しケン化
度の低い範囲では水に対する溶解度が向上し、被覆作業
性が向上するので、被覆作業中の単粒子化が行いやすく
なり被覆の品質も向上する。このため、ケン化度は、上
記範囲内において目的に応じて適宜選択することができ
る。より好ましくは70〜100%であり、均一な被覆
を目的とした場合には、更に好ましくは75〜95%で
あり、特に好ましくは80〜92%であり、耐湿性、耐
熱性向上を特に目的とする場合には、更に好ましくは9
0〜100%であり、特に好ましくは95〜100%で
ある。
The PVA has a saponification degree of 50 to 100%.
It is preferred that If it is less than 50%, the solubility in water as a dispersion medium is reduced and the workability of coating is reduced,
Alternatively, the above range is preferable because the film thickness that can be coated is too small, and the melting point is low and the heat resistance may be low. Within the above range, in the region where the degree of saponification is close to 100%, the water resistance, moisture resistance and heat resistance are improved, and in the range where the degree of saponification is slightly lower, the solubility in water is improved and the coating workability is improved. Single particles can be easily formed during the coating operation, and the coating quality can be improved. For this reason, the saponification degree can be appropriately selected according to the purpose within the above range. More preferably, it is 70 to 100%, and when it aims at uniform coating, it is still more preferably 75 to 95%, particularly preferably 80 to 92%, especially for improving moisture resistance and heat resistance. Is more preferably 9
It is 0 to 100%, particularly preferably 95 to 100%.

【0019】上記PVAとしては、なかでも、重合度が
30〜1万、ケン化度が50〜100%であるものが好
ましく、重合度が70〜5000、ケン化度が70〜1
00%であるものがより好ましい。
Among the above-mentioned PVAs, those having a degree of polymerization of 30 to 10,000 and a degree of saponification of 50 to 100% are preferable, and a degree of polymerization of 70 to 5000 and a degree of saponification of 70 to 1 are preferred.
More preferably, it is 00%.

【0020】上記分散媒としては、混合物を調製する際
に液状で、PVAを溶解することができるものであれば
特に限定されず、例えば、溶剤ハンドブック(講談社)
等に記載されている通常の有機溶媒、水、無機溶媒、こ
れらの混合物や化合物等が挙げられる。上記分散媒は、
後述する方法を用いて、徐々に揮発させながら取り除く
点から、上記分散媒を揮発させる気圧での沸点が60〜
200℃のものが好ましい。沸点が60℃未満では、揮
発が急激に起こるので、被覆物質が緻密に集積するとと
もに、微粒子も緻密に凝集し、単粒子化しなくなった
り、被覆層が発泡したりすることがあり、200℃を超
えると、揮発するのに時間がかかり過ぎ、生産性が著し
く低下したり、被覆層が劣化したりすることがあるので
上記範囲が好ましい。より好ましくは90〜150℃で
ある。
The dispersion medium is not particularly limited as long as it is liquid and can dissolve PVA when preparing a mixture. For example, a solvent handbook (Kodansha)
And the like, ordinary organic solvents, water, inorganic solvents, mixtures and compounds thereof. The dispersion medium is
From the point of removing while gradually volatilizing using the method described later, the boiling point at the pressure at which the dispersion medium is volatilized is 60 to
Those at 200 ° C. are preferred. If the boiling point is less than 60 ° C., volatilization occurs rapidly, so that the coating substance is densely accumulated, and the fine particles are also densely aggregated, may not be formed into single particles, or the coating layer may be foamed. If the amount exceeds the above range, it takes too much time to volatilize, and the productivity may be remarkably reduced or the coating layer may be deteriorated. The temperature is more preferably 90 to 150 ° C.

【0021】本発明の微粒子の被覆方法においては、上
述の構成からなる混合物を調製した後、分散媒を徐々に
揮発させながら取り除くことにより微粒子に被覆層を形
成する。上記分散媒を徐々に揮発させながら取り除く方
法としては特に限定されず、例えば、分散媒の沸点より
60℃以上低い温度で揮発させる方法、40kPa以上
減圧せず、即ち、大気圧より40kPa以上圧力を低く
しない条件で揮発させる方法等が挙げられる。
In the method for coating fine particles of the present invention, a coating layer is formed on fine particles by preparing a mixture having the above-described structure and then removing the dispersion medium while gradually volatilizing. The method of removing the dispersion medium while gradually volatilizing is not particularly limited. For example, a method of volatilizing at a temperature lower than the boiling point of the dispersion medium by 60 ° C. or more, without reducing the pressure by 40 kPa or more, that is, by increasing the pressure by 40 kPa or more than the atmospheric pressure. For example, a method of volatilizing under a condition that the temperature is not lowered may be used.

【0022】本発明の微粒子の被覆方法において、分散
媒を徐々に揮発させながら取り除くのは、微粒子間に空
隙を発生させながら被覆層を形成するのが好ましいから
であり、空隙を発生させることにより、均一な被覆層を
形成することができる。また、より均一な被覆層を形成
するには、少なくとも分散媒の大部分が揮発により取り
除かれた状態で、外力により被覆物質の一部、又は、微
粒子と被覆物質の界面を破壊するのが好ましい。
In the method for coating fine particles of the present invention, the reason for removing the dispersion medium while gradually evaporating it is that it is preferable to form the coating layer while generating voids between the fine particles. , A uniform coating layer can be formed. In order to form a more uniform coating layer, it is preferable that at least a large part of the dispersion medium is removed by volatilization, and part of the coating material, or the interface between the fine particles and the coating material be destroyed by an external force. .

【0023】上記微粒子間に空隙を発生させる方法とし
ては、例えば、混合物の分散媒を徐々に揮発させながら
取り除く際に、微粒子間の間隔が、微粒子の平均粒子径
以下である微粒子を少なくとも半数以上存在させる方法
等が挙げられる。
As a method for generating voids between the fine particles, for example, when the dispersion medium of the mixture is removed while being volatilized gradually, at least half or more of the fine particles having an interval between the fine particles less than the average particle diameter of the fine particles are used. And the like.

【0024】なお、微粒子の表面には通常凹凸が存在す
るので、上記分散媒を徐々に揮発させながら取り除く際
に、分散媒の粘性が高い場合、分散媒の表面張力が高い
場合、被覆物質と微粒子との濡れ性が悪い場合等には、
微粒子表面の凹凸の凹部に空気、水分等が溜まって被覆
物質と微粒子との接着性が低下することがある。
Since irregularities are usually present on the surface of the fine particles, when the dispersion medium is removed while being volatilized gradually, when the viscosity of the dispersion medium is high, when the surface tension of the dispersion medium is high, the coating material and If the wettability with fine particles is poor,
Air, moisture and the like may accumulate in concaves and convexes on the surface of the fine particles, and the adhesiveness between the coating substance and the fine particles may decrease.

【0025】上記被覆物質と微粒子との接着性の低下を
防止するために、微粒子を被覆する前に微粒子を予め減
圧状態にして、表面の凹凸に存在する空気、水分等を除
去しておき、更に、減圧状態のまま微粒子を被覆した上
で大気圧に戻すことが好ましい。減圧後大気圧に戻され
た被覆微粒子は、大気圧により被覆層と微粒子とがより
強固に密着する。
In order to prevent a decrease in the adhesiveness between the coating substance and the fine particles, before coating the fine particles, the fine particles are preliminarily depressurized to remove air, moisture and the like existing on the surface irregularities. Further, it is preferable to return the pressure to atmospheric pressure after coating the fine particles in a reduced pressure state. The coated fine particles that have been returned to the atmospheric pressure after the pressure reduction have the coating layer and the fine particles more firmly adhere to each other due to the atmospheric pressure.

【0026】上記減圧の程度は、大気圧より66.7k
Pa以上減圧することが好ましく、より好ましくは80
kPa以上の減圧であり、更に好ましくは93.3kP
a以上の減圧である。
The degree of the pressure reduction is 66.7 k from the atmospheric pressure.
The pressure is preferably reduced to not less than Pa, more preferably 80
A reduced pressure of kPa or more, more preferably 93.3 kP
a.

