JP2000198880A - Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body - Google Patents

Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body

Info

Publication number
JP2000198880A
JP2000198880A JP29383299A JP29383299A JP2000198880A JP 2000198880 A JP2000198880 A JP 2000198880A JP 29383299 A JP29383299 A JP 29383299A JP 29383299 A JP29383299 A JP 29383299A JP 2000198880 A JP2000198880 A JP 2000198880A
Authority
JP
Japan
Prior art keywords
fine particles
coating
coated
less
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29383299A
Other languages
Japanese (ja)
Inventor
Takuo Suzuki
卓夫 鈴木
Kazuo Ukai
和男 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP29383299A priority Critical patent/JP2000198880A/en
Publication of JP2000198880A publication Critical patent/JP2000198880A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for coating microparticles without the need of any large-scale apparatus, highly effective because of producing no uncoated microparticles, less prone to produce multiple particles, capable of easily controlling coating layer thickness, capable of coating a large quantity of microparticles, capable of coating ill-wettable microparticles and high-specific gravity microparticles as well, and enabling coating layer thickness to be even among particles. SOLUTION: This method for coating microparticles comprises preparing a mixture of microparticles, a coating substance and a dispersion medium, and forming a coating layer of each of the microparticles through removing the dispersion medium while gradually volatilizing it; wherein it is characteristic that the microparticles are each 0.2-3,000 μm in average size, <5 in aspect ratio and <=40% in CV value, and the coating layer thickness is <=1/4 time the above average size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子の被覆方
法、及び、該微粒子の被覆方法を用いて被覆された被覆
微粒子、並びに、微細電極間の接続に用いられる被覆微
粒子、異方性導電接着剤、及び、導電接続構造体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating fine particles, coated fine particles coated by using the method for coating fine particles, coated fine particles used for connection between fine electrodes, and anisotropic conductive adhesive. The present invention relates to an agent and a conductive connection structure.

【0002】[0002]

【従来の技術】従来、微粒子の被覆方法としては、界面
重合法、微粒子存在下での懸濁重合、乳化重合等の化学
的方法;スプレードライ、ハイブリダイゼーション、静
電付着法、噴霧法、ディッピング、真空蒸着等の物理
的、機械的方法等があった。しかしながら、これらの被
覆方法は、大がかりな装置が必要である、被覆されない
粒子が多量に発生するため、効率が悪い、多重粒子が発
生する、粒子間で被覆の厚さが大幅に異なる、膜厚制御
が困難である、大量生産に不向きである、濡れ性の悪い
粒子や重い粒子は被覆できない等の問題点があった。
2. Description of the Related Art Conventionally, methods for coating fine particles include chemical methods such as interfacial polymerization, suspension polymerization in the presence of fine particles, and emulsion polymerization; spray drying, hybridization, electrostatic adhesion, spraying, and dipping. And physical and mechanical methods such as vacuum deposition. However, these coating methods require large-scale equipment, are inefficient because a large amount of uncoated particles are generated, multiple particles are generated, the coating thickness varies greatly between particles, and the film thickness is large. There are problems such as difficulty in control, unsuitability for mass production, and inability to coat particles having poor wettability or heavy particles.

【0003】また、液晶ディスプレイ、パーソナルコン
ピュータ、携帯通信機器等のエレクトロニクス製品にお
いて、半導体素子等の小型電気部品を基板に電気的に接
続したり、基板同士を電気的に接続するため、いわゆる
異方性導電材料といわれるものが使用されており、異方
性導電材料のなかでは、導電性微粒子をバインダー樹脂
に混合した異方性導電接着剤が広く用いられている。
Further, in electronic products such as liquid crystal displays, personal computers, and portable communication devices, small electrical components such as semiconductor elements are electrically connected to substrates, and the substrates are electrically connected to each other. What is called a conductive conductive material is used, and among the anisotropic conductive materials, an anisotropic conductive adhesive in which conductive fine particles are mixed with a binder resin is widely used.

【0004】上記異方性導電接着剤に用いられる導電性
微粒子としては、有機基材粒子又は無機基材粒子の表面
に金属メッキを施したものや金属粒子が用いられてき
た。このような導電性微粒子は、例えば、特公平6−9
6771号公報、特開平4−36902号公報、特開平
4−269720号公報、特開平3−257710号公
報等に開示されている。
[0004] As the conductive fine particles used in the anisotropic conductive adhesive, those obtained by plating metal particles on the surfaces of organic base particles or inorganic base particles or metal particles have been used. Such conductive fine particles are described, for example, in JP-B-6-9.
No. 6771, JP-A-4-36902, JP-A-4-269720, JP-A-3-257710 and the like.

【0005】また、このような導電性微粒子をバインダ
ー樹脂と混ぜ合わせてフィルム状又はペースト状にした
異方性導電接着剤は、例えば、特開昭63−23188
9号公報、特開平4−259766号公報、特開平3−
291807号公報、特開平5−75250号公報等に
開示されている。
An anisotropic conductive adhesive prepared by mixing such conductive fine particles with a binder resin to form a film or paste is disclosed in, for example, JP-A-63-23188.
9, JP-A-4-259766, JP-A-3-259766
No. 291807 and Japanese Patent Application Laid-Open No. 5-75250.

【0006】近年、電子機器や電子部品が小型化するに
ともない、基板等の配線がより微細になってきたため、
導電性微粒子もこれに対応できるように微粒子化や粒子
径精度の向上が図られてきた。しかしながら、高い粒子
径精度のままで一定以上に粒子径を小さくすることは技
術的に困難であり、たとえそれが可能となっても電気容
量の問題を解決しようとすると、ある確率で隣接する粒
子が発生する。そのため導電性微粒子によるブリッジが
発生し、隣接する電極間でのリークが発生しやすくなる
という問題があった。
In recent years, as electronic devices and electronic components have become smaller, wirings on substrates and the like have become finer.
In order to cope with this, conductive fine particles have been made finer and the particle diameter accuracy has been improved. However, it is technically difficult to reduce the particle size beyond a certain level while maintaining high particle size accuracy. Occurs. For this reason, there is a problem that a bridge is generated by the conductive fine particles and a leak easily occurs between adjacent electrodes.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に鑑
み、大がかりな装置を必要とせず、被覆されない微粒子
が発生しないため効率がよく、多重粒子が発生しにく
く、容易に被覆層の厚さを制御でき、大量に微粒子を被
覆でき、濡れ性の悪い微粒子や比重の大きな微粒子も被
覆することができ、粒子間で被覆層の厚さを均一にする
ことができる微粒子の被覆方法、及び、該微粒子の被覆
方法を用いて被覆された被覆微粒子を提供することを目
的とする。また、本発明は、接続抵抗が低く、接続時の
電気容量が大きく、接続が安定していて、リーク現象を
起こさない被覆微粒子、異方性導電接着剤、及び、導電
接続構造体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention does not require a large-scale apparatus, does not generate uncoated fine particles, has high efficiency, is less likely to generate multiple particles, and has a simple coating layer thickness. Can be coated in large quantities, can also coat fine particles with low wettability and high specific gravity, and can coat the fine particles with a uniform thickness between the particles, and It is an object of the present invention to provide coated fine particles coated using the method for coating fine particles. Further, the present invention provides coated fine particles, anisotropic conductive adhesive, and a conductive connection structure which have a low connection resistance, a large electric capacity at the time of connection, a stable connection, and do not cause a leak phenomenon. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明は、微粒子と被覆
物質と分散媒とを混合して混合物を調製後、上記分散媒
を徐々に揮発させながら取り除くことにより微粒子に被
覆層を形成する微粒子の被覆方法であって、上記微粒子
は、平均粒子径が0.2〜3000μm、アスペクト比
が5未満、CV値が40%以下であり、上記被覆層の厚
さは、上記微粒子の平均粒子径の1/4以下であること
を特徴とする微粒子の被覆方法である。以下に、本発明
を詳述する。
According to the present invention, there is provided a method of forming a coating layer on fine particles by mixing a fine particle, a coating substance and a dispersion medium to prepare a mixture, and then removing the dispersion medium while volatilizing it gradually. Wherein the fine particles have an average particle size of 0.2 to 3000 μm, an aspect ratio of less than 5, and a CV value of 40% or less, and the thickness of the coating layer is determined by the average particle size of the fine particles. Is a method of coating fine particles, wherein the method is not more than 1/4. Hereinafter, the present invention will be described in detail.

【0009】本発明の微粒子の被覆方法においては、先
ず、微粒子と被覆物質と分散媒とを混合して混合物を調
製する。
In the method for coating fine particles of the present invention, first, a mixture is prepared by mixing fine particles, a coating substance, and a dispersion medium.

【0010】上記微粒子の平均粒子径は、0.2〜30
00μmである。平均粒子径が0.2μm未満では、粒
子同士の接触面積が大きくなるため、単粒子化が困難と
なることがあり、3000μmを超えると、重力の影響
で被覆層が不均一になることがあるため上記範囲に限定
される。好ましくは0.5〜100μmであり、より好
ましくは1〜20μmであり、更に好ましくは3〜10
μmである。上記平均粒子径は、任意の微粒子300個
を電子顕微鏡で観察することにより得られる値である。
The fine particles have an average particle size of 0.2 to 30.
00 μm. When the average particle diameter is less than 0.2 μm, the contact area between the particles becomes large, so that it may be difficult to form a single particle. When the average particle diameter exceeds 3000 μm, the coating layer may become uneven due to the influence of gravity. Therefore, it is limited to the above range. It is preferably 0.5 to 100 μm, more preferably 1 to 20 μm, and still more preferably 3 to 10 μm.
μm. The average particle diameter is a value obtained by observing 300 arbitrary fine particles with an electron microscope.

【0011】上記微粒子のアスペクト比は5未満であ
る。アスペクト比が5以上では、粒子径が不揃いとなる
ため、粒子同士の接触面積が大きくなり、単粒子化が困
難となるため上記範囲に限定される。好ましくは2未満
であり、より好ましくは1.4未満であり、更に好まし
くは1.1未満であり、特に好ましくは1.05未満で
ある。上記アスペクト比とは、任意の微粒子300個を
電子顕微鏡で観察することにより得られる微粒子の平均
長径を平均短径で割った値である。
The fine particles have an aspect ratio of less than 5. If the aspect ratio is 5 or more, the particle diameters become uneven, so that the contact area between the particles becomes large, and it becomes difficult to form a single particle. It is preferably less than 2, more preferably less than 1.4, even more preferably less than 1.1, particularly preferably less than 1.05. The aspect ratio is a value obtained by dividing the average major axis of fine particles obtained by observing 300 arbitrary particles with an electron microscope by the average minor axis.

【0012】上記微粒子は、CV値が40%以下であ
る。CV値が40%を超えると、粒子径が不揃いとなる
ため、粒子同士の接触面積が大きくなり、単粒子化が困
難となるため上記範囲に限定される。好ましくは30%
以下であり、より好ましくは20%以下であり、更に好
ましくは10%以下であり、特に好ましくは5%以下で
ある。
The fine particles have a CV value of 40% or less. When the CV value exceeds 40%, the particle diameters become uneven, so that the contact area between the particles increases, and it becomes difficult to form a single particle, so that the CV value is limited to the above range. Preferably 30%
Or less, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less.

【0013】上記CV値とは、下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)で表される値である。上記標準偏差及
び上記数平均粒子径は、微粒子300個を電子顕微鏡で
観察することにより得られる値である。
The CV value is defined by the following formula (1): CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter) , Dn represent the number average particle diameter). The standard deviation and the number average particle diameter are values obtained by observing 300 fine particles with an electron microscope.

【0014】上記微粒子の材質としては特に限定され
ず、例えば、有機物、樹脂、無機物、これらの化合物や
混合物、金属等が挙げられる。また、上記微粒子は、少
なくとも表面に導電層が形成された導電性微粒子であっ
てもよい。
The material of the fine particles is not particularly limited, and examples thereof include organic substances, resins, inorganic substances, compounds and mixtures thereof, and metals. Further, the fine particles may be conductive fine particles having a conductive layer formed on at least the surface.

【0015】上記被覆物質としては特に限定されない
が、上記被覆層が割れたり、剥がれ落ちたりしにくい点
から、樹脂を主成分とするものが好ましく、分散媒に可
溶な樹脂を主成分とするものがより好ましい。上記樹脂
としては、例えば、ポリエチレン、エチレン/酢酸ビニ
ル共重合体、エチレン/アクリル酸エステル共重合体等
のポリオレフィン類;ポリメチル(メタ)アクリレー
ト、ポリエチル(メタ)アクリレート、ポリブチル(メ
タ)アクリレート等の(メタ)アクリレート重合体又は
共重合体;ポリスチレン、スチレン/アクリル酸エステ
ル共重合体、SB型スチレン/ブタジエンブロック共重
合体、SBS型スチレン/ブタジエンブロック共重合
体、これらの水添加物等のブロックポリマー;ビニル系
重合体又は共重合体等の熱可塑性樹脂、エポキシ樹脂、
フェノール樹脂、メラミン樹脂等の熱硬化性樹脂、これ
らの混合物等が挙げられる。上記被覆層に樹脂強度が必
要な場合には、分散媒に可溶な樹脂を用いて被覆層を形
成した後に、架橋等の方法により不溶にしてもよい。ま
た、樹脂以外の被覆物質の成分としては、例えば、有機
物、無機物、これらの化合物や混合物、金属等が挙げら
れる。
The coating material is not particularly limited, but is preferably a resin-based material because the coating layer is less likely to be cracked or peeled off, and is preferably a resin soluble in a dispersion medium. Are more preferred. Examples of the resin include polyolefins such as polyethylene, ethylene / vinyl acetate copolymer, ethylene / acrylate copolymer; and polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. (Meth) acrylate polymers or copolymers; block polymers such as polystyrene, styrene / acrylate copolymers, SB-type styrene / butadiene block copolymers, SBS-type styrene / butadiene block copolymers, and water additives thereof A thermoplastic resin such as a vinyl polymer or a copolymer, an epoxy resin,
Examples include thermosetting resins such as phenolic resins and melamine resins, and mixtures thereof. When the coating layer requires resin strength, the coating layer may be formed using a resin soluble in a dispersion medium and then made insoluble by a method such as crosslinking. The components of the coating substance other than the resin include, for example, organic substances, inorganic substances, compounds and mixtures thereof, and metals.

【0016】上記分散媒としては、混合物を調製する際
に液状のものであれば特に限定されず、例えば、溶剤ハ
ンドブック(講談社)等に記載されている通常の有機溶
媒、水、無機溶媒、これらの混合物や化合物等が挙げら
れる。上記分散媒は、後述する方法を用いて、徐々に揮
発させながら取り除く点から、上記分散媒を揮発させる
気圧での沸点が60〜200℃のものが好ましい。沸点
が60℃未満では、揮発が急激に起こるため、被覆物質
が緻密に集積するとともに、微粒子も緻密に凝集し、単
粒子化しなくなったり、被覆層が発泡したりすることが
あり、200℃を超えると、揮発するのに時間がかかり
過ぎ、生産性が著しく低下したり、被覆層が劣化したり
することがあるため上記範囲が好ましい。より好ましく
は90〜150℃である。
The dispersion medium is not particularly limited as long as it is liquid at the time of preparing the mixture, and examples thereof include ordinary organic solvents, water, and inorganic solvents described in Solvent Handbook (Kodansha) and the like. And compounds and the like. The dispersion medium preferably has a boiling point of 60 to 200 ° C. at a pressure at which the dispersion medium is volatilized, in that the dispersion medium is removed while being gradually volatilized by a method described later. If the boiling point is less than 60 ° C., volatilization occurs rapidly, so that the coating substance is densely accumulated, and the fine particles are also densely agglomerated and may not be formed into single particles or the coating layer may be foamed. If it exceeds, it takes too much time to evaporate, and the productivity may be remarkably reduced or the coating layer may be deteriorated, so that the above range is preferable. The temperature is more preferably 90 to 150 ° C.

【0017】本発明の微粒子の被覆方法においては、上
述の構成からなる混合物を調製した後、上記分散媒を徐
々に揮発させながら取り除くことにより微粒子に被覆層
を形成する。上記分散媒を徐々に揮発させながら取り除
く方法としては特に限定されず、例えば、上記分散媒の
沸点より60℃以上低い温度で揮発させる方法、300
mmHg以上減圧せず、即ち、大気圧より300mmH
g以上圧力を低くしない条件で揮発させる方法等が挙げ
られる。
In the method of coating fine particles according to the present invention, a coating layer is formed on the fine particles by preparing a mixture having the above-described structure and then removing the dispersion medium while gradually volatilizing. The method of removing the dispersion medium while gradually volatilizing it is not particularly limited. For example, a method of volatilizing the dispersion medium at a temperature lower than the boiling point of the dispersion medium by 60 ° C. or more, 300
mmHg or less, ie, 300 mmH above atmospheric pressure
and a method of volatilizing under a condition that the pressure is not lowered not less than g.

【0018】上記微粒子の被覆方法において、分散媒を
徐々に揮発させながら取り除くのは、微粒子間に空隙を
発生させながら被覆層を形成するのが好ましいからであ
り、空隙を発生させることにより、均一な被覆層を形成
することができる。また、より均一な被覆層を形成する
には、少なくとも分散媒の大部分が揮発により取り除か
れた状態で、外力により被覆物質の一部、又は、微粒子
と被覆物質の界面を破壊するのが好ましい。
In the above method for coating fine particles, the reason why the dispersion medium is removed while being volatilized gradually is that it is preferable to form the coating layer while generating voids between the fine particles. A suitable coating layer can be formed. In order to form a more uniform coating layer, it is preferable that at least a large part of the dispersion medium is removed by volatilization, and part of the coating material, or the interface between the fine particles and the coating material be destroyed by an external force. .

【0019】空隙を発生させる方法としては、例えば、
上記混合物の分散媒を徐々に揮発させながら薄膜状、細
線状、微小塊状等の形状にする方法等が挙げられる。こ
れらのなかでは、適切な間隔の空隙を得やすいことか
ら、分散媒を徐々に揮発させながら微小塊状にする方法
が好ましい。
As a method of generating a void, for example,
A method of gradually evaporating the dispersion medium of the above mixture to form a thin film, a thin line, a fine lump, or the like, may be used. Among these, a method of forming a fine lump while gradually volatilizing the dispersion medium is preferable because it is easy to obtain voids at appropriate intervals.

【0020】適切な間隔の空隙を得る方法としては、例
えば、分散媒を徐々に揮発させながら取り除く際に、微
粒子間の間隔が、上記微粒子の平均粒子径以下である微
粒子を少なくとも半数以上存在させる方法等が挙げられ
る。
As a method for obtaining voids at appropriate intervals, for example, when the dispersion medium is removed while being volatilized gradually, at least half or more of the fine particles whose distance between the fine particles is smaller than the average particle diameter of the fine particles are present. Method and the like.

【0021】なお、微粒子の表面には通常凹凸が存在す
るため、上記分散媒を徐々に揮発させながら取り除く際
に、分散媒の粘性が高い場合、分散媒の表面張力が高い
場合、被覆物質と微粒子との濡れ性が悪い場合等には、
微粒子表面の凹凸の凹部に空気、水分等が溜まって被覆
物質と微粒子との接着性が低下することがある。
Since the surface of the fine particles usually has irregularities, when the dispersion medium is gradually volatilized and removed, when the viscosity of the dispersion medium is high, when the surface tension of the dispersion medium is high, the coating material and If the wettability with fine particles is poor,
Air, moisture and the like may accumulate in concaves and convexes on the surface of the fine particles, and the adhesiveness between the coating substance and the fine particles may decrease.

【0022】上記被覆物質と微粒子との接着性の低下を
防止するために、微粒子を被覆する前に微粒子を予め減
圧状態にして、表面の凹凸に存在する空気、水分等を除
去しておき、更に、減圧状態のまま微粒子を被覆した上
で大気圧に戻すことが好ましい。減圧後大気圧に戻され
た被覆微粒子は、大気圧により被覆層と微粒子とがより
強固に密着する。
In order to prevent a decrease in the adhesiveness between the coating substance and the fine particles, before coating the fine particles, the fine particles are preliminarily depressurized to remove air, moisture and the like existing on the surface irregularities. Further, it is preferable to return the pressure to atmospheric pressure after coating the fine particles in a reduced pressure state. The coated fine particles that have been returned to the atmospheric pressure after the pressure reduction have the coating layer and the fine particles more firmly adhere to each other due to the atmospheric pressure.

【0023】上記減圧の程度は、大気圧より500mm
Hg以上減圧することが好ましく、より好ましくは60
0mmHg以上の減圧、更に好ましくは700mmHg
以上の減圧である。
The degree of the pressure reduction is 500 mm above the atmospheric pressure.
The pressure is preferably reduced to not less than Hg, more preferably 60
Reduced pressure of 0 mmHg or more, more preferably 700 mmHg
This is the reduced pressure described above.

【0024】なお、上記被覆前の減圧の際には、加熱し
ておくことが好ましい。加熱することで、微粒子表面の
水分、空気の除去がより早く、完全に行われるからであ
る。加熱時の温度は50〜150℃が好ましく、より好
ましくは80〜100℃である。
It is preferable that heating is performed during the pressure reduction before the coating. This is because the heating removes moisture and air from the surface of the fine particles more quickly and completely. The temperature during heating is preferably from 50 to 150 ° C, more preferably from 80 to 100 ° C.