【0027】なお、被覆前に微粒子を予め減圧状態にす
る際には、加熱しておくことが好ましい。加熱すること
で、微粒子表面の水分、空気の除去がより早く、完全に
行われるからである。加熱時の温度は50〜150℃が
好ましく、より好ましくは80〜100℃である。
When the fine particles are brought into a reduced pressure state before coating, it is preferable to heat the fine particles. This is because the heating removes moisture and air from the surface of the fine particles more quickly and completely. The temperature during heating is preferably from 50 to 150 ° C, more preferably from 80 to 100 ° C.

【0028】本発明の微粒子の被覆方法を用いて形成す
る被覆層の厚さは、上記微粒子の平均粒子径の1/4以
下である。上記被覆層の厚さが1/4を超えると、微粒
子間が完全に被覆物質で詰まった状態になるので、単粒
子化できなくなったり、単粒子化する際に、被覆層の厚
さの隔たりが大きくなったり、被覆物質のみの塊ができ
たりすることがあるため上記範囲に限定される。このた
め、上記範囲よりも厚い被覆層を形成する際には、上記
した被覆層を形成する工程を複数回繰り返すのが好まし
い。また、被覆層の強度が強すぎると、単粒子化する際
に、被覆層が剥がれて裸の微粒子ができる場合があり、
また、後述する方法により、微粒子に導電性微粒子を用
いて被覆微粒子を作製し、更に導電接続構造体を作製す
る場合のように、被覆層を一部除去する必要がある場合
に、除去が困難になることがある。好ましくは1/10
以下であり、より好ましくは5/(被覆層を形成する樹
脂の分子量)1/2 以下である。なお、本明細書におい
て、上記樹脂の分子量は、樹脂が架橋樹脂の場合には、
分子量100万として取り扱うものとする。
The thickness of the coating layer formed by the method for coating fine particles of the present invention is not more than 1/4 of the average particle diameter of the fine particles. When the thickness of the coating layer exceeds 1/4, the space between the fine particles is completely clogged with the coating material, so that the particles cannot be formed into single particles. May be increased, or a lump of only the coating substance may be formed. For this reason, when forming a coating layer thicker than the above range, it is preferable to repeat the above-described step of forming the coating layer a plurality of times. Also, if the strength of the coating layer is too strong, when the particles are formed into single particles, the coating layer may be peeled off to form bare fine particles,
In addition, it is difficult to remove the coating layer when the coating layer needs to be partially removed as in the case where the coated fine particles are manufactured using conductive fine particles as the fine particles and the conductive connection structure is further manufactured by the method described below. It may be. Preferably 1/10
And more preferably 5 / (molecular weight of the resin forming the coating layer) 1/2 . In the present specification, the molecular weight of the resin, when the resin is a cross-linked resin,
It is assumed that the molecular weight is 1,000,000.

【0029】本発明の微粒子の被覆方法は、従来の化学
的方法等の被覆方法では、分散媒中等で沈降するために
被覆層を形成することができなかった比重が1.5以上
の微粒子であっても好適に被覆層を形成することができ
る。更には、微粒子の比重が2.3以上であっても、微
粒子の比重が3以上であっても、6以上であっても好適
に被覆層を形成することができる。
The method for coating fine particles of the present invention uses fine particles having a specific gravity of 1.5 or more, which could not form a coating layer due to sedimentation in a dispersion medium or the like by a conventional coating method such as a chemical method. Even if it is, a coating layer can be suitably formed. Furthermore, even if the specific gravity of the fine particles is 2.3 or more, the specific gravity of the fine particles is 3 or more, or 6 or more, the coating layer can be suitably formed.

【0030】本発明の微粒子の被覆方法は、大がかりな
装置を必要とせず、被覆されない微粒子が発生しないの
で生産効率がよく、多重粒子が発生しにくく、容易に被
覆層の厚さを制御でき、大量の微粒子を容易に被覆で
き、濡れ性の悪い微粒子や比重の大きい微粒子も被覆す
ることができる。従って、上記方法により、粒子間で被
覆層の厚さが均一な被覆微粒子を製造することができ
る。本発明の微粒子の被覆方法を用いて被覆されてなる
被覆微粒子もまた、本発明の1つである。
The method for coating fine particles according to the present invention does not require a large-scale apparatus and does not generate uncoated fine particles, so that production efficiency is high, multiple particles are hardly generated, and the thickness of the coating layer can be easily controlled. A large amount of fine particles can be easily coated, and fine particles having poor wettability and high specific gravity can be coated. Therefore, coated fine particles having a uniform coating layer thickness among particles can be produced by the above method. Coated fine particles coated by the method for coating fine particles of the present invention are also one of the present invention.

【0031】上記被覆微粒子は、その平均粒子径が0.
2μmより大きく4000μm以下が好ましい。より好
ましくは0.5〜100μmであり、更に好ましくは1
〜20μmであり、特に好ましくは3〜10μmであ
る。
The above coated fine particles have an average particle size of 0.1.
It is preferably larger than 2 μm and 4000 μm or less. It is more preferably 0.5 to 100 μm, and still more preferably 1 to 100 μm.
To 20 μm, particularly preferably 3 to 10 μm.

【0032】上記被覆微粒子は、微粒子の形状が保たれ
たものである。そのため、アスペクト比が5未満の微粒
子を被覆すれば、得られる被覆微粒子のアスペクト比は
5未満であり、アスペクト比が2未満の微粒子を被覆す
れば、得られる被覆微粒子のアスペクト比は2未満であ
り、アスペクト比が1.4未満の微粒子を被覆すれば、
得られる被覆微粒子のアスペクト比は1.4未満であ
り、アスペクト比が1.1未満の微粒子を被覆すれば、
得られる被覆微粒子のアスペクト比は1.1未満であ
り、アスペクト比が1.05未満の微粒子を被覆すれ
ば、得られる被覆微粒子のアスペクト比は1.05未満
である。
[0032] The coated fine particles have the shape of the fine particles maintained. Therefore, when the particles having an aspect ratio of less than 5 are coated, the obtained particles have an aspect ratio of less than 5, and when the particles have an aspect ratio of less than 2, the obtained particles have an aspect ratio of less than 2. Yes, if you cover fine particles with an aspect ratio of less than 1.4,
The resulting coated fine particles have an aspect ratio of less than 1.4, and if the fine particles having an aspect ratio of less than 1.1 are coated,
The aspect ratio of the obtained coated fine particles is less than 1.1. If the fine particles having an aspect ratio of less than 1.05 are coated, the obtained coated fine particles have an aspect ratio of less than 1.05.

【0033】また、CV値が40%以下の微粒子を被覆
すれば、得られる被覆微粒子のCV値は40%以下であ
り、CV値が30%以下の微粒子を被覆すれば、得られ
る被覆微粒子のCV値は30%以下であり、CV値が2
0%以下の微粒子を被覆すれば、得られる被覆微粒子の
CV値は20%以下であり、CV値が10%以下の微粒
子を被覆すれば、得られる被覆微粒子のCV値は10%
以下であり、CV値が5%以下の微粒子を被覆すれば、
得られる導電性微粒子のCV値は5%以下である。
When the fine particles having a CV value of 40% or less are coated, the resulting coated fine particles have a CV value of 40% or less, and when the fine particles having a CV value of 30% or less are coated, the obtained coated fine particles have a CV value of 30% or less. The CV value is 30% or less, and the CV value is 2
If the fine particles of 0% or less are coated, the CV value of the obtained coated fine particles is 20% or less, and if the CV value of 10% or less is coated, the CV value of the obtained coated fine particles is 10%.
Or less, if the particles have a CV value of 5% or less,
The CV value of the obtained conductive fine particles is 5% or less.

【0034】上記被覆微粒子を作製する際に、微粒子と
して少なくとも表面に導電層が形成された導電性微粒子
を用いると、得られる被覆微粒子は、被覆導電性微粒子
として用いることができる。
When preparing the above-mentioned coated fine particles, if the conductive fine particles having at least a conductive layer formed on the surface are used as the fine particles, the obtained coated fine particles can be used as the coated conductive fine particles.