【0025】本発明の微粒子の被覆方法を用いて形成す
る被覆層の厚さは、上記微粒子の平均粒子径の1/4以
下である。上記被覆層の厚さが1/4を超えると、微粒
子間が完全に被覆物質で詰まった状態になるため、単粒
子化できなくなったり、単粒子化する際に、被覆層の厚
さの隔たりが大きくなったり、被覆物質のみの塊ができ
たりすることがあるため上記範囲に限定される。このた
め、上記範囲よりも厚い被覆層を形成する際には、上記
した被覆層を形成する工程を複数回繰り返すのが好まし
い。上記被覆層の厚さは、微粒子の平均粒子径の1/1
0以下であるのが好ましい。また、強度が強すぎると単
粒子化する際に、被覆層が剥がれて裸の微粒子ができる
場合があり、また、後述する方法により、微粒子に導電
性微粒子を用いて被覆微粒子を作製し、更に導電接続構
造体を作製する場合のように、被覆層を一部除去する必
要がある場合に、被覆強度が強すぎると、除去が困難に
なることがあるため、上記被覆層の厚さは、微粒子の平
均粒子径の5/(被覆層を形成する樹脂の分子量)1/2
以下であるのがより好ましい。なお、本明細書におい
て、上記樹脂の分子量は、樹脂が架橋樹脂の場合には、
分子量100万として取り扱う。
The thickness of the coating layer formed by the method for coating fine particles of the present invention is not more than 1 / of the average particle diameter of the fine particles. If the thickness of the coating layer is more than 1/4, the gap between the fine particles is completely filled with the coating substance. May be increased, or a lump of only the coating substance may be formed. For this reason, when forming a coating layer thicker than the above range, it is preferable to repeat the above-described step of forming the coating layer a plurality of times. The thickness of the coating layer is 1/1 of the average particle diameter of the fine particles.
It is preferably 0 or less. In addition, when the strength is too strong, when the particles are formed into single particles, the coating layer may be peeled off and bare fine particles may be formed. As in the case of producing a conductive connection structure, when it is necessary to partially remove the coating layer, if the coating strength is too strong, it may be difficult to remove the coating layer. 5 / (Molecular weight of resin forming coating layer) 1/2 of average particle diameter of fine particles
It is more preferable that: In the present specification, the molecular weight of the resin, when the resin is a cross-linked resin,
Handle as a molecular weight of 1,000,000.

【0026】本発明の微粒子の被覆方法は、従来の化学
的方法等の被覆方法では、分散媒中等を沈降するため被
覆層を形成することができなかった比重が1.5以上の
微粒子であっても好適に被覆層を形成することができ
る。更には、微粒子の比重が3以上であっても、6以上
であっても好適に被覆層を形成することができる。
The method of coating fine particles of the present invention is a fine particle having a specific gravity of 1.5 or more, which cannot form a coating layer due to sedimentation in a dispersion medium or the like by a conventional coating method such as a chemical method. The coating layer can be suitably formed. Furthermore, even if the specific gravity of the fine particles is 3 or more, or 6 or more, the coating layer can be suitably formed.

【0027】本発明の微粒子の被覆方法は、大がかりな
装置を必要とせず、被覆されない微粒子が発生しないた
め効率がよく、多重粒子が発生しにくく、容易に被覆層
の厚さを制御でき、大量の微粒子を容易に被覆でき、濡
れ性の悪い微粒子や比重の大きい微粒子も被覆すること
ができる。従って、上記方法により、粒子間で被覆層の
厚さが均一な被覆微粒子を製造することができる。
The method of coating fine particles of the present invention does not require a large-scale apparatus, and is efficient because no uncoated fine particles are generated. Thus, multiple particles are hardly generated, the thickness of the coating layer can be easily controlled, Can easily be coated, and fine particles having poor wettability and high specific gravity can be coated. Therefore, coated fine particles having a uniform coating layer thickness among particles can be produced by the above method.

【0028】上記微粒子の被覆方法を用いて、微粒子を
被覆することにより得られる被覆微粒子は、その平均粒
子径が0.2μmより大きく4000μm以下が好まし
い。より好ましくは0.5〜100μmであり、更に好
ましくは1〜20μmであり、特に好ましくは3〜10
μmである。
The average particle diameter of the coated fine particles obtained by coating the fine particles using the above-mentioned fine particle coating method is preferably larger than 0.2 μm and smaller than 4000 μm. It is more preferably 0.5 to 100 μm, further preferably 1 to 20 μm, and particularly preferably 3 to 10 μm.
μm.

【0029】上記被覆微粒子は、微粒子の形状が保たれ
たものである。そのため、アスペクト比が5未満の微粒
子を被覆すれば、得られる被覆微粒子のアスペクト比は
5未満であり、アスペクト比が2未満の微粒子を被覆す
れば、得られる被覆微粒子のアスペクト比は2未満であ
り、アスペクト比が1.4未満の微粒子を被覆すれば、
得られる被覆微粒子のアスペクト比は1.4未満であ
り、アスペクト比が1.1未満の微粒子を被覆すれば、
得られる被覆微粒子のアスペクト比は1.1未満であ
り、アスペクト比が1.05未満の微粒子を被覆すれ
ば、得られる被覆微粒子のアスペクト比は1.05未満
である。
The above-mentioned coated fine particles maintain the shape of the fine particles. Therefore, when the particles having an aspect ratio of less than 5 are coated, the obtained particles have an aspect ratio of less than 5, and when the particles have an aspect ratio of less than 2, the obtained particles have an aspect ratio of less than 2. Yes, if you cover fine particles with an aspect ratio of less than 1.4,
The resulting coated fine particles have an aspect ratio of less than 1.4, and if the fine particles having an aspect ratio of less than 1.1 are coated,
The aspect ratio of the obtained coated fine particles is less than 1.1. If the fine particles having an aspect ratio of less than 1.05 are coated, the obtained coated fine particles have an aspect ratio of less than 1.05.

【0030】また、CV値が40%以下の微粒子を被覆
すれば、得られる被覆微粒子のCV値は40%以下であ
り、CV値が30%以下の微粒子を被覆すれば、得られ
る被覆微粒子のCV値は30%以下であり、CV値が2
0%以下の微粒子を被覆すれば、得られる被覆微粒子の
CV値は20%以下であり、CV値が10%以下の微粒
子を被覆すれば、得られる被覆微粒子のCV値は10%
以下であり、CV値が5%以下の微粒子を被覆すれば、
得られる導電性微粒子のCV値は5%以下である。上記
被覆微粒子もまた本発明の1つである。
When the fine particles having a CV value of 40% or less are coated, the resulting coated fine particles have a CV value of 40% or less. When the fine particles having a CV value of 30% or less are coated, the obtained coated fine particles have a CV value of 30% or less. The CV value is 30% or less, and the CV value is 2
If the fine particles of 0% or less are coated, the CV value of the obtained coated fine particles is 20% or less, and if the CV value of 10% or less is coated, the CV value of the obtained coated fine particles is 10%.
Or less, if the particles have a CV value of 5% or less,
The CV value of the obtained conductive fine particles is 5% or less. The coated fine particles are also one of the present invention.

【0031】上記被覆微粒子を作製する際に、微粒子と
して少なくとも表面に導電層が形成された導電性微粒子
を用いると、得られる被覆微粒子は、被覆導電性微粒子
として用いることができる。
When the conductive fine particles having a conductive layer formed on at least the surface are used as fine particles when preparing the coated fine particles, the obtained coated fine particles can be used as coated conductive fine particles.

【0032】上記少なくとも表面に導電層が形成された
導電性微粒子としては特に限定されず、通常、導電性微
粒子として用いられるものであればよく、例えば、高分
子材料が核を構成する粒子に金属を被覆したもの、カー
ボン粒子、金属粒子等が挙げられる。これらのなかで
は、電極との接触面積を増やし、安定性を上げるという
点から、CV値やアスペクト比の小さいものが得やすい
高分子材料を粒子の核に用い、その粒子に金属を被覆し
たものが好ましく、金メッキをしたものがより好まし
い。また、高い導電性微粒子を得られる点から、金属粒
子も好ましい。
The conductive fine particles having a conductive layer formed on at least the surface thereof are not particularly limited, and may be those usually used as conductive fine particles. , Carbon particles, metal particles and the like. Among these, polymer materials with a small CV value and a small aspect ratio are used for the core of the particles, and the metal is coated on the particles, from the viewpoint of increasing the contact area with the electrode and increasing the stability. Are preferable, and those plated with gold are more preferable. Further, metal particles are also preferable in that high conductive fine particles can be obtained.

【0033】上記被覆微粒子を被覆導電性微粒子として
用いる際の被覆物質としては、絶縁物質が好ましいこと
から、絶縁性の樹脂が好ましい。上記被覆導電性微粒子
は、被覆層が絶縁物質で形成されていると、後述する工
程により、この被覆導電性微粒子を用いて導電接続構造
体を作製した際に、隣接する電極間でリークが発生せ
ず、被覆導電性微粒子の濃度を上げることができる。ま
た、電極の接続方向では、上記被覆層が加熱及び加圧に
よって流動することにより電極との接触面で上記被覆層
が除去され、電極間の導通を図ることができる。
As the coating substance when the above-mentioned coated fine particles are used as the coated conductive fine particles, an insulating resin is preferable, and therefore, an insulating resin is preferable. When the coating layer is formed of an insulating material, a leak occurs between adjacent electrodes when a conductive connection structure is manufactured using the coated conductive fine particles by a process described later when the coating layer is formed of an insulating material. Without doing so, the concentration of the coated conductive fine particles can be increased. Further, in the connection direction of the electrodes, the coating layer flows by heating and pressurization, so that the coating layer is removed at the contact surface with the electrode, and conduction between the electrodes can be achieved.

【0034】更に、上記被覆導電性微粒子は、本発明の
微粒子の被覆方法を用いて、被覆層が形成されているた
め、被覆層の形成されていない粒子や多重粒子がなく、
被覆層の厚さも均一であることから、より隣接する電極
間でリークが発生しにくく、被覆物のみの残渣も少ない
ため電極間の導通が阻害されることもない。上記被覆導
電性微粒子、即ち、微粒子として少なくとも表面に導電
層が形成された導電性微粒子を用いて得られた被覆微粒
子もまた本発明の1つである。
Furthermore, since the coated conductive fine particles have a coating layer formed using the method for coating fine particles of the present invention, there are no particles or multiple particles having no coating layer formed thereon.
Since the thickness of the coating layer is also uniform, leakage is less likely to occur between adjacent electrodes, and there is little residue of only the coating, so that conduction between the electrodes is not hindered. The coated fine particles obtained by using the coated conductive fine particles, that is, the conductive fine particles having a conductive layer formed on at least the surface as the fine particles are also one of the present invention.

【0035】本発明の被覆導電性微粒子は、主として、
相対向する2つの電極を電気的に接続する際に用いられ
る。上記被覆導電性微粒子を用いて相対向する2つの電
極を電気的に接続する方法としては、例えば、上記被覆
導電性微粒子をバインダー樹脂中に分散させて異方性導
電接着剤を調製し、上記異方性導電接着剤を使用して2
つの電極を接着、接続する方法、バインダー樹脂と上記
被覆導電性微粒子とを別々に使用して接続する方法等が
挙げられる。
The coated conductive fine particles of the present invention mainly include
It is used when two opposing electrodes are electrically connected. As a method of electrically connecting two electrodes facing each other using the coated conductive fine particles, for example, dispersing the coated conductive fine particles in a binder resin to prepare an anisotropic conductive adhesive, 2 using anisotropic conductive adhesive
A method of bonding and connecting two electrodes, a method of separately using a binder resin and the above-mentioned coated conductive fine particles, and the like are used.

【0036】本明細書において、異方性導電接着剤と
は、異方性導電膜、異方性導電ペースト、異方性導電イ
ンキ等を含むものとする。
In the present specification, the anisotropic conductive adhesive includes an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive ink and the like.

【0037】上記異方性導電接着剤を構成するバインダ
ー樹脂としては特に限定されず、例えば、アクリレート
樹脂、エチレン/酢酸ビニル樹脂、スチレン/ブタジエ
ンブロック共重合体等の熱可塑性樹脂;グリシジル基を
有するモノマーやオリゴマーとイソシアネート等の硬化
剤との反応により得られる硬化性樹脂組成物等の熱や光
によって硬化する組成物等が挙げられる。好ましくは、
上記硬化性樹脂組成物のなかでも低温で硬化する低温硬
化性樹脂、及び、光硬化性樹脂である。
The binder resin constituting the anisotropic conductive adhesive is not particularly restricted but includes, for example, a thermoplastic resin such as an acrylate resin, an ethylene / vinyl acetate resin, a styrene / butadiene block copolymer; and a glycidyl group. A composition curable by heat or light, such as a curable resin composition obtained by reacting a monomer or oligomer with a curing agent such as isocyanate, and the like, may be mentioned. Preferably,
Among the curable resin compositions, a low-temperature curable resin that cures at a low temperature and a photocurable resin.

【0038】上記異方性導電接着剤として異方性導電膜
を使用した場合、上記被覆導電性微粒子は、ランダムに
分散されていてもよく、特定の位置に配置されていても
よい。被覆導電性微粒子がランダムに分散された導電膜
は、通常、汎用的な用途に使用される。また、上記被覆
導電性微粒子が所定の位置に配置された導電膜は、効率
的な電気接合を行うことができる。上記異方性導電接着
剤の塗工膜厚は特に限定されないが、10〜数百μmが
好ましい。このような異方性導電接着剤もまた本発明の
1つである。
When an anisotropic conductive film is used as the anisotropic conductive adhesive, the coated conductive fine particles may be randomly dispersed or may be arranged at a specific position. The conductive film in which the coated conductive fine particles are randomly dispersed is usually used for general-purpose applications. In addition, the conductive film in which the coated conductive fine particles are arranged at predetermined positions can perform efficient electrical bonding. The coating thickness of the anisotropic conductive adhesive is not particularly limited, but is preferably from 10 to several hundreds of μm. Such an anisotropic conductive adhesive is also one of the present invention.

【0039】上記被覆導電性微粒子、及び、異方性導電
接着剤により接続される対象物としては、例えば、表面
に電極部が形成された基板、半導体等の電気部品等が挙
げられる。上記基板は、フレキシブル基板とリジッド基
板とに大別される。上記フレキシブル基板としては、例
えば、50〜500μmの厚さの樹脂シートが挙げられ
る。上記樹脂シートの材質としては、例えば、ポリイミ
ド、ポリアミド、ポリエステル、ポリスルホン等が挙げ
られる。
Examples of the objects to be connected by the coated conductive fine particles and the anisotropic conductive adhesive include a substrate having an electrode portion formed on a surface thereof, and electric parts such as semiconductors. The above substrate is roughly classified into a flexible substrate and a rigid substrate. Examples of the flexible substrate include a resin sheet having a thickness of 50 to 500 μm. Examples of the material of the resin sheet include polyimide, polyamide, polyester, and polysulfone.

【0040】上記リジッド基板は、樹脂製のものとセラ
ミック製のものとに大別される。上記樹脂製のものとし
ては、例えば、ガラス繊維強化エポキシ樹脂、フェノー
ル樹脂、セルロース繊維強化フェノール樹脂等が挙げら
れる。上記セラミック製のものとしては、例えば、二酸
化ケイ素、アルミナ、ガラス等が挙げられる。
The rigid substrate is roughly classified into a resin substrate and a ceramic substrate. Examples of the above-mentioned resin include glass fiber reinforced epoxy resin, phenol resin, cellulose fiber reinforced phenol resin and the like. Examples of the ceramic material include silicon dioxide, alumina, and glass.

【0041】上記基板の構成は特に限定されず、単層の
ものであってもよく、単位面積当たりの電極数を増加さ
せるために、例えば、複数の層が形成され、スルーホー
ル形成等の手段により、これらの層が相互に電気的に接
続されている多層基板であってもよい。
The structure of the substrate is not particularly limited, and may be a single layer. In order to increase the number of electrodes per unit area, for example, a plurality of layers are formed, Accordingly, a multilayer substrate in which these layers are electrically connected to each other may be used.

【0042】上記電気部品としては特に限定されず、例
えば、トランジスタ、ダイオード、IC、LSI等の半
導体等の能動部品;抵抗、コンデンサ、水晶振動子等の
受動部品等が挙げられる。上記基板又は電気部品の表面
に形成される電極の形状としては特に限定されず、例え
ば、縞状、ドット状、任意形状のもの等が挙げられる。
The electric components are not particularly limited, and include, for example, active components such as semiconductors such as transistors, diodes, ICs, and LSIs; and passive components such as resistors, capacitors, and crystal oscillators. The shape of the electrode formed on the surface of the substrate or the electric component is not particularly limited, and examples thereof include a stripe shape, a dot shape, and an arbitrary shape.

【0043】上記電極の材質としては、例えば、金、
銀、銅、ニッケル、パラジウム、カーボン、アルミニウ
ム、ITO等が挙げられる。接触抵抗を低減させるため
に、銅、ニッケル等の上に更に金が被覆された電極を用
いることが好ましい。上記電極の厚さは、0.1〜10
0μmであることが好ましく、上記電極の幅は、1〜5
00μmであることが好ましい。
As the material of the electrode, for example, gold,
Silver, copper, nickel, palladium, carbon, aluminum, ITO and the like can be mentioned. In order to reduce the contact resistance, it is preferable to use an electrode in which gold is further coated on copper, nickel or the like. The thickness of the electrode is 0.1 to 10
0 μm, and the width of the electrode is 1 to 5 μm.
It is preferably 00 μm.

【0044】上記被覆導電性微粒子と上記基板又は部品
等との接合としては、例えば、表面に電極が形成された
基板又は電気部品の上に、上記被覆導電性微粒子を含有
する異方性導電膜を配置し、その上に、他の基板又は電
気部品の電極を置き、加熱、加圧する方法が挙げられ
る。上記異方性導電膜の代わりに、スクリーン印刷やデ
ィスペンサー等の印刷手段により、上記被覆導電性微粒
子を含有する異方性導電ペーストを所定量用いることも
できる。上記加熱、加圧には、ヒーターが付いた圧着機
やボンディングマシーン等が用いられる。
The bonding between the coated conductive fine particles and the substrate or component may be performed, for example, by forming an anisotropic conductive film containing the coated conductive fine particles on a substrate or an electrical component having an electrode formed on the surface. Is arranged, an electrode of another substrate or an electric component is placed thereon, and heating and pressing are performed. Instead of the anisotropic conductive film, a predetermined amount of the anisotropic conductive paste containing the coated conductive fine particles can be used by printing means such as screen printing or a dispenser. For the above-mentioned heating and pressurizing, a crimping machine equipped with a heater, a bonding machine or the like is used.

【0045】上記異方性導電膜及び上記異方性導電ペー
ストを用いない方法も可能であり、例えば、被覆導電性
微粒子を介して貼り合わせた2つの電極部の隙間に液状
のバインダーを注入した後、硬化させる方法等を用いる
ことができる。
A method not using the above-mentioned anisotropic conductive film and the above-mentioned anisotropic conductive paste is also possible. For example, a liquid binder is injected into a gap between two electrode portions bonded together via coated conductive fine particles. Thereafter, a method of curing or the like can be used.

【0046】上記基板又は電気部品の電極部同士が、上
記被覆導電性微粒子又は上記異方性導電接着剤を用いて
接続された導電接続構造体もまた、本発明の1つであ
る。
The present invention also includes a conductive connection structure in which the electrodes of the substrate or the electric component are connected to each other using the coated conductive fine particles or the anisotropic conductive adhesive.

【0047】上述のように、本発明の異方性導電接着剤
及び導電接続構造体は、少なくとも表面が導電材料によ
り形成されている導電性微粒子の表面に、被覆層が形成
されている被覆微粒子を用いることを特徴としている。
このため、上記異方性導電接着剤及び導電接続構造体で
は、上記被覆微粒子の含有する被覆層の存在により隣接
電極間でのリークが発生せず、上記被覆微粒子の濃度を
上げることができる。また、電極と被覆微粒子の接触部
位では、加熱及び加圧により上記被覆層が流動すること
により電極との接触面で上記被覆層が除去され、電極同
士の導通が得られるとともに、被覆導電性微粒子を高濃
度に含有させることができるため、大きな電気容量を確
保することができる。
As described above, the anisotropic conductive adhesive and the conductive connection structure of the present invention comprise coated fine particles having a coating layer formed on the surface of conductive fine particles having at least a surface formed of a conductive material. It is characterized by using.
Therefore, in the anisotropic conductive adhesive and the conductive connection structure, the presence of the coating layer containing the coating fine particles does not cause a leak between adjacent electrodes, and can increase the concentration of the coating fine particles. In addition, at the contact portion between the electrode and the coated fine particles, the coating layer flows by heating and pressurization, whereby the coating layer is removed at the contact surface with the electrode. Can be contained at a high concentration, so that a large electric capacity can be secured.

【0048】[0048]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0049】実施例1 微粒子として平均粒子径5μm、アスペクト比1.0
4、CV値4%のジビニルベンゼン系微球20gと被覆
物質としてキシレンに可溶な数平均分子量3万、ガラス
転移温度(以下、Tgという)80℃のスチレン−アク
リル系共重合体1gとを分散媒であるキシレン20g中
に均一に分散し混合物を得た。次に、得られた混合物を
バットの中で薄膜状に延ばし、徐々にキシレンを蒸発さ
せながら、薄膜状の混合物をヘラを用いて網目状にカッ
トしていき微小塊状にした。更に、微小塊が互いに合着
しない程度まで分散媒が揮発した状態で、乳鉢で擦り潰
しながら、残りの分散媒を揮発させ単粒子化した。な
お、走査型電子顕微鏡を用いて、混合物中の微粒子を観
察したところ、微粒子が単粒子化するまでは少なくとも
半数の微粒子が、微粒子の平均粒子径以下の間隔で存在
していた。こうして得られた被覆微粒子は、被覆の厚さ
が約50nm、平均粒子径5.1μm、アスペクト比
1.06、CV値4%で、均一に被覆されており、多重
粒子や被覆物質の残渣をほとんど含んでいなかった。
Example 1 Fine particles having an average particle diameter of 5 μm and an aspect ratio of 1.0
4. 20 g of divinylbenzene microspheres having a CV value of 4% and 1 g of a styrene-acrylic copolymer having a number average molecular weight of 30,000 soluble in xylene and a glass transition temperature (hereinafter referred to as Tg) of 80 ° C. as a coating substance. The mixture was uniformly dispersed in 20 g of xylene as a dispersion medium to obtain a mixture. Next, the obtained mixture was spread into a thin film in a vat, and while gradually evaporating xylene, the thin film mixture was cut into a mesh using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed using a scanning electron microscope, at least half of the fine particles were present at intervals equal to or less than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained are uniformly coated with a coating thickness of about 50 nm, an average particle diameter of 5.1 μm, an aspect ratio of 1.06, and a CV value of 4%. Almost no.