【0035】上記少なくとも表面に導電層が形成された
導電性微粒子としては特に限定されず、通常、導電性微
粒子として用いられるものであればよく、例えば、高分
子材料が核を構成する粒子に金属を被覆したもの、カー
ボン粒子、金属粒子等が挙げられる。これらのなかで
は、電極との接触面積を増やし、安定性を上げるという
点から、CV値やアスペクト比の小さいものが得やすい
高分子材料を粒子の核に用い、その粒子に金属を被覆し
たものが好ましく、金メッキをしたものがより好まし
い。また、高い導電性を有する微粒子が得られる点か
ら、金属粒子も好ましい。
The conductive fine particles having a conductive layer formed on at least the surface thereof are not particularly limited, and may be those usually used as conductive fine particles. , Carbon particles, metal particles and the like. Among these, polymer materials with a small CV value and a small aspect ratio are used for the core of the particles, and the metal is coated on the particles, from the viewpoint of increasing the contact area with the electrode and increasing the stability. Are preferable, and those plated with gold are more preferable. Further, metal particles are also preferable in that fine particles having high conductivity can be obtained.

【0036】上記被覆微粒子を被覆導電性微粒子として
用いる際の被覆物質としては、絶縁物質が好ましいこと
から、絶縁性の樹脂が好ましい。上記被覆導電性微粒子
は、被覆層が絶縁物質で形成されていると、後述する工
程により、この被覆導電性微粒子を用いて導電接続構造
体を作製した際に、隣接する電極間でリークが発生せ
ず、被覆導電性微粒子の濃度を上げることができる。ま
た、電極の接続方向では、上記被覆層が加熱及び/又は
加圧によって流動又は破壊することにより電極との接触
面で被覆層が除去され、電極間の導通を図ることができ
る。
As the coating material when the coated fine particles are used as the coated conductive fine particles, an insulating material is preferable, and therefore, an insulating resin is preferable. When the coating layer is formed of an insulating material, a leak occurs between adjacent electrodes when a conductive connection structure is manufactured using the coated conductive fine particles by a process described later when the coating layer is formed of an insulating material. Without doing so, the concentration of the coated conductive fine particles can be increased. Further, in the connection direction of the electrodes, the coating layer flows or breaks due to heating and / or pressurization, so that the coating layer is removed from the contact surface with the electrode, and conduction between the electrodes can be achieved.

【0037】更に、上記被覆導電性微粒子は、本発明の
微粒子の被覆方法を用いて、被覆層が形成されているの
で、被覆層の形成されていない粒子や多重粒子がなく、
被覆層の厚さも均一であることから、より隣接する電極
間でリークが発生しにくく、被覆物のみの残渣も少ない
ので電極間の導通が阻害されることもない。
Furthermore, since the coated conductive fine particles have a coating layer formed by using the method for coating fine particles of the present invention, there are no particles or multiple particles having no coating layer formed thereon.
Since the thickness of the coating layer is also uniform, leakage is less likely to occur between adjacent electrodes, and there is little residue of only the coating, so that conduction between the electrodes is not hindered.

【0038】上記被覆導電性微粒子は、主として、相対
向する2つの電極を電気的に接続する際に用いられる。
上記被覆導電性微粒子を用いて相対向する2つの電極を
電気的に接続する方法としては、例えば、被覆導電性微
粒子をバインダー樹脂中に分散させて異方性導電接着剤
又は異方性導電接合膜を調製し、上記異方性導電接着剤
又は異方性導電接合膜を使用して2つの電極を接着、接
続する方法、バインダー樹脂と上記被覆導電性微粒子と
を別々に使用して接続する方法等が挙げられる。本明細
書において、異方性導電接着剤とは、異方性導電ペース
ト、異方性導電インキ等を含むものとする。
The above-mentioned coated conductive fine particles are mainly used for electrically connecting two electrodes facing each other.
Examples of a method for electrically connecting two electrodes facing each other using the coated conductive fine particles include, for example, dispersing the coated conductive fine particles in a binder resin to form an anisotropic conductive adhesive or an anisotropic conductive bonding. A method of preparing a film, bonding and connecting two electrodes using the anisotropic conductive adhesive or anisotropic conductive bonding film, and connecting separately using a binder resin and the coated conductive fine particles. Method and the like. In this specification, the anisotropic conductive adhesive includes an anisotropic conductive paste, an anisotropic conductive ink, and the like.

【0039】上記異方性導電接着剤又は異方性導電接合
膜を構成するバインダー樹脂としては特に限定されず、
例えば、アクリレート樹脂、エチレン/酢酸ビニル樹
脂、スチレン/ブタジエンブロック共重合体等の熱可塑
性樹脂;グリシジル基を有するモノマーやオリゴマーと
イソシアネート等の硬化剤との反応により得られる硬化
性樹脂組成物等の熱や光によって硬化する組成物等が挙
げられる。好ましくは、上記硬化性樹脂組成物のなかで
も低温で硬化する低温硬化性樹脂、及び、光硬化性樹脂
である。
The anisotropic conductive adhesive or the binder resin constituting the anisotropic conductive bonding film is not particularly limited.
For example, thermoplastic resins such as acrylate resins, ethylene / vinyl acetate resins, and styrene / butadiene block copolymers; curable resin compositions obtained by the reaction of monomers and oligomers having a glycidyl group with a curing agent such as isocyanate; Examples of the composition include a composition that is cured by heat or light. Preferably, among the curable resin compositions, a low-temperature curable resin that cures at a low temperature and a photocurable resin.

【0040】上記異方性導電接合膜において、上記被覆
導電性微粒子は、ランダムに分散されていてもよく、特
定の位置に配置されていてもよい。被覆導電性微粒子が
ランダムに分散された異方性導電接合膜は、通常、汎用
的な用途に使用される。また、上記被覆導電性微粒子が
所定の位置に配置された異方性導電接合膜は、効率的な
電気接合を行うことができる。上記異方性導電接着剤の
塗工膜厚は特に限定されないが、10〜数百μmが好ま
しい。このような異方性導電接着剤及び異方性導電接合
膜もまた、本発明の1つである。
In the anisotropic conductive bonding film, the coated conductive fine particles may be dispersed at random or may be arranged at a specific position. The anisotropic conductive bonding film in which the coated conductive fine particles are randomly dispersed is generally used for a general purpose use. In addition, the anisotropic conductive bonding film in which the coated conductive fine particles are arranged at predetermined positions can perform efficient electrical bonding. The coating thickness of the anisotropic conductive adhesive is not particularly limited, but is preferably from 10 to several hundreds of μm. Such an anisotropic conductive adhesive and an anisotropic conductive bonding film are also one aspect of the present invention.

【0041】上記被覆導電性微粒子、異方性導電接着
剤、及び、異方性導電接合膜により接続される対象物と
しては、例えば、表面に電極部が形成された基板、半導
体等の電器部品等が挙げられる。上記基板は、フレキシ
ブル基板とリジッド基板とに大別される。上記フレキシ
ブル基板としては、例えば、50〜500μmの厚さの
樹脂シートが挙げられる。上記樹脂シートの材質として
は、例えば、ポリイミド、ポリアミド、ポリエステル、
ポリスルホン等が挙げられる。
The objects to be connected by the coated conductive fine particles, the anisotropic conductive adhesive, and the anisotropic conductive bonding film include, for example, a substrate having an electrode portion formed on a surface thereof, and an electric component such as a semiconductor. And the like. The above substrate is roughly classified into a flexible substrate and a rigid substrate. Examples of the flexible substrate include a resin sheet having a thickness of 50 to 500 μm. As the material of the resin sheet, for example, polyimide, polyamide, polyester,
And polysulfone.

【0042】上記リジッド基板は、樹脂製のものとセラ
ミック製のものとに大別される。上記樹脂製のものとし
ては、例えば、ガラス繊維強化エポキシ樹脂、フェノー
ル樹脂、セルロース繊維強化フェノール樹脂等が挙げら
れる。上記セラミック製のものとしては、例えば、二酸
化ケイ素、アルミナ、ガラス等が挙げられる。
The rigid substrate is roughly classified into a resin substrate and a ceramic substrate. Examples of the above-mentioned resin include glass fiber reinforced epoxy resin, phenol resin, cellulose fiber reinforced phenol resin and the like. Examples of the ceramic material include silicon dioxide, alumina, and glass.