【0050】実施例2 微粒子として平均粒子径2μm、アスペクト比1.0
7、CV値6%のシリカ微球20gと被覆物質としてキ
シレンに可溶な数平均分子量1万、Tg90℃のエポキ
シ樹脂1gと平均粒子径50nmの酸化チタン1gとを
分散媒であるキシレン20g中に均一に分散し混合物を
得た。次に、得られた混合物をボールミルに入れ、ボー
ルミル内を−100mmHgで減圧しながら攪拌し、徐
々にキシレンを揮発させながら、混合物を微小塊状にし
た。更に、ボールミル内を減圧しながら攪拌し、残りの
分散媒を攪拌させるとともに、単粒子化した。なお、実
施例1と同様に、混合物中の微粒子を観察したところ、
微粒子が単粒子化するまでは少なくとも半数の微粒子
が、微粒子の平均粒子径以下の間隔で存在していた。こ
うして得られた被覆微粒子は、被覆の厚さが約50n
m、平均粒子径2.1μm、アスペクト比1.09、C
V値7%で、均一に被覆されており、多重粒子や被覆物
質の残渣をほとんど含んでいなかった。
Example 2 Fine particles having an average particle diameter of 2 μm and an aspect ratio of 1.0
7, 20 g of silica microspheres having a CV value of 6%, 1 g of an epoxy resin having a number average molecular weight of 10,000 soluble in xylene and Tg of 90 ° C. as a coating substance, and 1 g of titanium oxide having an average particle diameter of 50 nm in 20 g of xylene as a dispersion medium To obtain a mixture. Next, the obtained mixture was put into a ball mill, and the inside of the ball mill was stirred while reducing the pressure at -100 mmHg, and the mixture was made into a fine lump while gradually evaporating xylene. Further, the inside of the ball mill was agitated while reducing the pressure, and the remaining dispersion medium was agitated and formed into single particles. When the fine particles in the mixture were observed in the same manner as in Example 1,
At least half of the fine particles existed at intervals smaller than the average particle size of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained have a coating thickness of about 50 n.
m, average particle diameter 2.1 μm, aspect ratio 1.09, C
It had a V value of 7%, was uniformly coated, and contained little multi-particles or residues of coating materials.

【0051】実施例3 微粒子として平均粒子径20μm、アスペクト比1.
1、CV値10%のベンゾグアナミン系微球20gと被
覆物質としてトルエンに可溶な数平均分子量6000、
Tg60℃の硬化型エポキシ樹脂0.5gと硬化剤及び
スチレン−アクリル系の微小なゲル0.5gとを分散媒
であるトルエン20g中に均一に分散し、混合物を得
た。次に、得られた混合物をバットの中で薄膜状に延ば
し、徐々にトルエンを揮発させながら、薄膜状の混合物
をヘラを用いて網目状にカットしていき微小塊状にし
た。更に、微小塊が互いに合着しない程度まで分散媒が
揮発した状態で、ジェットミルにより潰しながら、残り
の分散媒を揮発させ単粒子化した。なお、実施例1と同
様に、混合物中の微粒子を観察したところ、微粒子が単
粒子化するまでは少なくとも半数の微粒子が、微粒子の
平均粒子径以下の間隔で存在していた。こうして得られ
た被覆微粒子は、被覆の厚さが約100nm、平均粒子
径20.2μm、アスペクト比1.1、CV値10%
で、均一に被覆されており、多重粒子や被覆物質の残渣
をほとんど含んでいなかった。
Example 3 Fine particles having an average particle diameter of 20 μm and an aspect ratio of 1.
1, 20 g of benzoguanamine-based microspheres having a CV value of 10% and a number average molecular weight of 6,000 soluble in toluene as a coating substance,
0.5 g of a curable epoxy resin having a Tg of 60 ° C., 0.5 g of a curing agent and a fine styrene-acrylic gel were uniformly dispersed in 20 g of toluene as a dispersion medium to obtain a mixture. Next, the obtained mixture was spread in a thin film in a vat, and while the toluene was gradually volatilized, the thin film mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lumps did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed by a jet mill to form single particles. When the fine particles in the mixture were observed in the same manner as in Example 1, at least half of the fine particles existed at intervals smaller than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained have a coating thickness of about 100 nm, an average particle diameter of 20.2 μm, an aspect ratio of 1.1, and a CV value of 10%.
The coating was uniform and contained little multi-particles or residues of coating substances.

【0052】実施例4 微粒子として平均粒子径5μm、アスペクト比1.1
5、CV値12%のジビニルベンゼン系微球20gと被
覆物質としてキシレンに可溶な数平均分子量3万、Tg
80℃のスチレン−アクリル系共重合体1gを分散媒で
あるキシレン20g中に均一に分散し、混合物を得た。
次に、得られた混合物をバットの中で薄膜状に延ばし、
徐々にキシレンを揮発させながら、薄膜状の混合物をヘ
ラを用いて網目状にカットしていき微小塊状にした。更
に、微小塊が互いに合着しない程度まで分散媒が揮発し
た状態で、乳鉢で擦り潰しながら、残りの分散媒を揮発
させ単粒子化した。なお、実施例1と同様に、混合物中
の微粒子を観察したところ、微粒子が単粒子化するまで
は少なくとも半数の微粒子が、微粒子の平均粒子径以下
の間隔で存在していた。こうして得られた被覆微粒子
は、被覆の厚さが約50nm、平均粒子径5.1μm、
アスペクト比1.15、CV値12%で、均一に被覆さ
れており、若干多重粒子や被覆物質の残渣を含んでいた
ものの問題となるほどではなかった。
Example 4 Fine particles having an average particle diameter of 5 μm and an aspect ratio of 1.1
5, 20 g of divinylbenzene microspheres having a CV value of 12%, and a xylene-soluble number average molecular weight of 30,000 as a coating substance, Tg
1 g of a styrene-acrylic copolymer at 80 ° C. was uniformly dispersed in 20 g of xylene as a dispersion medium to obtain a mixture.
Next, the obtained mixture is spread into a thin film in a vat,
While gradually evaporating xylene, the thin film mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed in the same manner as in Example 1, at least half of the fine particles existed at intervals smaller than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated fine particles thus obtained had a coating thickness of about 50 nm, an average particle diameter of 5.1 μm,
It was uniformly coated with an aspect ratio of 1.15 and a CV value of 12%, and contained some multi-particles and residues of the coating substance, but it was not a problem.

【0053】実施例5 被覆物質としてキシレンに可溶な数平均分子量3万、T
g80℃のスチレン−アクリル系共重合体3gを用いた
以外は、実施例1と同様にして被覆微粒子を得た。な
お、実施例1と同様に、混合物中の微粒子を観察したと
ころ、微粒子が単粒子化するまでは少なくとも半数の微
粒子が、微粒子の平均粒子径以下の間隔で存在してい
た。得られた被覆微粒子は、被覆の厚さが約150n
m、平均粒子径5.3μm、アスペクト比1.06、C
V値5%で、ほぼ均一に被覆されており、若干多重粒子
や被覆物質の残渣を含んでおり、極微量の被覆層の剥が
れがみられたものの問題となるほどではなかった。
Example 5 Xylene-soluble number average molecular weight of 30,000 as coating material, T
Coated fine particles were obtained in the same manner as in Example 1 except that 3 g of a styrene-acrylic copolymer having a g of 80 ° C. was used. When the fine particles in the mixture were observed in the same manner as in Example 1, at least half of the fine particles existed at intervals smaller than the average particle diameter of the fine particles until the fine particles were converted into single particles. The obtained coated fine particles have a coating thickness of about 150 n.
m, average particle diameter 5.3 μm, aspect ratio 1.06, C
It had a V value of 5%, and was almost uniformly coated, contained some multi-particles and residues of the coating substance, and a very small amount of the coating layer was peeled off, but it was not a problem.

【0054】実施例6 微粒子として平均粒子径6μm、アスペクト比1.0
5、CV値5%のジビニルベンゼン系微球にニッケル1
00nmと金40nmとをメッキした比重2.5の微粒
子20gと被覆物質として酢酸ブチルに可溶な数平均分
子量1万、Tg80℃のメタクリル酸エステル系共重合
体1gを分散媒である酢酸ブチル10g中に均一に分散
し、混合物を得た。次に、得られた混合物をバットの中
で薄膜状に延ばし、徐々に酢酸ブチルを揮発させなが
ら、薄膜状の混合物をヘラを用いて網目状にカットして
いき微小塊状にした。更に、微小塊が互いに合着しない
程度まで分散媒が揮発した状態で、乳鉢で擦り潰しなが
ら、残りの分散媒を揮発させ単粒子化した。なお、実施
例1と同様に、混合物中の微粒子を観察したところ、微
粒子が単粒子化するまでは少なくとも半数の微粒子が、
微粒子の平均粒子径以下の間隔で存在していた。こうし
て得られた被覆導電性微粒子は、被覆の厚さが約100
nm、平均粒子径6.2μm、アスペクト比1.08、
CV値7%で、均一に被覆されており、多重粒子や被覆
物質の残渣はほとんど含んでいなかった。
Example 6 Fine particles having an average particle diameter of 6 μm and an aspect ratio of 1.0
5. Nickel 1 in divinylbenzene microspheres with CV value 5%
20 g of fine particles having a specific gravity of 2.5 plated with 00 nm and 40 nm of gold, and 1 g of a methacrylate copolymer having a number average molecular weight of 10,000 and a Tg of 80 ° C., soluble in butyl acetate as a coating substance, and 10 g of butyl acetate as a dispersion medium The mixture was uniformly dispersed therein to obtain a mixture. Next, the obtained mixture was spread in a thin film in a vat, and while gradually evaporating butyl acetate, the thin film mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the fine lumps did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. In addition, when the fine particles in the mixture were observed in the same manner as in Example 1, at least half of the fine particles until the fine particles were converted into single particles,
The particles were present at intervals smaller than the average particle size of the fine particles. The coated conductive fine particles thus obtained have a coating thickness of about 100
nm, average particle diameter 6.2 μm, aspect ratio 1.08,
It had a CV value of 7%, was uniformly coated, and contained little multi-particles or residues of coating materials.

【0055】更に、この被覆導電性微粒子を熱硬化性エ
ポキシ樹脂をトルエンに溶解させたバインダー溶液に混
合、分散させた。ついで、この被覆導電性微粒子の分散
溶液を離型フィルム上に一定の厚さに塗布し、トルエン
を蒸発させ、異方性導電膜を得た。膜厚は25μmであ
った。その後、ガラス−エポキシ基板上に50μm角の
金バンプを電極ピッチ70μmで10×10個並べ、得
られた異方性導電膜を貼り付け、更に、その上に同じ基
板を位置合わせ後重ね合わせ、150℃で2分間加熱、
加圧し、導電接続構造体を得た。得られた導電接続構造
体の接続抵抗値は充分低く、隣接する電極間の線間絶縁
性は、充分保たれていた。また、冷熱サイクルテストを
行ったが変化はみられなかった。
Further, the coated conductive fine particles were mixed and dispersed in a binder solution obtained by dissolving a thermosetting epoxy resin in toluene. Subsequently, the dispersion solution of the coated conductive fine particles was applied on a release film to a constant thickness, and toluene was evaporated to obtain an anisotropic conductive film. The thickness was 25 μm. Thereafter, 10 × 10 50 μm-square gold bumps were arranged on a glass-epoxy substrate at an electrode pitch of 70 μm, the resulting anisotropic conductive film was attached, and the same substrate was further positioned thereon and then superposed. Heated at 150 ° C for 2 minutes,
Pressure was applied to obtain a conductive connection structure. The connection resistance value of the obtained conductive connection structure was sufficiently low, and the interline insulation between adjacent electrodes was sufficiently maintained. A cooling cycle test was performed, but no change was observed.

【0056】実施例7 微粒子として分級により得られた平均粒子径5μm、ア
スペクト比1.2、CV値15%のニッケル球20gと
被覆物質としてトルエンに可溶な数平均分子量600
0、Tg60℃の硬化型エポキシ樹脂0.2gと硬化剤
とを分散媒であるトルエン10g中に均一に分散し、混
合物を得た。次に、得られた混合物をバットの中で薄膜
状に延ばし、徐々にトルエンを揮発させながら、薄膜状
の混合物をヘラを用いて網目状にカットしていき微小塊
状にした。更に、微小塊が互いに合着しない程度まで分
散媒が揮発した状態で、乳鉢で擦り潰しながら、残りの
分散媒を揮発させ単粒子化した。なお、実施例1と同様
に、混合物中の微粒子を観察したところ、微粒子が単粒
子化するまでは少なくとも半数の微粒子が、微粒子の平
均粒子径以下の間隔で存在していた。こうして得られた
被覆導電性微粒子は、被覆の厚さが約20nm、平均粒
子径5μm、アスペクト比1.2、CV値15%で、均
一に被覆されており、多重粒子や被覆物質の残渣はほと
んど含んでいなかった。
Example 7 20 g of nickel spheres having an average particle diameter of 5 μm, an aspect ratio of 1.2 and a CV value of 15% obtained by classification as fine particles, and a number average molecular weight of 600 soluble in toluene as a coating substance were 600.
0.2 g of a curable epoxy resin having a Tg of 60 ° C. and a curing agent were uniformly dispersed in 10 g of toluene as a dispersion medium to obtain a mixture. Next, the obtained mixture was spread in a thin film in a vat, and while the toluene was gradually volatilized, the thin film mixture was cut into a network using a spatula to form a fine lump. Further, while the dispersion medium was volatilized to such an extent that the micro lump did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed in a mortar to form single particles. When the fine particles in the mixture were observed in the same manner as in Example 1, at least half of the fine particles existed at intervals smaller than the average particle diameter of the fine particles until the fine particles were converted into single particles. The coated conductive fine particles thus obtained are uniformly coated with a coating thickness of about 20 nm, an average particle diameter of 5 μm, an aspect ratio of 1.2, and a CV value of 15%. Almost no.

【0057】更に、この被覆導電性微粒子を用いた以外
は、実施例6と同様にして異方性導電膜、及び、導電接
続構造体を得た。得られた導電接続構造体の接続抵抗値
は充分低く、隣接する電極間の線間絶縁性は、充分保た
れていた。また、冷熱サイクルテストを行ったが変化は
みられなかった。
Further, an anisotropic conductive film and a conductive connection structure were obtained in the same manner as in Example 6, except that the coated conductive fine particles were used. The connection resistance value of the obtained conductive connection structure was sufficiently low, and the interline insulation between adjacent electrodes was sufficiently maintained. A cooling cycle test was performed, but no change was observed.

【0058】実施例8 被覆前の微粒子を、予め大気圧から700mmHg減
圧、且つ、温度80℃の状態にて5時間乾燥して用い、
減圧状態のまま温度を室温まで戻した上で圧力を大気圧
まで戻し、被覆時に再度大気圧から600〜650mm
Hg減圧し10分間保持した後大気圧に戻した以外は実
施例1と同様にして被覆微粒子を得た。得られた被覆微
粒子1gを純粋50gと共に高速攪拌機(ホモジナイザ
ー)に入れ、回転数1万rpmで30分間攪拌して被覆
層を強制的に剥がれさせ、その状態を電子顕微鏡にて観
察したところ、被覆層の剥がれの割合は5.5%であっ
た。実施例1の被覆微粒子を同様にして観察したこと
ろ、被覆層の剥がれの割合は8.3%であった。
Example 8 Fine particles before coating were dried under a reduced pressure of 700 mmHg from atmospheric pressure at a temperature of 80 ° C. for 5 hours.
After returning the temperature to room temperature while maintaining the reduced pressure, the pressure was returned to the atmospheric pressure, and 600 to 650 mm again from the atmospheric pressure during coating.
Coated microparticles were obtained in the same manner as in Example 1 except that the Hg pressure was reduced and the pressure was maintained for 10 minutes, and then returned to the atmospheric pressure. 1 g of the coated fine particles thus obtained was put into a high-speed stirrer (homogenizer) together with 50 g of pure water, and the mixture was stirred at 10,000 rpm for 30 minutes to forcibly peel off the coating layer. The rate of peeling of the layer was 5.5%. When the coated fine particles of Example 1 were observed in the same manner, the rate of peeling of the coated layer was 8.3%.

【0059】実施例9 被覆前の微粒子を、予め大気圧から700mmHg減
圧、且つ、温度80℃の状態にて5時間乾燥して用い、
減圧状態のまま温度を室温まで戻した上で圧力を大気圧
まで戻し、被覆時に再度大気圧から600〜650mm
Hg減圧し10分間保持した後大気圧に戻した以外は実
施例7と同様にして被覆微粒子を得た。得られた被覆微
粒子を用い、高速攪拌機(ホモジナイザー)にて被覆層
を強制的に剥がれさせ、その状態を電子顕微鏡にて観察
したところ、被覆層の剥がれの割合は3.5%であっ
た。実施例7の被覆微粒子を同様にして観察したこと
ろ、被覆層の剥がれの割合は15.3%であった。
Example 9 Fine particles before coating were dried under a reduced pressure of 700 mmHg from atmospheric pressure and a temperature of 80 ° C. for 5 hours before use.
After returning the temperature to room temperature while maintaining the reduced pressure, the pressure was returned to the atmospheric pressure, and 600 to 650 mm again from the atmospheric pressure during coating.
Coated microparticles were obtained in the same manner as in Example 7, except that the Hg pressure was reduced and the pressure was maintained for 10 minutes, and then returned to the atmospheric pressure. Using the obtained coated fine particles, the coating layer was forcibly peeled off with a high-speed stirrer (homogenizer), and the state was observed with an electron microscope. The peeling ratio of the coating layer was 3.5%. When the coated fine particles of Example 7 were observed in the same manner, the rate of peeling of the coated layer was 15.3%.

【0060】比較例1 微粒子として平均粒子径0.2μm未満の酸化チタンと
被覆物質としてキシレンに可溶な数平均分子量3万、T
g80℃のスチレン−アクリル系共重合体とを被覆厚さ
が20nm程度になるように添加し、分散媒であるキシ
レン20g中に均一に分散し、混合物を得た。次に、得
られた混合物をバットの中で薄膜状に延ばし、徐々にキ
シレンを揮発させながら、薄膜状の混合物をヘラを用い
て網目状にカットしていき微小塊状にした。更に、微小
塊が互いに合着しない程度まで分散媒が揮発した状態
で、乳鉢で擦り潰しながら、残りの分散媒を揮発させ単
粒子化しようとしたが、凝集塊が硬く、単粒子化するこ
とができなかった。
Comparative Example 1 Titanium oxide having an average particle diameter of less than 0.2 μm as fine particles and a number average molecular weight soluble in xylene of 30,000 as a coating substance, T
g A styrene-acrylic copolymer of 80 ° C. was added so that the coating thickness became about 20 nm, and the mixture was uniformly dispersed in 20 g of xylene as a dispersion medium to obtain a mixture. Next, the obtained mixture was spread into a thin film in a vat, and while gradually evaporating xylene, the thin film mixture was cut into a network using a spatula to form a fine lump. Furthermore, while the dispersion medium was volatilized to such an extent that the fine agglomerates did not coalesce with each other, the remaining dispersion medium was volatilized while being crushed with a mortar, and the remaining dispersion medium was volatilized into single particles. Could not.

【0061】比較例2 微粒子として平均粒子径4000μm、アスペクト比
1.04、CV値4%のジビニルベンゼン系微球20g
を用いた以外は、実施例1と同様にして被覆微粒子を得
た。得られた被覆微粒子は、粒子の底部に樹脂が溜まり
被覆厚は不均一で、被覆物質の残渣を多量に含んでい
た。
Comparative Example 2 20 g of divinylbenzene microspheres having an average particle diameter of 4000 μm, an aspect ratio of 1.04 and a CV value of 4% as fine particles.
Except for using the above, coated fine particles were obtained in the same manner as in Example 1. The obtained coated fine particles contained a large amount of resin residue at the bottom of the particles, the coating thickness was non-uniform, and a large amount of residues of the coating material.

【0062】比較例3 微粒子として平均粒子径5μm、アスペクト比5、CV
値4%のジビニルベンゼン系短繊維20gを用いた以外
は、実施例1と同様にして単粒子化しようとしたが、凝
集塊が硬く、単粒子化することができなかった。そこ
で、さらに強く擦り潰すと被覆層が剥がれたり、残渣が
多量に発生し、一部ジビニルベンゼン系短繊維の破壊も
みられた。
Comparative Example 3 Fine particles having an average particle diameter of 5 μm, an aspect ratio of 5, and a CV
Except that 20 g of divinylbenzene-based short fiber having a value of 4% was used, an attempt was made to form single particles in the same manner as in Example 1, but the aggregate was hard and could not be formed into single particles. Then, when further strongly crushed, the coating layer was peeled off, a large amount of residue was generated, and some of the divinylbenzene-based short fibers were broken.

【0063】比較例4 微粒子として平均粒子径5μm、アスペクト比1.0
4、CV値50%のジビニルベンゼン系微球20gを用
いた以外は、実施例1と同様にして単粒子化しようとし
たが、凝集塊が硬く、単粒子化することができなかっ
た。そこで、さらに強く擦り潰すと被覆層が剥がれた
り、残渣が多量に発生し、一部ジビニルベンゼン系微球
の破壊もみられた。
Comparative Example 4 Fine particles having an average particle diameter of 5 μm and an aspect ratio of 1.0
4. Except for using 20 g of divinylbenzene microspheres having a CV value of 50%, an attempt was made to form single particles in the same manner as in Example 1, but the aggregates were hard and could not be formed into single particles. Then, when further crushed, the coating layer was peeled off, a large amount of residue was generated, and some of the divinylbenzene microspheres were broken.

【0064】比較例5 被覆物質の配合量を50gに代え、分散媒の量を250
gに代えた以外は、実施例1と同様にして単粒子化しよ
うとしたが、凝集塊が硬く、単粒子化することができな
かった。そこで、さらに強く擦り潰すと被覆層が剥がれ
たり、残渣が多量に発生し、一部ジビニルベンゼン系微
球の破壊もみられた。また単粒子化した粒子についても
被覆厚さが不均一であった。
Comparative Example 5 The amount of the coating material was changed to 250 g while the amount of the coating material was changed to 50 g.
Except for changing to g, an attempt was made to form single particles in the same manner as in Example 1, but the aggregate was hard and could not be formed into single particles. Then, when further crushed, the coating layer was peeled off, a large amount of residue was generated, and some of the divinylbenzene microspheres were broken. Also, the coating thickness was non-uniform for the single particles.