【0043】上記基板の構成としては特に限定されず、
単層のものであってもよく、単位面積当たりの電極数を
増加させるために、例えば、複数の層が形成され、スル
ーホール形成等の手段により、これらの層が相互に電気
的に接続されている多層基板であってもよい。
The structure of the substrate is not particularly limited.
It may be a single layer, and in order to increase the number of electrodes per unit area, for example, a plurality of layers are formed, and these layers are electrically connected to each other by means such as through hole formation. May be used.

【0044】上記電器部品としては特に限定されず、例
えば、トランジスタ、ダイオード、IC、LSI等の半
導体等の能動部品;抵抗、コンデンサ、水晶振動子等の
受動部品等が挙げられる。上記基板又は電器部品の表面
に形成される電極の形状としては特に限定されず、例え
ば、縞状、ドット状、任意形状のもの等が挙げられる。
The electric parts are not particularly limited, and include, for example, active parts such as semiconductors such as transistors, diodes, ICs, and LSIs; and passive parts such as resistors, capacitors, and crystal oscillators. The shape of the electrodes formed on the surface of the substrate or the electric component is not particularly limited, and examples thereof include stripes, dots, and arbitrary shapes.

【0045】上記電極の材質としては、例えば、金、
銀、銅、ニッケル、パラジウム、カーボン、アルミニウ
ム、ITO等が挙げられる。接触抵抗を低減させるため
には、銅、ニッケル等の上に更に金が被覆された電極を
用いることが好ましい。上記電極の厚さは、0.1〜1
00μmであることが好ましく、上記電極の幅は、1〜
500μmであることが好ましい。
As the material of the electrode, for example, gold,
Silver, copper, nickel, palladium, carbon, aluminum, ITO and the like can be mentioned. In order to reduce the contact resistance, it is preferable to use an electrode further coated with gold on copper, nickel or the like. The thickness of the electrode is 0.1 to 1
Preferably, the width of the electrode is 1 to
Preferably it is 500 μm.

【0046】上記被覆導電性微粒子と基板又は部品等と
の接合としては、例えば、表面に電極が形成された基板
又は電器部品の上に、被覆導電性微粒子を含有する異方
性導電接合膜を配置し、その上に、他の基板又は電器部
品の電極を置き、加熱、加圧する方法が挙げられる。上
記異方性導電接合膜の代わりに、スクリーン印刷やディ
スペンサー等の印刷手段により、被覆導電性微粒子を含
有する異方性導電ペーストを所定量用いることもでき
る。上記加熱、加圧には、ヒーターが付いた圧着機やボ
ンディングマシーン等が用いられる。
The bonding between the coated conductive fine particles and a substrate or a component is performed, for example, by forming an anisotropic conductive bonding film containing the coated conductive fine particles on a substrate or an electric component having electrodes formed on the surface thereof. There is a method of arranging, placing an electrode of another substrate or an electric component on the substrate, heating and pressing. Instead of the anisotropic conductive bonding film, a predetermined amount of an anisotropic conductive paste containing coated conductive fine particles can be used by a printing means such as screen printing or a dispenser. For the above-mentioned heating and pressurizing, a crimping machine equipped with a heater, a bonding machine or the like is used.

【0047】上記異方性導電接合膜及び異方性導電ペー
ストを用いない方法も可能であり、例えば、被覆導電性
微粒子を介して貼り合わせた2つの電極部の隙間に液状
のバインダーを注入した後、硬化させる方法等を用いる
こともできる。
A method not using the anisotropic conductive bonding film and the anisotropic conductive paste is also possible. For example, a liquid binder is injected into a gap between two electrode portions bonded together via coated conductive fine particles. Thereafter, a method of curing or the like can be used.

【0048】上記基板又は電器部品を構成する電極部同
士が、被覆導電性微粒子、異方性導電接着剤又は異方性
導電接合膜を介して貼り合わされ、かつ、被覆微粒子の
被覆層が加熱及び/又は加圧によって流動又は破壊する
ことにより、被覆微粒子の導電材料と電極部とが接触
し、電極部同士の導通が図られる導電接続構造体もま
た、本発明の1つである。
The electrodes constituting the substrate or the electric component are bonded to each other via coated conductive fine particles, an anisotropic conductive adhesive or an anisotropic conductive bonding film, and the coating layer of the coated fine particles is heated and heated. Another aspect of the present invention is a conductive connection structure in which the conductive material of the coated fine particles comes into contact with the electrode portion by flowing or breaking by pressurization, and conduction between the electrode portions is achieved.

【0049】上述のように、本発明の異方性導電接着
剤、異方性導電接合膜、及び、導電接続構造体は、少な
くとも表面が導電材料により形成されている導電性微粒
子の表面に、被覆層が形成されている被覆微粒子を用い
ることを特徴としている。このため、上記異方性導電接
着剤、異方性導電接合膜、及び、導電接続構造体では、
上記被覆微粒子の含有する被覆層の存在により隣接電極
間でのリークが発生せず、被覆微粒子の濃度を上げるこ
とができる。また、電極と被覆微粒子の接触部位では、
加熱及び/又は加圧により被覆層が流動又は破壊するこ
とにより電極との接触面で上記被覆層が除去され、電極
同士の導通が得られるとともに、被覆導電性微粒子を高
濃度に含有させることができるので、大きな電気容量を
確保することができる。
As described above, the anisotropic conductive adhesive, the anisotropic conductive bonding film, and the conductive connection structure of the present invention have a structure in which at least the surface of the conductive fine particles is formed of a conductive material. It is characterized by using coated fine particles having a coating layer formed thereon. Therefore, in the anisotropic conductive adhesive, anisotropic conductive bonding film, and the conductive connection structure,
Leakage between adjacent electrodes does not occur due to the presence of the coating layer containing the coated fine particles, and the concentration of the coated fine particles can be increased. In addition, at the contact site between the electrode and the coated fine particles,
The coating layer flows or breaks due to heating and / or pressurization, whereby the coating layer is removed at the contact surface with the electrode, thereby achieving conduction between the electrodes and containing the coating conductive fine particles at a high concentration. As a result, a large electric capacity can be secured.

【0050】[0050]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0051】(実施例1)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値4%のジビニルベン
ゼン系微球に金メッキをした粒子100gに、重合度1
000、ケン化度約88のポリビニルアルコール3gを
溶解した純水50gを混合し、均一な分散液を得た。次
に、得られた混合物をバットの中で薄膜状に延ばし、徐
々に水を蒸発させながら、薄膜状の混合物をヘラを用い
て網目状にカットしていき微小塊状にした。更に、微小
塊が互いに合着しない程度まで分散媒が揮発した状態
で、乳鉢で擦り潰しながら、残りの分散媒を揮発させ単
粒子化した。なお、走査型電子顕微鏡を用いて、混合物
中の微粒子を観察したところ、微粒子が単粒子化するま
では少なくとも半数の微粒子が、微粒子の平均粒子径以
下の間隔で存在していた。こうして得られた被覆微粒子
は、被覆層の厚さが約50nm、平均粒子径5.0μ
m、アスペクト比1.05、CV値4%で、均一に被覆
されており、多重粒子や被覆物質の残渣をほとんど含ん
でいなかった。
(Example 1) Fine particles having an average particle diameter of 5 µm
m, an aspect ratio of 1.04, and a CV value of 4%.
50 g of pure water in which 3 g of polyvinyl alcohol having a saponification degree of about 000 and about 88 were dissolved was mixed to obtain a uniform dispersion. Next, the obtained mixture was spread into a thin film in a vat, and while gradually evaporating water, the thin film mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed using a scanning electron microscope, at least half of the fine particles were present at intervals equal to or less than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained had a coating layer thickness of about 50 nm and an average particle diameter of 5.0 μm.
m, the aspect ratio was 1.05, and the CV value was 4%. The coating was uniform and contained little multi-particles or residues of coating substances.