【0065】比較例6 被覆物質として、ジエチルエーテルに可溶な数平均分子
量3万、Tg80℃のスチレン−アクリル系共重合体1
gを用い、分散媒をジエチルエーテルに代えた以外は、
実施例1と同様にして、微粒子と被覆物質とが分散した
混合物を得た。次に、得られた混合物をバットの中で薄
膜状に延ばし、ジエチルエーテルを蒸発させた。蒸発速
度が速いため、薄膜状の混合物をヘラを用いて網目状に
カットすることができなかったので、ヘラで割りながら
平板状の微小塊にした。更に、この微小塊を乳鉢で擦り
潰しながら、単粒子化しようとしたが、微小塊が硬く単
粒子化することができなかった。そこで、さらに強く擦
り潰すと被覆層が剥がれたり、残渣が多量に発生し、一
部ジビニルベンゼン系微球の破壊もみられた。また単粒
子化した粒子についても被覆厚さが不均一であった。
Comparative Example 6 As a coating substance, a styrene-acrylic copolymer 1 soluble in diethyl ether and having a number average molecular weight of 30,000 and a Tg of 80 ° C.
g, except that the dispersion medium was changed to diethyl ether.
In the same manner as in Example 1, a mixture in which fine particles and a coating substance were dispersed was obtained. Next, the obtained mixture was spread in a thin film in a vat, and diethyl ether was evaporated. Since the evaporation rate was high, the mixture in the form of a thin film could not be cut into a mesh using a spatula. Further, the fine chunks were crushed in a mortar and tried to be formed into single particles, but the fine chunks were hard and could not be formed into single particles. Then, when further crushed, the coating layer was peeled off, a large amount of residue was generated, and some of the divinylbenzene microspheres were broken. Also, the coating thickness was non-uniform for the single particles.

【0066】比較例7 微粒子として平均粒子径5μm、アスペクト比1.0
4、CV値4%のジビニルベンゼン系微球と被覆物質と
してスチレン及びアクリル酸エステルと重合開始剤とし
てベンゾイルパーオキサイドとを混合し、ポリビニルア
ルコール分散媒中で懸濁重合を行った。この重合反応で
得られた重合物は、数平均分子量3万、Tg80℃のス
チレン−アクリル系共重合体であり、ジビニルベンゼン
系微球を被覆していたが、被覆膜厚が粒子により異な
り、多重粒子や微球を含まない粒子も多数発生してい
た。
Comparative Example 7 Fine particles having an average particle diameter of 5 μm and an aspect ratio of 1.0
4. Divinylbenzene microspheres having a CV value of 4%, styrene and acrylate as a coating substance, and benzoyl peroxide as a polymerization initiator were mixed, and suspension polymerization was performed in a polyvinyl alcohol dispersion medium. The polymer obtained by this polymerization reaction was a styrene-acrylic copolymer having a number average molecular weight of 30,000 and a Tg of 80 ° C., and covered divinylbenzene-based microspheres. In addition, multiple particles and many particles not containing microspheres were also generated.

【0067】比較例8 微粒子として平均粒子径5μm、アスペクト比1.0
4、CV値4%のジビニルベンゼン系微球20gと被覆
物質としてキシレンに可溶な数平均分子量3万、Tg8
0℃のスチレン−アクリル系共重合体1gを分散媒であ
るキシレン100g中に均一に分散し混合物を得た。得
られた混合物をスプレードライ法により噴霧しながら加
熱、減圧下で溶媒を除去したところ、ジビニルベンゼン
系微球は、被覆されていたが、被覆膜厚が粒子により異
なり、多重粒子や微球を含まない粒子も多数発生してい
た。
Comparative Example 8 As fine particles, the average particle diameter was 5 μm and the aspect ratio was 1.0.
4, 20 g of divinylbenzene microspheres having a CV value of 4%, and a xylene-soluble number average molecular weight of 30,000 as a coating substance, Tg8
1 g of a styrene-acrylic copolymer at 0 ° C. was uniformly dispersed in 100 g of xylene as a dispersion medium to obtain a mixture. When the solvent was removed under heating and reduced pressure while spraying the obtained mixture by a spray drying method, divinylbenzene microspheres were coated, but the coating film thickness varied depending on the particles, and multiple particles and microspheres were obtained. Many particles containing no were also generated.

【0068】比較例9 被覆導電性微粒子に代えて、被覆していない導電性微粒
子を用いた以外は、実施例6と同様にして異方性導電膜
及び導電接続構造体を得た。得られた導電接続構造体の
接続抵抗値は充分低かったが、隣接する電極間でショー
トが発生していた。
Comparative Example 9 An anisotropic conductive film and a conductive connection structure were obtained in the same manner as in Example 6, except that uncoated conductive fine particles were used instead of the coated conductive fine particles. Although the connection resistance value of the obtained conductive connection structure was sufficiently low, a short circuit occurred between adjacent electrodes.

【0069】比較例10 被覆導電性微粒子として、懸濁重合により得られた被覆
導電性微粒子を用いた以外は、実施例6と同様にして異
方性導電膜及び導電接続構造体を得た。得られた導電接
続構造体は、隣接する電極間の線間絶縁性は保たれて
が、対向電極との接続がとれていないバンプがみられ
た。また、冷熱サイクルテストを行ったところ、隣接す
る電極間でショートするバンプがみられた。
Comparative Example 10 An anisotropic conductive film and a conductive connection structure were obtained in the same manner as in Example 6, except that the coated conductive fine particles obtained by suspension polymerization were used as the coated conductive fine particles. In the obtained conductive connection structure, bumps that were not connected to the counter electrode were observed, although the line insulation between adjacent electrodes was maintained. In addition, when a cooling / heating cycle test was performed, bumps that were short-circuited between adjacent electrodes were found.

【0070】[0070]

【発明の効果】本発明の微粒子の被覆方法は、上述の構
成からなるので、大がかりな装置を必要とせず、被覆さ
れない微粒子が発生しないため効率がよく、多重粒子が
発生しにくく、容易に被覆層の厚さを制御でき、大量に
微粒子を被覆でき、濡れ性の悪い微粒子や比重の大きい
微粒子も被覆することができる。従って、上記方法によ
り、粒子間で被覆層の厚さが均一な被覆微粒子を製造す
ることができる。また、本発明の被覆微粒子は、本発明
の微粒子の被覆方法を用いて被覆するため、微粒子の形
状が保たれたものである。更に、上記被覆微粒子は、微
粒子として導電性微粒子を用いると、接続抵抗が低く、
接続時の電気容量が大きく、接続が安定していて、リー
ク現象を起こさない。また、本発明の異方性導電接着剤
は、接続抵抗が低く、接続時の電気容量が大きく、接続
が安定していて、リーク現象を起こさない。また、本発
明の導電接続構造体は、接続抵抗が低く、接続時の電気
容量が大きく、接続が安定していて、リーク現象を起こ
さない。
As described above, the method for coating fine particles of the present invention has the above-described structure, does not require a large-scale apparatus, does not generate uncoated fine particles, is efficient, is less likely to generate multiple particles, and can be easily coated. The thickness of the layer can be controlled, a large amount of fine particles can be coated, and fine particles having poor wettability and high specific gravity can be coated. Therefore, coated fine particles having a uniform coating layer thickness among particles can be produced by the above method. Further, the coated fine particles of the present invention are coated using the fine particle coating method of the present invention, so that the shape of the fine particles is maintained. Furthermore, when the conductive fine particles are used as the fine particles, the connection fine particles have low connection resistance,
The electric capacity at the time of connection is large, the connection is stable, and no leak phenomenon occurs. Further, the anisotropic conductive adhesive of the present invention has a low connection resistance, a large electric capacity at the time of connection, a stable connection, and does not cause a leak phenomenon. Further, the conductive connection structure of the present invention has low connection resistance, large electric capacity at the time of connection, stable connection, and does not cause a leak phenomenon.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 201/00 C09J 201/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09J 201/00 C09J 201/00