【0052】(実施例2)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値8%のアクリル系共
重合体微球に金メッキをした粒子100gに、重合度1
000、ケン化度約88のポリビニルアルコール0.3
gを溶解した純水50gを混合し、均一な分散を得た。
次に、得られた混合物をバットの中で薄膜状に延ばし、
徐々に水を蒸発させながら、薄膜状の混合物をヘラを用
いて網目状にカットしていき微小塊状にした。更に、微
小塊が互いに合着しない程度まで分散媒が揮発した状態
で、乳鉢で擦り潰しながら、残りの分散媒を揮発させ単
粒子化した。なお、走査型電子顕微鏡を用いて、混合物
中の微粒子を観察したところ、微粒子が単粒子化するま
では少なくとも半数の微粒子が、微粒子の平均粒子径以
下の間隔で存在していた。こうして得られた被覆微粒子
は、被覆層の厚さが約5nm、平均粒子径5.0μm、
アスペクト比1.04、CV値4%で、均一に被覆され
ており、多重粒子や被覆物質の残渣をほとんど含んでい
なかった。
(Example 2) As fine particles, the average particle diameter was 5 μm.
m, an aspect ratio of 1.04, and a CV value of 8%.
000, polyvinyl alcohol 0.3 with a saponification degree of about 88
50 g of pure water in which g was dissolved was mixed to obtain a uniform dispersion.
Next, the obtained mixture is spread into a thin film in a vat,
While gradually evaporating water, the thin film-like mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed using a scanning electron microscope, at least half of the fine particles were present at intervals equal to or less than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained had a coating layer thickness of about 5 nm, an average particle diameter of 5.0 μm,
The coating was uniformly coated at an aspect ratio of 1.04 and a CV value of 4%, and contained little multi-particles or residues of coating substances.

【0053】(実施例3)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値8%のアクリル系共
重合体微球に金メッキをした粒子100gに、重合度1
000、ケン化度約98のポリビニルアルコール0.3
gを溶解した純水50gを混合し、均一な分散を得た。
次に、得られた混合物をバットの中で薄膜状に延ばし、
徐々に水を蒸発させながら、薄膜状の混合物をヘラを用
いて網目状にカットしていき微小塊状にした。更に、微
小塊が互いに合着しない程度まで分散媒が揮発した状態
で、乳鉢で擦り潰しながら、残りの分散媒を揮発させ単
粒子化した。なお、走査型電子顕微鏡を用いて、混合物
中の微粒子を観察したところ、微粒子が単粒子化するま
では少なくとも半数の微粒子が、微粒子の平均粒子径以
下の間隔で存在していた。こうして得られた被覆微粒子
は、被覆層の厚さが約5nm、平均粒子径5.0μm、
アスペクト比1.04、CV値4%で、均一に被覆され
ており、多重粒子や被覆物質の残渣をほとんど含んでい
なかった。
(Example 3) As fine particles, the average particle diameter was 5 μm.
m, an aspect ratio of 1.04, and a CV value of 8%.
000, polyvinyl alcohol 0.3 with a saponification degree of about 98
50 g of pure water in which g was dissolved was mixed to obtain a uniform dispersion.
Next, the obtained mixture is spread into a thin film in a vat,
While gradually evaporating water, the thin film-like mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed using a scanning electron microscope, at least half of the fine particles were present at intervals equal to or less than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained had a coating layer thickness of about 5 nm, an average particle diameter of 5.0 μm,
The coating was uniformly coated at an aspect ratio of 1.04 and a CV value of 4%, and contained little multi-particles or residues of coating substances.

【0054】(実施例4)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値8%のアクリル系共
重合体微球に金メッキをした粒子100gに、重合度2
400、ケン化度約98のポリビニルアルコール0.3
gを溶解した純水50gを混合し、均一な分散を得た。
次に、得られた混合物をバットの中で薄膜状に延ばし、
徐々に水を蒸発させながら、薄膜状の混合物をヘラを用
いて網目状にカットしていき微小塊状にした。更に、微
小塊が互いに合着しない程度まで分散媒が揮発した状態
で、乳鉢で擦り潰しながら、残りの分散媒を揮発させ単
粒子化した。なお、走査型電子顕微鏡を用いて、混合物
中の微粒子を観察したところ、微粒子が単粒子化するま
では少なくとも半数の微粒子が、微粒子の平均粒子径以
下の間隔で存在していた。こうして得られた被覆微粒子
は、被覆層の厚さが約5nm、平均粒子径5.0μm、
アスペクト比1.04、CV値4%で、均一に被覆され
ており、多重粒子や被覆物質の残渣をほとんど含んでい
なかった。
Example 4 Fine particles having an average particle diameter of 5 μm
m, an aspect ratio of 1.04, and a CV value of 8%.
400, polyvinyl alcohol 0.3 with a saponification degree of about 98
50 g of pure water in which g was dissolved was mixed to obtain a uniform dispersion.
Next, the obtained mixture is spread into a thin film in a vat,
While gradually evaporating water, the thin film-like mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed using a scanning electron microscope, at least half of the fine particles were present at intervals equal to or less than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained had a coating layer thickness of about 5 nm, an average particle diameter of 5.0 μm,
The coating was uniformly coated at an aspect ratio of 1.04 and a CV value of 4%, and contained little multi-particles or residues of coating substances.

【0055】(実施例5)実施例2の被覆導電性微粒子
を熱硬化性エポキシ樹脂をトルエンに溶解させたバイン
ダー溶液に混合、分散させた。ついで、この被覆導電性
微粒子の分散溶液を離型フィルム上に一定の厚みに塗布
し、トルエンを蒸発させ、異方性導電接合膜を得た。膜
厚は25μmであった。その後、ガラス−エポキシ基板
上に50μm角の金バンプを電極ピッチ70μmで10
×10個並べ、得られた異方性導電接合膜を貼り付け、
更に、その上に同じ基板を位置合わせ後重ね合わせ、1
50℃で2分間加熱、加圧し、導電接続構造体を得た。
得られた導電接続構造体の接続抵抗値は充分低く、隣接
する電極間の線間絶縁性は、充分保たれていた。また、
冷熱サイクルテストを行ったが変化はみられなかった。
Example 5 The coated conductive fine particles of Example 2 were mixed and dispersed in a binder solution obtained by dissolving a thermosetting epoxy resin in toluene. Next, the dispersion solution of the coated conductive fine particles was applied on a release film to a constant thickness, and toluene was evaporated to obtain an anisotropic conductive bonding film. The thickness was 25 μm. Thereafter, 50 μm square gold bumps were formed on the glass-epoxy substrate at an electrode pitch of 70 μm.
× 10 lines, paste the obtained anisotropic conductive bonding film,
Further, after positioning the same substrate thereon,
Heating and pressing were performed at 50 ° C. for 2 minutes to obtain a conductive connection structure.
The connection resistance value of the obtained conductive connection structure was sufficiently low, and the interline insulation between adjacent electrodes was sufficiently maintained. Also,
A thermal cycle test showed no change.

【0056】(実施例6)実施例3の被覆導電性微粒子
を用いた以外は、実施例5と同様にして異方性導電接合
膜、及び、導電接続構造体を得た。得られた導電接続構
造体の接続抵抗値は充分低く、隣接する電極間の線間絶
縁性は、充分保たれていた。また、冷熱サイクルテスト
を行ったが変化はみられなかった。
(Example 6) An anisotropic conductive bonding film and a conductive connection structure were obtained in the same manner as in Example 5, except that the coated conductive fine particles of Example 3 were used. The connection resistance value of the obtained conductive connection structure was sufficiently low, and the interline insulation between adjacent electrodes was sufficiently maintained. A cooling cycle test was performed, but no change was observed.