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】 微粒子と被覆物質と分散媒とを混合して
混合物を調製後、前記分散媒を徐々に揮発させながら取
り除くことにより微粒子に被覆層を形成する微粒子の被
覆方法であって、前記微粒子は、平均粒子径が0.2〜
3000μm、アスペクト比が5未満、CV値が40%
以下であり、前記被覆層の厚さは、前記微粒子の平均粒
子径の1/4以下であることを特徴とする微粒子の被覆
方法。
1. A method for coating fine particles, wherein a mixture is prepared by mixing fine particles, a coating substance, and a dispersion medium, and then the dispersion medium is removed while gradually volatilizing to form a coating layer on the fine particles. The fine particles have an average particle diameter of 0.2 to
3000 μm, aspect ratio less than 5, CV value 40%
The method of coating fine particles, wherein the thickness of the coating layer is 1/4 or less of the average particle diameter of the fine particles.
【請求項2】 混合物を薄膜状、細線状又は微小塊状に
しながら分散媒を徐々に揮発させることを特徴とする請
求項1記載の微粒子の被覆方法。
2. The method for coating fine particles according to claim 1, wherein the dispersion medium is gradually volatilized while the mixture is formed into a thin film, a thin line or a fine lump.
【請求項3】 被覆物質は、樹脂を主成分とすることを
特徴とする請求項1又は2記載の微粒子の被覆方法。
3. The method for coating fine particles according to claim 1, wherein the coating substance is mainly composed of a resin.
【請求項4】 被覆物質は、分散媒に可溶な樹脂を主成
分とすることを特徴とする請求項1、2又は3記載の微
粒子の被覆方法。
4. The method for coating fine particles according to claim 1, wherein the coating substance mainly comprises a resin soluble in a dispersion medium.
【請求項5】 分散媒を徐々に揮発させながら取り除く
際に、微粒子間の間隔が、前記微粒子の平均粒子径以下
である微粒子が少なくとも半数以上存在することを特徴
とする請求項1〜4のいずれか1項に記載の微粒子の被
覆方法。
5. The method according to claim 1, wherein when removing the dispersion medium while volatilizing it gradually, there are at least half or more of the fine particles having an interval between the fine particles of not more than the average particle diameter of the fine particles. A method for coating fine particles according to any one of the preceding claims.
【請求項6】 少なくとも分散媒の大部分を取り除いた
後、外力により被覆物質の一部、又は、微粒子と被覆物
質の界面を破壊し、被覆された微粒子を単粒子化するこ
とを特徴とする請求項1〜5のいずれか1項に記載の微
粒子の被覆方法。
6. The method according to claim 6, wherein after removing at least most of the dispersion medium, a part of the coating material or an interface between the fine particles and the coating material is destroyed by an external force, and the coated fine particles are converted into single particles. A method for coating fine particles according to any one of claims 1 to 5.
【請求項7】 被覆層の厚さは、微粒子の平均粒子径の
1/10以下であることを特徴とする請求項1〜6のい
ずれか1項に記載の微粒子の被覆方法。
7. The method for coating fine particles according to claim 1, wherein the thickness of the coating layer is 1/10 or less of the average particle diameter of the fine particles.
【請求項8】 被覆層の厚さは、微粒子の平均粒子径の
5/(被覆層を形成する樹脂の分子量)1/2 以下(但
し、架橋樹脂の分子量は100万で算出する)であるこ
とを特徴とする請求項3〜7のいずれか1項に記載の微
粒子の被覆方法。
8. The thickness of the coating layer is 5 / (the molecular weight of the resin forming the coating layer) 1/2 or less of the average particle diameter of the fine particles (however, the molecular weight of the crosslinked resin is calculated as 1,000,000). The method for coating fine particles according to any one of claims 3 to 7, characterized in that:
【請求項9】 微粒子は、平均粒子径が0.5〜100
μm、アスペクト比が2未満、CV値が30%以下であ
ることを特徴とする請求項1〜8のいずれか1項に記載
の微粒子の被覆方法。
9. The fine particles have an average particle size of 0.5 to 100.
The method for coating fine particles according to any one of claims 1 to 8, wherein the particle size is less than 2, and the CV value is 30% or less.
【請求項10】 微粒子は、平均粒子径が1〜20μ
m、アスペクト比が1.4未満、CV値が20%以下で
あることを特徴とする請求項1〜9のいずれか1項に記
載の微粒子の被覆方法。
10. The fine particles have an average particle diameter of 1 to 20 μm.
The method for coating fine particles according to any one of claims 1 to 9, wherein m, the aspect ratio is less than 1.4, and the CV value is 20% or less.
【請求項11】 微粒子は、平均粒子径が3〜10μ
m、アスペクト比が1.1未満、CV値が10%以下で
あることを特徴とする請求項1〜10のいずれか1項に
記載の微粒子の被覆方法。
11. The fine particles have an average particle diameter of 3 to 10 μm.
The method for coating fine particles according to any one of claims 1 to 10, wherein m, the aspect ratio is less than 1.1, and the CV value is 10% or less.
【請求項12】 微粒子は、アスペクト比が1.05未
満、CV値が5%以下であることを特徴とする請求項1
〜11のいずれか1項に記載の微粒子の被覆方法。
12. The fine particles have an aspect ratio of less than 1.05 and a CV value of 5% or less.
12. The method for coating fine particles according to any one of items 11 to 11.
【請求項13】 微粒子は、比重が1.5以上であるこ
とを特徴とする請求項1〜12のいずれか1項に記載の
微粒子の被覆方法。
13. The method for coating fine particles according to claim 1, wherein the fine particles have a specific gravity of 1.5 or more.
【請求項14】 微粒子は、比重が3以上であることを
特徴とする請求項1〜13のいずれか1項に記載の微粒
子の被覆方法。
14. The method for coating fine particles according to claim 1, wherein the fine particles have a specific gravity of 3 or more.
【請求項15】 請求項1〜14のいずれか1項に記載
の微粒子の被覆方法を用いて被覆されたことを特徴とす
る被覆微粒子。
15. Coated fine particles coated by the method of coating fine particles according to claim 1. Description:
【請求項16】 平均粒子径が0.2μmより大きく4
000μm以下、アスペクト比が5未満、CV値が40
%以下であることを特徴とする請求項15記載の被覆微
粒子。
16. An average particle size of more than 0.2 μm
000 μm or less, aspect ratio is less than 5, CV value is 40
% Or less.
【請求項17】 平均粒子径が0.5〜100μm、ア
スペクト比が2未満、CV値が30%以下であることを
特徴とする請求項15記載の被覆微粒子。
17. The coated fine particles according to claim 15, wherein the average particle diameter is 0.5 to 100 μm, the aspect ratio is less than 2, and the CV value is 30% or less.
【請求項18】 平均粒子径が1〜20μm、アスペク
ト比が1.4未満、CV値が20%以下であることを特
徴とする請求項15記載の被覆微粒子。
18. The coated fine particles according to claim 15, wherein the average particle diameter is 1 to 20 μm, the aspect ratio is less than 1.4, and the CV value is 20% or less.
【請求項19】 平均粒子径が3〜10μm、アスペク
ト比が1.1未満、CV値が10%以下であることを特
徴とする請求項15記載の被覆微粒子。
19. The coated fine particles according to claim 15, wherein the average particle diameter is 3 to 10 μm, the aspect ratio is less than 1.1, and the CV value is 10% or less.
【請求項20】 微粒子は、少なくとも表面に導電層が
形成された導電性微粒子であることを特徴とする請求項
1〜14のいずれか1項に記載の微粒子の被覆方法。
20. The method for coating fine particles according to claim 1, wherein the fine particles are conductive fine particles having a conductive layer formed on at least the surface.
【請求項21】 微粒子は、少なくとも表面に導電層が
形成された導電性微粒子であることを特徴とする請求項
15〜19のいずれか1項に記載の被覆微粒子。
21. The coated fine particle according to claim 15, wherein the fine particle is a conductive fine particle having a conductive layer formed on at least a surface thereof.
【請求項22】 導電性微粒子は、その核を構成する材
料が高分子であることを特徴とする請求項21記載の被
覆微粒子。
22. The coated fine particle according to claim 21, wherein the material constituting the core of the conductive fine particle is a polymer.
【請求項23】 導電性微粒子は、その核を構成する材
料が金属であることを特徴とする請求項21記載の被覆
微粒子。
23. The coated fine particles according to claim 21, wherein the material constituting the core of the conductive fine particles is a metal.
【請求項24】 導電性微粒子は、その表面が金属被覆
されたものであることを特徴とする請求項21、22又
は23記載の被覆微粒子。
24. The coated fine particles according to claim 21, 22 or 23, wherein the conductive fine particles have a surface coated with a metal.
【請求項25】 導電性微粒子は、その表面が金メッキ
されたものであることを特徴とする請求項21〜24の
いずれか1項に記載の被覆微粒子。
25. The coated fine particle according to claim 21, wherein the conductive fine particle has a gold-plated surface.
【請求項26】 請求項21〜25のいずれか1項に記
載の被覆微粒子がバインダー樹脂中に分散していること
を特徴とする異方性導電接着剤。
26. An anisotropic conductive adhesive, wherein the coated fine particles according to claim 21 are dispersed in a binder resin.
【請求項27】 基板又は電気部品を構成する電極部同
士が、請求項21〜25のいずれか1項に記載の被覆微
粒子を介して貼り合わされ、かつ、前記被覆微粒子の被
覆層が加熱及び加圧によって流動することにより、前記
被覆微粒子の導電材料と前記電極部とが接触し、前記電
極部同士の導通が図られていることを特徴とする導電接
続構造体。
27. An electrode part constituting a substrate or an electric component is bonded via the coated fine particles according to any one of claims 21 to 25, and the coating layer of the coated fine particles is heated and heated. A conductive connection structure, wherein the conductive material of the coated fine particles comes into contact with the electrode portion by flowing under pressure, and conduction between the electrode portions is achieved.
【請求項28】 基板又は電気部品を構成する電極部同
士が、請求項26記載の異方性導電接着剤を介して貼り
合わされ、かつ、前記異方性導電接着剤中の被覆微粒子
の被覆層が加熱及び加圧によって流動することにより、
前記被覆微粒子の導電材料と前記電極部とが接触し、前
記電極部同士の導通が図られていることを特徴とする導
電接続構造体。
28. A coating layer of coated fine particles in the anisotropic conductive adhesive, wherein the electrode portions constituting the substrate or the electric component are bonded together via the anisotropic conductive adhesive according to claim 26. Flows by heating and pressurizing,
A conductive connection structure, wherein the conductive material of the coated fine particles is in contact with the electrode portion, and the electrode portions are electrically connected to each other.
JP29383299A 1998-10-27 1999-10-15 Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body Pending JP2000198880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29383299A JP2000198880A (en) 1998-10-27 1999-10-15 Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-305421 1998-10-27
JP30542198 1998-10-27
JP29383299A JP2000198880A (en) 1998-10-27 1999-10-15 Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body

Publications (1)

Publication Number Publication Date
JP2000198880A true JP2000198880A (en) 2000-07-18

Family

ID=26559575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29383299A Pending JP2000198880A (en) 1998-10-27 1999-10-15 Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body

Country Status (1)

Country Link
JP (1) JP2000198880A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517856A (en) * 2003-02-18 2006-08-03 ダイムラークライスラー・アクチェンゲゼルシャフト Particle coating method for rapid prototype generation process
JP2010503518A (en) * 2006-09-11 2010-02-04 ダウ グローバル テクノロジーズ インコーポレイティド Polyolefin dispersion technology used for resin-coated sand
JP2012052089A (en) * 2010-08-05 2012-03-15 Sumitomo Bakelite Co Ltd Functional particle, filler, resin composition for electronic part, electronic part, and semiconductor device
JP2016536763A (en) * 2013-09-10 2016-11-24 トリリオン サイエンス インコーポレイテッド Fixed array anisotropic conductive film using conductive particles and block copolymer paint
CN113117600A (en) * 2021-02-05 2021-07-16 许再华 Method and device for coating powder particles with coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517856A (en) * 2003-02-18 2006-08-03 ダイムラークライスラー・アクチェンゲゼルシャフト Particle coating method for rapid prototype generation process
JP2010503518A (en) * 2006-09-11 2010-02-04 ダウ グローバル テクノロジーズ インコーポレイティド Polyolefin dispersion technology used for resin-coated sand
JP2014097495A (en) * 2006-09-11 2014-05-29 Dow Global Technologies Llc Polyolefin dispersion technology used for resin coated sand
JP2012052089A (en) * 2010-08-05 2012-03-15 Sumitomo Bakelite Co Ltd Functional particle, filler, resin composition for electronic part, electronic part, and semiconductor device
JP2016536763A (en) * 2013-09-10 2016-11-24 トリリオン サイエンス インコーポレイテッド Fixed array anisotropic conductive film using conductive particles and block copolymer paint
CN113117600A (en) * 2021-02-05 2021-07-16 许再华 Method and device for coating powder particles with coating

Similar Documents

Publication Publication Date Title
JP4505017B2 (en) Insulating conductive fine particles and anisotropic conductive adhesive film containing the same
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
JPWO2003025955A1 (en) Coated conductive fine particles, method for producing coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP4686120B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
WO2007062131A2 (en) Conductive ink compositions
JP2007537572A (en) Insulating conductive particles for anisotropic conductive connection, method for producing the same, and anisotropic conductive connection material using the same
KR100861010B1 (en) Insulated Conductive Particles for Anisotropic Conduction and Anisotropic Conductive Film Using Same
JP4852311B2 (en) Conductive particle, anisotropic conductive material, and conductive connection structure
US7169332B2 (en) Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
JP2000198880A (en) Method for coating microparticle, coated microparticle, anisotropically electroconductive adhesive and electroconductive connective structural body
JP2002052333A (en) Coating method for fine particle, coated fine particle, anisotropic conductive adhesive, anisotropic conductive bonding film, and conductive connection structure
JP3679618B2 (en) Insulating coating conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP4157627B2 (en) Method for coating fine particles, coated fine particles, anisotropic conductive adhesive, conductive connection structure, and spacer for liquid crystal display element
CN101142634A (en) Advanced anisotropic insulated conductive ball for electric connection, preparing method thereof and product using the same
JP2005203319A (en) Coated conductive particle, anisotropic conductive material, and conductive connection structure
JP4052743B2 (en) Conductive fine particles
JPH087658A (en) Anisotropic conductive adhesive film
KR100637764B1 (en) Insulated conductive ball for anisotropic electric connection and its method of preparation and products using the same
KR20090073366A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JP5235305B2 (en) Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles
KR100589586B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Film Using the Same
JPH11134936A (en) Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure
JP2000129157A (en) Insulation coated electroconductive microparticle, anisotropic electroconductive adhesive and electroconductive connecting structure