【0057】(実施例7)実施例4の被覆導電性微粒子
を用いた以外は、実施例5と同様にして異方性導電接合
膜、及び、導電接続構造体を得た。得られた導電接続構
造体の接続抵抗値は充分低く、隣接する電極間の線間絶
縁性は、充分保たれていた。また、冷熱サイクルテスト
を行ったが変化はみられなかった。
(Example 7) An anisotropic conductive bonding film and a conductive connection structure were obtained in the same manner as in Example 5, except that the coated conductive fine particles of Example 4 were used. The connection resistance value of the obtained conductive connection structure was sufficiently low, and the interline insulation between adjacent electrodes was sufficiently maintained. A cooling cycle test was performed, but no change was observed.

【0058】(比較例1)微粒子として平均粒子径0.
2μm未満の酸化チタンと被覆物質としてキシレンに可
溶な数平均分子量3万、Tg80℃のスチレン−アクリ
ル系共重合体とを被覆厚さが20nm程度になるように
添加し、分散媒であるキシレン20g中に均一に分散
し、混合物を得た。次に、得られた混合物をバットの中
で薄膜状に延ばし、徐々にキシレンを揮発させながら、
薄膜状の混合物をヘラを用いて網目状にカットしていき
微小塊状にした。更に、微小塊が互いに合着しない程度
まで分散媒が揮発した状態で、乳鉢で擦り潰しながら、
残りの分散媒を揮発させ単粒子化しようとしたが、凝集
塊が硬く、単粒子化することができなかった。
(Comparative Example 1) Fine particles having an average particle diameter of 0.1
Titanium oxide having a particle size of less than 2 μm and a styrene-acrylic copolymer having a number average molecular weight of 30,000 and a Tg of 80 ° C. soluble in xylene as a coating substance are added so that the coating thickness becomes about 20 nm. The mixture was uniformly dispersed in 20 g to obtain a mixture. Next, the obtained mixture is spread into a thin film in a vat, and while gradually volatilizing xylene,
The mixture in the form of a thin film was cut into a mesh using a spatula to form a fine lump. Furthermore, while the dispersion medium is volatilized to such an extent that the fine lumps do not coalesce with each other, while crushing in a mortar,
An attempt was made to volatilize the remaining dispersion medium into single particles, but the aggregates were hard and could not be formed into single particles.

【0059】(比較例2)微粒子として平均粒子径40
00μm、アスペクト比1.04、CV値4%のジビニ
ルベンゼン系微球20gを用いた以外は、実施例1と同
様にして被覆微粒子を得た。得られた被覆微粒子は、粒
子の底部に樹脂が溜まり被覆厚は不均一で、被覆物質の
残渣を多量に含んでいた。
(Comparative Example 2) Average particle diameter of 40 as fine particles
Coated microparticles were obtained in the same manner as in Example 1 except that 20 g of divinylbenzene microspheres having a size of 00 µm, an aspect ratio of 1.04, and a CV value of 4% were used. The obtained coated fine particles contained a large amount of resin residue at the bottom of the particles, the coating thickness was non-uniform, and a large amount of residues of the coating material.

【0060】(比較例3)微粒子として平均粒子径5μ
m、アスペクト比5、CV値4%のジビニルベンゼン系
短繊維20gを用いた以外は、実施例1と同様にして単
粒子化しようとしたが、凝集塊が硬く、単粒子化するこ
とができなかった。そこで、更に強く擦り潰すと被覆層
が剥がれたり、残渣が多量に発生し、一部ジビニルベン
ゼン系短繊維の破壊もみられた。
(Comparative Example 3) As fine particles, an average particle diameter of 5 μm
m, an aspect ratio of 5, and a CV value of 4%, except that 20 g of divinylbenzene-based short fibers were used, but an attempt was made to form single particles in the same manner as in Example 1. However, the agglomerates were hard and single particles could be formed. Did not. Then, further rubbing resulted in peeling of the coating layer, generation of a large amount of residue, and partial destruction of divinylbenzene-based short fibers.

【0061】(比較例4)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値50%のジビニルベ
ンゼン系微球20gを用いた以外は、実施例1と同様に
して単粒子化しようとしたが、凝集塊が硬く、単粒子化
することができなかった。そこで、更に強く擦り潰すと
被覆層が剥がれたり、残渣が多量に発生し、一部ジビニ
ルベンゼン系微球の破壊もみられた。
Comparative Example 4 Fine particles having an average particle diameter of 5 μm
m, an aspect ratio of 1.04, and a CV value of 50%, except that 20 g of divinylbenzene-based microspheres were used. Could not. Then, when further crushed, the coating layer was peeled off, a large amount of residue was generated, and some divinylbenzene microspheres were broken.

【0062】(比較例5)被覆物質として、ジエチルエ
ーテルに可溶な数平均分子量3万、Tg80℃のスチレ
ン−アクリル系共重合体1gを用い、分散媒をジエチル
エーテルに代えた以外は、実施例1と同様にして、微粒
子と被覆物質とが分散した混合物を得た。次に、得られ
た混合物をバットの中で薄膜状に延ばし、ジエチルエー
テルを蒸発させた。蒸発速度が速いので、薄膜状の混合
物をヘラを用いて網目状にカットすることができなかっ
たため、ヘラで割りながら平板状の微小塊にした。更
に、この微小塊を乳鉢で擦り潰しながら、単粒子化しよ
うとしたが、微小塊が硬く単粒子化することができなか
った。そこで、更に強く擦り潰すと被覆層が剥がれた
り、残渣が多量に発生し、一部ジビニルベンゼン系微球
の破壊もみられた。また単粒子化した粒子についても被
覆厚さが不均一であった。
Comparative Example 5 As a coating substance, 1 g of a styrene-acrylic copolymer having a number average molecular weight of 30,000 and a Tg of 80 ° C. soluble in diethyl ether was used, and the dispersion medium was changed to diethyl ether. In the same manner as in Example 1, a mixture in which fine particles and a coating substance were dispersed was obtained. Next, the obtained mixture was spread in a thin film in a vat, and diethyl ether was evaporated. Since the evaporation rate was high, the mixture in the form of a thin film could not be cut into a mesh using a spatula. Further, the fine chunks were crushed in a mortar and tried to be formed into single particles, but the fine chunks were hard and could not be formed into single particles. Then, when further crushed, the coating layer was peeled off, a large amount of residue was generated, and some divinylbenzene microspheres were broken. Also, the coating thickness was non-uniform for the single particles.

【0063】(比較例6)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値4%のジビニルベン
ゼン系微球と被覆物質としてスチレン及びアクリル酸エ
ステルと重合開始剤としてベンゾイルパーオキサイドと
を混合し、ポリビニルアルコール分散媒中で懸濁重合を
行った。この重合反応で得られた重合物は、数平均分子
量3万、Tg80℃のスチレン−アクリル系共重合体で
あり、ジビニルベンゼン系微球を被覆していたが、被覆
膜厚が粒子により異なり、多重粒子や微球を含まない粒
子も多数発生していた。
(Comparative Example 6) An average particle diameter of 5 μm as fine particles
m, an aspect ratio of 1.04, divinylbenzene-based microspheres having a CV value of 4%, styrene and acrylate as a coating substance, and benzoyl peroxide as a polymerization initiator, and suspension polymerization in a polyvinyl alcohol dispersion medium. went. The polymer obtained by this polymerization reaction was a styrene-acrylic copolymer having a number average molecular weight of 30,000 and a Tg of 80 ° C., and covered divinylbenzene-based microspheres. In addition, multiple particles and many particles not containing microspheres were also generated.

【0064】(比較例7)微粒子として平均粒子径5μ
m、アスペクト比1.04、CV値4%のジビニルベン
ゼン系微球20gと被覆物質としてキシレンに可溶な数
平均分子量3万、Tg80℃のスチレン−アクリル系共
重合体1gとを分散媒であるキシレン100g中に均一
に分散し混合物を得た。得られた混合物をスプレードラ
イ法により噴霧しながら加熱、減圧下で溶媒を除去した
ところ、ジビニルベンゼン系微球は、被覆されていた
が、被覆膜厚が粒子により異なり、多重粒子や微球を含
まない粒子も多数発生していた。
Comparative Example 7 Fine particles having an average particle diameter of 5 μm
m, 20 g of divinylbenzene microspheres having an aspect ratio of 1.04 and a CV value of 4%, and 1 g of a styrene-acrylic copolymer having a number average molecular weight of 30,000 and a Tg of 80 ° C. soluble in xylene as a coating substance, as a dispersion medium. The mixture was uniformly dispersed in 100 g of certain xylene to obtain a mixture. When the solvent was removed under heating and reduced pressure while spraying the obtained mixture by a spray drying method, divinylbenzene microspheres were coated, but the coating film thickness varied depending on the particles, and multiple particles and microspheres were obtained. Many particles containing no were also generated.

【0065】(比較例8)被覆導電性微粒子に代えて、
被覆していない導電性微粒子を用いた以外は、実施例5
と同様にして異方性導電接合膜及び導電接続構造体を得
た。得られた導電接続構造体の接続抵抗値は充分低かっ
たが、隣接する電極間でショートが発生していた。
(Comparative Example 8) Instead of the coated conductive fine particles,
Example 5 except that uncoated conductive fine particles were used.
In the same manner as in the above, an anisotropic conductive bonding film and a conductive connection structure were obtained. Although the connection resistance value of the obtained conductive connection structure was sufficiently low, a short circuit occurred between adjacent electrodes.

【0066】(比較例9)被覆導電性微粒子として、懸
濁重合により得られた被覆導電性微粒子を用いた以外
は、実施例5と同様にして異方性導電接合膜及び導電接
続構造体を得た。得られた導電接続構造体は、隣接する
電極間の線間絶縁性は保たれていたが、対向電極との接
続がとれていないバンプがみられた。また、冷熱サイク
ルテストを行ったところ、隣接する電極間でショートす
るバンプがみられた。
Comparative Example 9 An anisotropic conductive bonding film and a conductive connection structure were prepared in the same manner as in Example 5, except that the coated conductive fine particles obtained by suspension polymerization were used as the coated conductive fine particles. Obtained. In the obtained conductive connection structure, although the line-to-line insulation between adjacent electrodes was maintained, there were bumps that were not connected to the counter electrode. In addition, when a cooling / heating cycle test was performed, bumps that were short-circuited between adjacent electrodes were found.

【0067】[0067]

【発明の効果】本発明の微粒子の被覆方法は、上述の構
成からなるので、大がかりな装置を必要とせず、被覆さ
れない微粒子が発生しないので効率がよく、多重粒子が
発生しにくく、容易に被覆層の厚さを制御でき、大量に
微粒子を被覆でき、濡れ性の悪い微粒子や比重の大きい
微粒子も被覆することができる。従って、上記方法によ
り、粒子間で被覆層の厚さが均一な被覆微粒子を製造す
ることができる。また、本発明の被覆微粒子は、本発明
の微粒子の被覆方法を用いて被覆するので、微粒子の形
状が保たれるものである。更に、上記被覆微粒子は、微
粒子として導電性微粒子を用いると、接続抵抗が低く、
接続時の電気容量が大きく、接続が安定していて、リー
ク現象を起こさない。また、本発明の異方性導電接着剤
及び異方性導電接合膜は、接続抵抗が低く、接続時の電
気容量が大きく、接続が安定していて、リーク現象を起
こさない。また、本発明の導電接続構造体は、接続抵抗
が低く、接続時の電気容量が大きく、接続が安定してい
て、リーク現象を起こさない。
As described above, the method for coating fine particles of the present invention does not require a large-scale device, and does not generate uncoated fine particles. Therefore, the method is efficient. The thickness of the layer can be controlled, a large amount of fine particles can be coated, and fine particles having poor wettability and high specific gravity can be coated. Therefore, coated fine particles having a uniform coating layer thickness among particles can be produced by the above method. Further, since the coated fine particles of the present invention are coated using the fine particle coating method of the present invention, the shape of the fine particles is maintained. Furthermore, when the conductive fine particles are used as the fine particles, the connection fine particles have low connection resistance,
The electric capacity at the time of connection is large, the connection is stable, and no leak phenomenon occurs. Further, the anisotropic conductive adhesive and the anisotropic conductive bonding film of the present invention have low connection resistance, large electric capacity at the time of connection, stable connection, and do not cause a leak phenomenon. Further, the conductive connection structure of the present invention has low connection resistance, large electric capacity at the time of connection, stable connection, and does not cause a leak phenomenon.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09C 3/10 C09C 3/10 4K018 C09J 9/02 C09J 9/02 5G301 201/00 201/00 5G307 H01B 1/22 H01B 1/22 D 5/00 5/00 C 5/16 5/16 13/00 501 13/00 501Z // C08L 101:00 C08L 101:00 Fターム(参考) 4F070 AA71 AB21 AB22 AC80 AD04 AE06 AE27 CB12 DB03 DB04 DC02 DC06 DC07 DC08 FA01 FA05 FA09 FA10 FA14 FA15 4G004 BA00 4G075 AA27 BB02 BB05 BD16 CA57 FC11 4J037 AA00 CA03 CC15 DD04 DD05 DD13 EE04 EE28 EE43 FF11 4J040 DA051 DF021 DM011 EC001 EF001 KA32 LA09 NA20 4K018 BA01 BB01 BB04 BC29 BD04 5G301 DA05 DA18 DA29 DA42 DA57 DD03 DE03 5G307 AA02 HA02 HB01 HB03 HC01Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C09C 3/10 C09C 3/10 4K018 C09J 9/02 C09J 9/02 5G301 201/00 201/00 5G307 H01B 1/22 H01B 1/22 D 5/00 5/00 C 5/16 5/16 13/00 501 13/00 501Z // C08L 101: 00 C08L 101: 00 F term (reference) 4F070 AA71 AB21 AB22 AC80 AD04 AE06 AE27 CB12 DB03 DB04 DC02 DC06 DC07 DC08 FA01 FA05 FA09 FA10 FA14 FA15 4G004 BA00 4G075 AA27 BB02 BB05 BD16 CA57 FC11 4J037 AA00 CA03 CC15 DD04 DD05 DD13 EE04 EE28 EE43 FF11 4J040 DA051 DF021 DM011 EC001 BF001 DA01 BC03 DA01 BC01 DA041 DA42 DA57 DD03 DE03 5G307 AA02 HA02 HB01 HB03 HC01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 微粒子と被覆物質と分散媒とを混合して
混合物を調製後、前記分散媒を徐々に揮発させながら取
り除くことにより前記微粒子に被覆層を形成する微粒子
の被覆方法であって、前記微粒子は、平均粒子径が0.
2〜3000μm、アスペクト比が5未満、CV値が4
0%以下であり、前記被覆物質は、水に可溶な樹脂を主
成分とするものであり、かつ、前記被覆層は、厚さが前
記微粒子の平均粒子径の1/4以下であることを特徴と
する微粒子の被覆方法。
1. A method of coating fine particles, wherein a mixture is prepared by mixing fine particles, a coating substance, and a dispersion medium, and then the dispersion medium is removed while gradually volatilizing to form a coating layer on the fine particles. The fine particles have an average particle size of 0.2.
2 to 3000 μm, aspect ratio less than 5, CV value of 4
0% or less, the coating substance is mainly composed of a resin soluble in water, and the thickness of the coating layer is 1/4 or less of the average particle diameter of the fine particles. A method for coating fine particles, characterized in that:
【請求項2】 被覆物質は、ポリビニルアルコールを主
成分とすることを特徴とする請求項1記載の微粒子の被
覆方法。
2. The method for coating fine particles according to claim 1, wherein the coating substance is mainly composed of polyvinyl alcohol.
【請求項3】 ポリビニルアルコールは、重合度が30
〜1万、ケン化度が50〜100%であることを特徴と
する請求項2記載の微粒子の被覆方法。
3. The polyvinyl alcohol has a degree of polymerization of 30.
3. The method for coating fine particles according to claim 2, wherein the saponification degree is 50 to 100%.
【請求項4】 ポリビニルアルコールは、重合度が70
〜5000、ケン化度が70〜100%であることを特
徴とする請求項2又は3記載の微粒子の被覆方法。
4. Polyvinyl alcohol having a degree of polymerization of 70
The method for coating fine particles according to claim 2, wherein the saponification degree is 70 to 100%.
【請求項5】 微粒子は、平均粒子径が2〜10μm、
アスペクト比が1.1未満、CV値が10%以下である
ことを特徴とする請求項1、2、3又は4記載の微粒子
の被覆方法。
5. The fine particles have an average particle size of 2 to 10 μm,
5. The method according to claim 1, wherein the aspect ratio is less than 1.1 and the CV value is 10% or less.
【請求項6】 微粒子は、比重が1.5以上であること
を特徴とする請求項1、2、3、4又は5記載の微粒子
の被覆方法。
6. The method for coating fine particles according to claim 1, wherein the specific gravity of the fine particles is 1.5 or more.
【請求項7】 請求項1、2、3、4、5又は6記載の
微粒子の被覆方法を用いて被覆されてなることを特徴と
する被覆微粒子。
7. Coated fine particles coated using the method for coating fine particles according to claim 1, 2, 3, 4, 5, or 6.
【請求項8】 微粒子は、少なくとも表面に導電層が形
成された導電性微粒子であって、その核を構成する材料
が高分子であることを特徴とする請求項7記載の被覆微
粒子。
8. The coated fine particles according to claim 7, wherein the fine particles are conductive fine particles having a conductive layer formed on at least the surface thereof, and the material constituting the nucleus is a polymer.
【請求項9】 微粒子は、少なくとも表面に導電層が形
成された導電性微粒子であって、その核を構成する材料
が金属であることを特徴とする請求項7記載の被覆微粒
子。
9. The coated fine particles according to claim 7, wherein the fine particles are conductive fine particles having a conductive layer formed on at least a surface thereof, and a material constituting a nucleus thereof is a metal.
【請求項10】 請求項8又は9記載の被覆微粒子がバ
インダー樹脂中に分散していることを特徴とする異方性
導電接着剤。
10. An anisotropic conductive adhesive characterized in that the coated fine particles according to claim 8 or 9 are dispersed in a binder resin.
【請求項11】 請求項8又は9記載の被覆微粒子がバ
インダー樹脂中に分散していることを特徴とする異方性
導電接合膜。
11. An anisotropic conductive bonding film, wherein the coated fine particles according to claim 8 or 9 are dispersed in a binder resin.
【請求項12】 基板又は電器部品を構成する電極部同
士が、請求項8又は9記載の被覆微粒子を介して貼り合
わされ、かつ、前記被覆微粒子の被覆層が加熱及び/又
は加圧によって流動又は破壊することにより、前記被覆
微粒子の導電材料と前記電極部とが接触し、前記電極部
同士の導通が図られることを特徴とする導電接続構造
体。
12. An electrode part constituting a substrate or an electric component is attached to each other via the coated fine particles according to claim 8 or 9, and the coating layer of the coated fine particles flows or flows by heating and / or pressing. A conductive connection structure wherein the conductive material of the coated fine particles comes into contact with the electrode portion by breaking, thereby establishing conduction between the electrode portions.
【請求項13】 基板又は電器部品を構成する電極部同
士が、請求項10記載の異方性導電接着剤又は請求項1
1記載の異方性導電接合膜を介して貼り合わされ、か
つ、前記異方性導電接着剤中又は異方性導電接合膜中の
被覆微粒子の被覆層が加熱及び/又は加圧によって流動
又は破壊することにより、前記被覆微粒子の導電材料と
前記電極部とが接触し、前記電極部同士の導通が図られ
ることを特徴とする導電接続構造体。
13. The anisotropic conductive adhesive according to claim 10, wherein the electrodes constituting the substrate or the electric component are connected to each other.
1. The coating layer of the coated fine particles bonded together via the anisotropic conductive bonding film according to 1 and in the anisotropic conductive adhesive or in the anisotropic conductive bonding film flows or breaks by heating and / or pressing. By doing so, the conductive material of the coated fine particles comes into contact with the electrode portion, and conduction between the electrode portions is achieved.
JP2000241316A 2000-08-09 2000-08-09 Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure Pending JP2002052333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000241316A JP2002052333A (en) 2000-08-09 2000-08-09 Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000241316A JP2002052333A (en) 2000-08-09 2000-08-09 Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure

Publications (1)

Publication Number Publication Date
JP2002052333A true JP2002052333A (en) 2002-02-19

Family

ID=18732519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000241316A Pending JP2002052333A (en) 2000-08-09 2000-08-09 Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure

Country Status (1)

Country Link
JP (1) JP2002052333A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066837A (en) * 2004-08-30 2006-03-09 Denso Corp Laminated piezoelectric element and its manufacturing method, and conductive adhesive
JP2008311667A (en) * 2008-06-23 2008-12-25 Hitachi Chem Co Ltd Circuit connection anisotropically conductive adhesive composition, and method and structure for connecting circuit terminal using same
CN102559091A (en) * 2011-12-29 2012-07-11 四川虹欧显示器件有限公司 Anisotropic conductive adhesive, conductive film and preparation method for conductive film
CN105070351A (en) * 2015-06-30 2015-11-18 苏州纳微科技有限公司 Flexible conductive microballoon and applications thereof
JP2017206738A (en) * 2016-05-18 2017-11-24 コニカミノルタ株式会社 Powder material, manufacturing method of powder material, manufacturing method of three-dimensional molding and three-dimensional molding apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066837A (en) * 2004-08-30 2006-03-09 Denso Corp Laminated piezoelectric element and its manufacturing method, and conductive adhesive
JP4706209B2 (en) * 2004-08-30 2011-06-22 株式会社デンソー Multilayer piezoelectric element, manufacturing method thereof, and conductive adhesive
JP2008311667A (en) * 2008-06-23 2008-12-25 Hitachi Chem Co Ltd Circuit connection anisotropically conductive adhesive composition, and method and structure for connecting circuit terminal using same
JP4572960B2 (en) * 2008-06-23 2010-11-04 日立化成工業株式会社 Anisotropic conductive adhesive film for circuit connection, circuit terminal connection method and circuit terminal connection structure using the same
CN102559091A (en) * 2011-12-29 2012-07-11 四川虹欧显示器件有限公司 Anisotropic conductive adhesive, conductive film and preparation method for conductive film
CN105070351A (en) * 2015-06-30 2015-11-18 苏州纳微科技有限公司 Flexible conductive microballoon and applications thereof
JP2017206738A (en) * 2016-05-18 2017-11-24 コニカミノルタ株式会社 Powder material, manufacturing method of powder material, manufacturing method of three-dimensional molding and three-dimensional molding apparatus

Similar Documents

Publication Publication Date Title
KR100597391B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
WO2005004172A1 (en) Coated conductive particle, anisotropic conductive material, and conductive connection structure
JPWO2003025955A1 (en) Coated conductive fine particles, method for producing coated conductive fine particles, anisotropic conductive material, and conductive connection structure
TW200710878A (en) Insulated conductive particles and anisotropic conductive adhesive film using the same
JP4686120B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
WO2007062131A2 (en) Conductive ink compositions
WO2005109448A1 (en) Insulated conductive ball for anisotropic electric connection and its method of preparation and products using the same
JP4852311B2 (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP6718280B2 (en) Conductive particles, anisotropic conductive material and connection structure
US7169332B2 (en) Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
JP2002052333A (en) Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure
JP2842051B2 (en) Adhesive composition
JP2000198880A (en) Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body
JP3679618B2 (en) Insulating coating conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP4157627B2 (en) Method for coating fine particles, coated fine particles, anisotropic conductive adhesive, conductive connection structure, and spacer for liquid crystal display element
JP2001252553A (en) Method for coating fine particle and coated fine particle
CN101142634A (en) Advanced anisotropic insulated conductive ball for electric connection, preparing method thereof and product using the same
JP4052743B2 (en) Conductive fine particles
JP2001155539A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connector
WO2006083116A1 (en) Advanced anisotropic insulated conductive ball for electric connection, preparing method thereof and product using the same
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
KR20090073366A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JP2000129157A (en) Insulation coated electroconductive microparticle, anisotropic electroconductive adhesive and electroconductive connecting structure
JPH11134936A (en) Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure