JP5235305B2 - Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles - Google Patents

Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles Download PDF

Info

Publication number
JP5235305B2
JP5235305B2 JP2007001635A JP2007001635A JP5235305B2 JP 5235305 B2 JP5235305 B2 JP 5235305B2 JP 2007001635 A JP2007001635 A JP 2007001635A JP 2007001635 A JP2007001635 A JP 2007001635A JP 5235305 B2 JP5235305 B2 JP 5235305B2
Authority
JP
Japan
Prior art keywords
fine particles
droplets
projection
forming
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007001635A
Other languages
Japanese (ja)
Other versions
JP2008171594A (en
Inventor
功作 山田
進悟 本池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP2007001635A priority Critical patent/JP5235305B2/en
Publication of JP2008171594A publication Critical patent/JP2008171594A/en
Application granted granted Critical
Publication of JP5235305B2 publication Critical patent/JP5235305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、架橋した突起が被突起形成微粒子の表面に強固に接着した突起導電微粒子及び異方性導電材料、並びに突起導電微粒子を製造する方法に関わる。 The present invention is crosslinked projections related to a method of producing the firmly adherent collision Okoshishirube conductive particles and anisotropic conductive material, as well as projections conductive fine particles on the surface of the protrusions forming particulate.

異方性導電接着剤は、ベースをなす接着剤樹脂中に導電性微粒子が単分散されたものであり、電極端子の間に挟まれ、厚さ方向に加圧された状態で、導電性微粒子が該端子間の電気的接続を実現する。即ち、異方性導電接着剤は、端子面同士の物理的接続を行うと同時に、対応する端子間の電気的接続を行う。異方性導電接着剤は、一般には、フィルム又はペースト等の状態で、即ち、異方導電性フィルム(ACF)や異方導電ペースト(ACP)又は異方性導電インク(ACI)等として供給される。べースをなす接着剤には、エポキシ樹脂等の熱硬化性樹脂が用いられる。   An anisotropic conductive adhesive is a conductive fine particle in which conductive fine particles are monodispersed in a base adhesive resin, sandwiched between electrode terminals and pressed in the thickness direction. Realizes an electrical connection between the terminals. That is, the anisotropic conductive adhesive performs physical connection between the terminal surfaces, and at the same time, electrical connection between corresponding terminals. Anisotropic conductive adhesive is generally supplied in the form of a film or paste, that is, as an anisotropic conductive film (ACF), anisotropic conductive paste (ACP) or anisotropic conductive ink (ACI) or the like. The As the base adhesive, a thermosetting resin such as an epoxy resin is used.

異方性導電接着剤はまた、液晶表示装置(LCD)やプラズマディスプレイ装置(PDP)といった平面表示装置や駆動回路基板等において、表示パネル上や基板上の端子部と外部接続端子との接続や、パネル面又は基板面へのICチップの実装等に用いられる。異方性導電接着剤を用いて、ICチップのパネル面への表面実装(COG; Chip On Glass)や基板面への表面実装(COB; Chip On Board, COF; Chip On Flexible board)及び半導体表面実装パッケージ等が実現されている。例えば、液晶表示パネル本体とフレキシブル接続基板(FPC)やTCP(Tape Carrier Package: TABとも呼ばれる)との間の接続に用いられる場合、フレキシブル基板の端子部が、テープ状異方性導電接着剤を介して、パネル本体周辺部の端子部に貼り付けられる。この貼り付けの際には、対応する端子同士が接続する様に精密な位置合わせを行うと共に、導電性接着剤の配置箇所全体に亘って加熱・圧着が行われる。   Anisotropic conductive adhesives are also used in flat display devices such as liquid crystal display devices (LCDs) and plasma display devices (PDPs) and in drive circuit boards, for connecting terminals on display panels and substrates to external connection terminals. Used for mounting an IC chip on a panel surface or a substrate surface. Using anisotropic conductive adhesive, IC chip surface mounting (COG; Chip On Glass) and substrate mounting (COB; Chip On Board, COF; Chip On Flexible board) and semiconductor surface A mounting package or the like is realized. For example, when used for connection between a liquid crystal display panel body and a flexible connection substrate (FPC) or TCP (also called Tape Carrier Package: TAB), the terminal portion of the flexible substrate is made of a tape-like anisotropic conductive adhesive. To the terminal portion around the panel body. At the time of this pasting, precise positioning is performed so that corresponding terminals are connected to each other, and heating and pressure bonding are performed over the entire location where the conductive adhesive is disposed.

異方性導電接着剤用の導電微粒子には、金属のみからなる球状の粒子も用いられているが、樹脂微粒子に金属層を被覆したものが、微細端子間の接続等に広く用いられる。この金属層を被覆した樹脂微粒子は、実装時、一般に、150℃以上の高温下、約0.015〜0.02MPaの圧カで圧着される。この圧カを受けて、電極端子の間に挟まれて厚さ方向に加圧された微粒子は、適度に変形し、端子と出来るだけ広い面積で常時接触している必要があり、これによって、接続抵抗値を低減すると共に導電信頼性を向上した接続が可能となる。   As the conductive fine particles for the anisotropic conductive adhesive, spherical particles made of only metal are also used. However, a resin fine particle coated with a metal layer is widely used for connection between fine terminals. The resin fine particles coated with the metal layer are generally pressure-bonded with a pressure of about 0.015 to 0.02 MPa at a high temperature of 150 ° C. or higher during mounting. Upon receiving this pressure, the fine particles sandwiched between the electrode terminals and pressed in the thickness direction need to be appropriately deformed and always in contact with the terminals in as wide an area as possible. Connection with reduced connection resistance and improved conduction reliability is possible.

近年、電子回路に採用されているアルミニウム電極では、電極表面に酸化皮膜が形成され易く、酸化皮膜のために導通が妨げられ電気抵抗が大きくなってしまい、導通不良を起こす等の問題が指摘された。この場合においても、表面に導通性を有する突起を備える導電粒子を用いれば、突起部分が電極表面の酸化皮膜を突き破り、導通を確保出来て回路の信頼性が向上するとされ、ニッケル等の微小突起を形成した導電性無電解めっき粉体が出願されている(例えば、特許文献1参照)。また、基材粒子の重合性液滴とそれよりも径の小さな子粒子とを分散・衝突させて、突起粒子や突起導電性粒子を得る方法が出願されている(例えば、特許文献2参照)。
特開2000-243132号公報 特開2005-171096号公報
In recent years, with aluminum electrodes used in electronic circuits, an oxide film is easily formed on the surface of the electrode, and the oxide film prevents conduction and increases electrical resistance, causing problems such as poor conduction. It was. Even in this case, if conductive particles having conductive protrusions on the surface are used, the protrusions can break through the oxide film on the electrode surface, ensuring conduction and improving the reliability of the circuit. A conductive electroless-plated powder in which is formed has been filed (see, for example, Patent Document 1). Further, a method for obtaining protruding particles and protruding conductive particles by dispersing and colliding the polymerizable droplets of the base particles and the child particles having a smaller diameter than that is applied (for example, see Patent Document 2). .
JP 2000-243132 A JP 2005-171096 A

本発明者による背景技術の検討によれば、以下の事実が見出された。   According to the examination of the background art by the present inventors, the following facts have been found.

ニッケル等の金属の突起は塑性変形するため一度潰れれば形状が復元せず、信頼性が低い為、特殊な用途以外には向かない。   Since metal protrusions such as nickel are plastically deformed, they cannot be restored once they are crushed and their reliability is low, so they are not suitable for anything other than special applications.

基材粒子を液滴から形成する場合には、基材粒子用の液滴の粘度が低いと子粒子が吸収されてしまい、粘度が高いと殆ど接着せずに弱い接着力になってしまう等、突起微粒子に成型する事が非常に困難であるという問題が知見された。   When the substrate particles are formed from droplets, if the viscosity of the droplets for the substrate particles is low, the child particles are absorbed, and if the viscosity is high, the adhesive force is weak and hardly adheres. The problem was found that it was very difficult to mold into protruding fine particles.

本発明は、上記の現状に鑑み、突起微粒子の新しい製造方法を開発する事で、架橋した突起が微粒子表面上に強固に接着した突起微粒子を得、かかる突起微粒子を用いて突起導電微粒子及び異方性導電材料を提供する事を目的とする。   In view of the above-described situation, the present invention develops a new method for producing protruding fine particles, thereby obtaining protruding fine particles in which crosslinked protrusions are firmly adhered on the surface of the fine particles. An object is to provide an anisotropic conductive material.

本発明は、被突起形成微粒子とその表面上の突起とを備え、かつ、液晶表示装置またはプラズマディスプレイ装置の製造に用いられる導電性を有するとともに、異方性導電材料の構成成分となる突起導電微粒子であって、単量体の架橋物からなる突起が、上記被突起形成微粒子の表面上に形成されており、媒体における、上記被突起形成微粒子の分散、単量体の液滴の分散、上記被突起形成微粒子と液滴との衝突、上記被突起形成微粒子への液滴の付着、及び液滴の重合によって形成され、金属を用いた導電処理が表面に施されている突起導電微粒子、この突起導電微粒子を用いる異方性導電材料、及び突起微粒子の製造方法に係るものである。 The present invention is provided with a projection on its surface with the projections forming particulate, and which has a conductivity for use in manufacturing a liquid crystal display device or a plasma display device, protrusion conductive as a constituent of the anisotropic conductive material a fine, protrusions comprising a crosslinked product of monomer, the are formed on the surface of the protrusions forming particulate, in the medium, the dispersion of the target projection forming particulate, dispersed droplets of the monomer, the collision between the object to be projections formed fine particles and droplets, deposition of the droplets to the target projection forming fine particles, and are formed by polymerization of droplets, projections conductive particles electrically conductive treatment using a metal that has been applied to the surface, The present invention relates to an anisotropic conductive material using the protruding conductive fine particles and a method for manufacturing the protruding fine particles.

本発明によれば、突起用液滴の重合を被突起形成微粒子の表面上で行う事で、微粒子表面上に突起を強固に接着させた突起微粒子が得られ、かかる突起微粒子のその後の導電処理等によって高い接続信頼性を発揮させる事が出来る突起導電微粒子を得る事が出来る。   According to the present invention, by superposing the projection droplets on the surface of the projection-forming fine particles, the projection fine particles having the projections firmly adhered on the surface of the fine particles can be obtained, and the subsequent conductive treatment of the projection fine particles. As a result, it is possible to obtain protruding conductive fine particles capable of exhibiting high connection reliability.

微粒子表面上に強固に接着した突起を形成するという目的を、被突起形成微粒子の表面に重合性単量体の液滴を付着させ重合する事で、突起微粒子としての十分な機能、例えば、異方性導電材料用の突起導電微粒子の接続信頼性を損なう事なく実現する。   For the purpose of forming a strongly bonded protrusion on the surface of the fine particle, a sufficient function as the protruding fine particle, for example, a different function can be obtained by attaching a polymerizable monomer droplet onto the surface of the protrusion-forming fine particle and polymerizing it. This is achieved without impairing the connection reliability of the protruding conductive fine particles for the isotropic conductive material.

本発明は、架橋した突起が強固に接着した微粒子を製造する工程に於いて、媒体(以下では、「分散媒」とも言う。主として「分散液」を意味する)に被突起形成微粒子(以下では、「被突起処理用微粒子」又は単に「処理用微粒子」とも言う)を分散し、この分散した被突起形成微粒子に単量体の液滴(好ましくは、重合開始剤及び架橋性単量体を含有するもので、以下では、「突起用液滴」とも言う)を衝突せしめ、液滴を被突起形成微粒子に付着させた後、その液滴を重合して、被突起形成微粒子表面に突起を形成する事で、液滴に由来する突起が微粒子表面に強固に形成され、優れた突起微粒子が得られるという知見に基づくもので、更には、その後の導電処理によって、例えば、高い接続信頼性を発揮する突起導電微粒子が得られるという知見に基づくものである。   In the process of producing fine particles in which crosslinked protrusions are firmly bonded, the present invention provides protrusion-forming fine particles (hereinafter referred to as “dispersion medium”, mainly referred to as “dispersion liquid”). `` Dispersion-treated fine particles '' or simply `` treatment fine particles '' are dispersed, and monomer droplets (preferably a polymerization initiator and a crosslinkable monomer are added to the dispersed projection-formed fine particles. In the following, it is also referred to as `` droplet for projection ''), and after the droplet is attached to the projection-formed fine particles, the droplet is polymerized to form projections on the surface of the projection-formed fine particles. By forming, the protrusions derived from the droplets are firmly formed on the surface of the fine particles, and excellent protruding fine particles can be obtained. Protruding conductive fine particles that can be obtained It is based on the look.

突起を形成する為の液滴中の架橋性単量体は、その20重量%以上が多官能架橋性単量体であるのが好ましく、また、液滴は、シード重合方式によって形成するのが望ましく、更に、液滴は、平均直径が0.1μmから3μmの範囲にあるのが良く、また、突起としては、被突起形成微粒子側に略円錐台形の基部を有し、突起が前記基部を介して被突起形成微粒子の表面上に形成されているのが望ましい。   The crosslinkable monomer in the droplets for forming the protrusions is preferably 20% by weight or more of a polyfunctional crosslinking monomer, and the droplets are formed by a seed polymerization method. Desirably, the droplets should have an average diameter in the range of 0.1 μm to 3 μm, and the protrusion has a substantially frustoconical base on the protrusion-forming fine particle side, and the protrusion passes through the base. It is desirable that it is formed on the surface of the projection-forming fine particles.

以上で得られる突起微粒子には、各種の導電処理を施す事が出来、かかる微粒子を突起導電微粒子として用いる事が出来る。好ましくは、突起導電微粒子は、それを本質的成分として備える異方性導電材料を構成する。   The protruding fine particles obtained as described above can be subjected to various conductive treatments, and such fine particles can be used as the protruding conductive fine particles. Preferably, the protruding conductive fine particles constitute an anisotropic conductive material including the same as an essential component.

以下に本発明を詳述する。   The present invention is described in detail below.

分散媒に、処理用微粒子を分散し、この分散物において、処理用微粒子に、単量体(架橋性単量体を含むもので、好ましくは、重合開始剤を添加したもの)の突起用液滴を衝突せしめ、突起用液滴を処理用微粒子表面に付着させた後、突起用液滴の架橋性単量体を重合して、処理用微粒子表面上に単量体の架橋物からなる突起を形成する。   In this dispersion, fine particles for processing are dispersed in a dispersion medium, and the liquid for protrusions of the monomer (containing a crosslinkable monomer, preferably containing a polymerization initiator) is added to the fine particles for processing. After the droplets collide and the protrusion droplets adhere to the surface of the processing fine particles, the crosslinkable monomer of the protrusion droplets is polymerized to form protrusions made of a cross-linked monomer on the surface of the processing fine particles. Form.

(1)(被突起形成微粒子)
処理用微粒子としては、通常の樹脂微粒子を用いる事が出来る。樹脂微粒子を得る方法は、特に制限されず、例えば、乳化重合、懸濁重合、シード重合、分散重合、ソープフリー重合等の重合法による方法等が挙げられる。
(1) (projection-forming fine particles)
As the processing fine particles, ordinary resin fine particles can be used. The method for obtaining the resin fine particles is not particularly limited, and examples thereof include a method by a polymerization method such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, soap-free polymerization, and the like.

本発明にかかる処理用微粒子の種類としては、所望の条件を満たすものであれば良く、特に制限されるものではないが、樹脂微粒子が良く、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン等のオレフィン系樹脂;ポリスチレン等のスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリメチル(メタ)アクリレート等のアクリル系樹脂;ポリブタジエン、ポリイソプレン等の共役ジエン系樹脂;フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等の縮合系樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド等からなる樹脂微粒子等が挙げられ、中でも、微粒子として必要な任意の機械的強度や弾性回復率等の物性を有する樹脂微粒子を得易い事等から、エチレン性不飽和基を有する重合性単量体の1種類若しくは2種類以上を(共)重合させて得られる樹脂からなる樹脂微粒子等が好適に用いられる。樹脂微粒子は、単一の種類で用いられても良く、2種以上が併用されても良い。なお、(メタ)アクリレートはアクリレート又はメタクリレートを意味し、(共)重合は単独重合又は共重合を意味し、これらは、場合によっては、それらの双方が並存する系をも意味する。   The kind of the processing fine particles according to the present invention is not particularly limited as long as it satisfies the desired conditions, and is preferably a resin fine particle, for example, an olefin resin such as polyethylene, polypropylene, polyisobutylene, etc. ; Styrene resins such as polystyrene; Vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; Acrylic resins such as polymethyl (meth) acrylate; Conjugated diene resins such as polybutadiene and polyisoprene; Phenol formaldehyde resin, Melamine formaldehyde Resin, condensation resin such as benzoguanamine formaldehyde resin, urea formaldehyde resin; resin fine particles made of polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, etc. are mentioned, among them, any mechanical required as fine particles It is made of a resin obtained by (co) polymerizing one or more polymerizable monomers having an ethylenically unsaturated group because it is easy to obtain resin fine particles having physical properties such as degree of elasticity and elastic recovery rate. Resin fine particles and the like are preferably used. The resin fine particles may be used as a single type, or two or more types may be used in combination. Note that (meth) acrylate means acrylate or methacrylate, and (co) polymerization means homopolymerization or copolymerization, and in some cases also means a system in which both of them coexist.

エチレン性不飽和基を有する重合性単量体を重合させて樹脂微粒子を得る場合、非架橋性単量体と架橋性単量体とを併用して共重合させる事により、樹脂微粒子を得る事が好ましい。架橋性単量体を併用する事により、得られる樹脂微粒子のゲル分率が向上して、樹脂微粒子ひいては導電性微粒子の機械的強度、弾性回復率、耐熱性等がより一層優れたものとなる。   When polymerizing a polymerizable monomer having an ethylenically unsaturated group to obtain resin fine particles, resin fine particles can be obtained by copolymerizing a non-crosslinkable monomer and a crosslinkable monomer together. Is preferred. By using a crosslinkable monomer in combination, the gel fraction of the resulting resin fine particles is improved, and the mechanical strength, elastic recovery rate, heat resistance, etc. of the resin fine particles and thus the conductive fine particles are further improved. .

非架橋性単量体としては、特に制限されるものではないが、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、2,4,5-トリメチルスチレン、2,4,6-トリメチルスチレン、p-(n-ブチル)スチレン、p-(t-ブチル)スチレン、p-(n-ヘキシル)スチレン、p-(n-オクチル)スチレン、p-(n-ドデシル)スチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロルスチレン、クロルメチルスチレン、3,4-ジクロルスチレン、等のスチレン系単量体;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、等のカルボン酸系単
量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート系単量体;2-ヒドロキシルエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート、等の酸素原子含有(メタ)アクリレート系単量体;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル系単量体;メチルビニルエーテル、エチルビニルエーテル、プロピロビニルエーテル等のビニルエーテル系単量体;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等のビニルエステル系単量体;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素系単量体;塩化ビニル、フッ化ビニル、トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン基含有単量体等が挙げられる。これらの非架橋性単量体は、単独で用いられて良く、2種以上が併用されても良い。
The non-crosslinkable monomer is not particularly limited. For example, styrene, α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethyl Styrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, 2,4,5-trimethylstyrene, 2,4,6-trimethylstyrene, p- (n-butyl) styrene, p- (t-butyl) styrene, p- (n-hexyl) styrene, p- (n-octyl) styrene, p- (n-dodecyl) styrene, p-methoxystyrene, p- Styrene monomers such as phenylstyrene, p-chlorostyrene, chloromethylstyrene, 3,4-dichlorostyrene; carboxylic monomers such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride; Methyl (meth) acrylate, ethyl (meth) acrylate, propylene (Meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, etc. Alkyl (meth) acrylate monomers; 2-hydroxylethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, and other oxygen atom-containing (meth) acrylates Monomers; Unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. No vinyl Ester monomers; Unsaturated hydrocarbon monomers such as ethylene, propylene, isoprene and butadiene; Halogen groups such as vinyl chloride, vinyl fluoride, trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate Containing monomers and the like. These non-crosslinkable monomers may be used alone or in combination of two or more.

また、架橋性単量体としては、特に制限されるものではないが、例えば、ジビニルベンゼン、ジビニルトルエン等の多官能ビニル系単量体;テトラメチレンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシドジ(メタ)アクリレート、テトラエチレンオキシド(メタ)アクリレート、1,6-ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオール(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリジ(メタ)アクリレート、等の多官能ジ(メタ)アクリレート;ビニルトリメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、等のシラン含有系単量体;トリアリルイソシアヌレート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等のアリル基含有系単量体、1,3-ブタジエン、イソプレン等の共役ジエン系単量体等が挙げられる。これらの架橋性単量体は、単独で用いても良いし、2種以上が併用されても良い。   Further, the crosslinkable monomer is not particularly limited, but examples thereof include polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene; tetramethylene di (meth) acrylate, ethylene glycol di (meth) Acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethylene oxide di (meth) acrylate, tetraethylene oxide (meth) acrylate, 1,6-hexane di (meth) acrylate, neopentyl glycol di (meth) acrylate 1,9-nonanediol (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, tetra Multifunctional di (meth) acrylates such as tyrolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol di (meth) acrylate, glycerol tridi (meth) acrylate; vinyltrimethoxysilane, trimethoxysilylstyrene Silane-containing monomers such as γ- (meth) acryloxypropyltrimethoxysilane; allyl group-containing monomers such as triallyl isocyanurate, diallyl phthalate, diallyl acrylamide, diallyl ether, 1,3-butadiene And conjugated diene monomers such as isoprene. These crosslinkable monomers may be used alone or in combination of two or more.

非架橋性単量体と架橋性単量体とを併用する場合の架橋性単量体の使用量は、特に制限されるものではないが、単量体100重量部について、架橋性単量体5重量部以上を含有する事が好ましく、より一層好ましくは架橋性単量体20重量部以上、更に好ましくは50重量部以上である。架橋性単量体の使用量が5重量部未満であると、得られる樹脂微粒子のゲル分率が十分に向上せず、粘着性が現れたり、熱可塑性の性質の強いものになったりする傾向にある。   The amount of the crosslinkable monomer used in combination of the noncrosslinkable monomer and the crosslinkable monomer is not particularly limited, but the crosslinkable monomer is used for 100 parts by weight of the monomer. The content is preferably 5 parts by weight or more, more preferably 20 parts by weight or more, and still more preferably 50 parts by weight or more. If the amount of the crosslinkable monomer used is less than 5 parts by weight, the gel fraction of the resulting resin fine particles will not be sufficiently improved, tending to appear sticky or have a strong thermoplastic property It is in.

上記樹脂微粒子の製造に際しては、必要に応じ、重合開始剤、高分子保護剤(保護コロイド)、分散安定剤、膨潤助剤、連鎖移動剤、粘度調整剤、着色剤(染料や顔料)、消泡剤等の各種添加剤の1種若しくは2種以上が用いられても良い。   In the production of the above resin fine particles, a polymerization initiator, a polymer protective agent (protective colloid), a dispersion stabilizer, a swelling aid, a chain transfer agent, a viscosity modifier, a colorant (dye or pigment), an extinguishing agent, if necessary. One or more of various additives such as foaming agents may be used.

重合開始剤としては、特に制限されるものではないが、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロル過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。これらの重合開始剤は、単独で用いても良いし、2種以上が併用されても良い。   The polymerization initiator is not particularly limited. For example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t- Organic peroxides such as butylperoxy 2-ethylhexanoate and di-t-butyl peroxide; azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4-dimethylvaleronitrile), etc. And azo compounds. These polymerization initiators may be used alone or in combination of two or more.

上記重合開始剤の使用量は、特に制限されるものではないが、前記架橋性単量体の合計量100重量部に対して、重合開始剤0.1〜10重量部である事が好ましく、更に好ましくは、0.5〜5重量部である。架橋性単量体の合計量100重量部に対する重合開始剤の使用量がO.1重量部未満であると、重合反応が円滑に進行しない事があり、逆に、架橋性単量体の合計量100重量部に対する重合開始剤の使用量が10重量部を超えると、得られる樹脂微粒子の重合度(分子量)が低くなり過ぎて、樹脂微粒子ひいては導電性微粒子の機械的強度や耐熱性が不十分となる事がある。   The amount of the polymerization initiator used is not particularly limited, but is preferably 0.1 to 10 parts by weight of the polymerization initiator, more preferably 100 parts by weight of the total amount of the crosslinkable monomers. Is 0.5 to 5 parts by weight. When the amount of the polymerization initiator used is less than 0.1 part by weight based on 100 parts by weight of the total amount of the crosslinkable monomer, the polymerization reaction may not proceed smoothly. When the amount of the polymerization initiator used exceeds 100 parts by weight based on 100 parts by weight, the degree of polymerization (molecular weight) of the resulting resin fine particles becomes too low, and the mechanical strength and heat resistance of the resin fine particles and thus the conductive fine particles are not good. It may be enough.

以上により重合した処理用微粒子は、シード重合や分散重合、ソープフリー重合等の場合は粒子径が揃っている為、分級の必要はないが、乳化重合や懸濁重合では、分級処理をして粒子径を揃える必要がある。この場合、偏差係数は20%以下、更に好ましくは、10%以下、出来れば、5%以下が好ましい。   In the case of seed polymerization, dispersion polymerization, soap-free polymerization, etc., the fine particles for treatment polymerized as described above have the same particle size, so classification is not necessary, but in emulsion polymerization and suspension polymerization, classification treatment is performed. It is necessary to align the particle diameter. In this case, the deviation coefficient is preferably 20% or less, more preferably 10% or less, and preferably 5% or less.

処理用微粒子を形成するのに用いる分散媒としては、特に制限されないが、水若しくはアルコールが好ましく、アルコールの場合には、必要に応じてシード液滴が溶解しない事を確認する必要がある。分散媒には、必要に応じて、界面活性剤や保護コロイドを添加する事が出来る。界面活性剤としては、一般に用いられるアニオン、ノニオン又はカチオンの活性剤を適宜選択して用いる事が出来る。保護コロイドとしては、一般の水溶性高分子、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルニトリル等を使用出来る。   The dispersion medium used for forming the processing fine particles is not particularly limited, but water or alcohol is preferable. In the case of alcohol, it is necessary to confirm that the seed droplets do not dissolve if necessary. A surfactant and a protective colloid can be added to the dispersion medium as necessary. As the surfactant, generally used anionic, nonionic or cationic active agents can be appropriately selected and used. As the protective colloid, general water-soluble polymers, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile and the like can be used.

(2)(突起用液滴)
突起になり得る液滴は、上述の通常の樹脂微粒子に用いられる組成と同じものからなる事が出来る。通常の樹脂微粒子用のシード液滴と同様、非架橋性単量体と架橋性単量体とを併用する場合の架橋性単量体の使用量は、特に制限されるものではないが、好ましくは、架橋性単量体20重量部以上、更に好ましくは、架橋性単量体を100重量%としたうち、多官能架橋性単量体が20重量%以上である。多官能架橋性単量体の使用量が多い程、高い強度の突起が得られる傾向にある。
(2) (Drop for projection)
The droplets that can become protrusions can be made of the same composition as that used for the above-mentioned ordinary resin fine particles. As in the case of ordinary seed droplets for resin fine particles, the amount of the crosslinkable monomer used in combination with the noncrosslinkable monomer and the crosslinkable monomer is not particularly limited, but preferably Is at least 20 parts by weight of the crosslinkable monomer, more preferably, the polyfunctional crosslinkable monomer is at least 20% by weight out of 100% by weight of the crosslinkable monomer. As the amount of the polyfunctional crosslinkable monomer used is larger, a higher strength protrusion tends to be obtained.

突起用液滴を作る方法としては、一般のシード重合、分散重合、ソープフリー重合等の方法を用いる事が出来るが、重合する前には、媒体中や処理用微粒子の表面に存在し、重合してから処理用微粒子の表面に所望の突起が形成される状態に維持出来る必要がある。媒体又は分散媒は、上述の処理用微粒子形成の為の媒体と同様の組成のもので良い。これらの液滴を形成する方法には、具体的には、以下の手段を利用する事が出来る。   As a method for producing the droplets for protrusions, general seed polymerization, dispersion polymerization, soap-free polymerization, and the like can be used. Before polymerization, the polymer exists on the surface of the medium or processing fine particles and polymerizes. Then, it is necessary to be able to maintain a state where desired protrusions are formed on the surface of the processing fine particles. The medium or the dispersion medium may have the same composition as the medium for forming the processing fine particles described above. Specifically, the following means can be used for forming these droplets.

即ち、1つ目は界面活性剤がミセルを形成する特色を利用して液滴を形成する、乳化重合方式によるものである。   That is, the first is based on the emulsion polymerization method in which the surfactant forms droplets using the feature of forming micelles.

利用可能な界面活性剤としては、カチオン性の第四級アンモニウム、アルキルアミンオキサイド等、アニオン性のサルフェート、エーテルサルフェート、スルホネート、リン酸エステル、スルホサクシネート等、ノニオン性のアルキルフェノールEO(エチレンオキサイド)、高級アルコールEO、脂肪酸エステル、アミド、ポリエチレングリコール、ポリグリセリンエステル、EO-PO(エチレンオキサイド-プロピレンオキサイド)ブロックポリマー等を使用する事が出来る。これらの界面活性剤の濃度は、分散媒100重量部に対して、0.1〜20重量部、更に好ましくは、0.5〜5.0重量部が適切であるが、添加するモノマーの量により適宜決定する事が出来る。この方法により、0.05μm〜0.10μmの平均直径範囲で、直径が非常に揃った単分散液滴を容易に形成する事が出来る。   Available surfactants include cationic quaternary ammonium, alkylamine oxide, anionic sulfate, ether sulfate, sulfonate, phosphate ester, sulfosuccinate, etc., nonionic alkylphenol EO (ethylene oxide) Higher alcohol EO, fatty acid ester, amide, polyethylene glycol, polyglycerin ester, EO-PO (ethylene oxide-propylene oxide) block polymer, etc. can be used. The concentration of these surfactants is suitably 0.1 to 20 parts by weight, more preferably 0.5 to 5.0 parts by weight, with respect to 100 parts by weight of the dispersion medium, but it may be appropriately determined depending on the amount of monomer added. I can do it. By this method, it is possible to easily form monodisperse droplets having very uniform diameters in an average diameter range of 0.05 μm to 0.10 μm.

2つ目の方法は、水溶性重合開始剤がミセルを形成する特色を利用して液滴を形成する、ソープフリー重合方式によるものである。   The second method is based on a soap-free polymerization method in which a water-soluble polymerization initiator forms droplets by utilizing the feature of forming micelles.

利用可能な水溶性重合開始剤としては、水溶性アゾ重合開始剤、3級アミン等を使用する事が出来る。これらの重合開始剤の濃度は、分散媒100重量部に対して、0.1〜20重量部、更に好ましくは、0.5〜5.0重量部が適切であるが、添加するモノマーの量により適宜決定する事が出来る。この方法により、0.10μm〜1.00μmの平均直径範囲で、直径が非常に揃った単分散液滴を容易に形成する事が出来る。   Usable water-soluble polymerization initiators include water-soluble azo polymerization initiators and tertiary amines. The concentration of these polymerization initiators is suitably 0.1 to 20 parts by weight, more preferably 0.5 to 5.0 parts by weight, with respect to 100 parts by weight of the dispersion medium, but it may be appropriately determined depending on the amount of monomer added. I can do it. By this method, it is possible to easily form monodisperse droplets having very uniform diameters in an average diameter range of 0.10 μm to 1.00 μm.

3つ目の方法は、水溶性高分子がミセルを形成する特色を利用して液滴を形成する、分散重合方式によるものである。   The third method is based on a dispersion polymerization method in which a water-soluble polymer forms droplets using the feature of forming micelles.

これらの水溶性高分子としては、ポリビニルピロリドン、ポリビニルアルコール、カルボキシセルロース、ヒドロキシエチルセルロース等が適切であり、水溶性高分子の濃度は、添加するモノマーの量により適宜決定する事が出来るが、分散媒100重量部に対して、0.1〜20重量部、更に好ましくは、0.5〜10.0重量部が適切である。この方法により、0.10μm〜4.0μmの平均直径範囲で、直径が非常に揃った単分散液滴を容易に形成する事が出来る。   As these water-soluble polymers, polyvinyl pyrrolidone, polyvinyl alcohol, carboxycellulose, hydroxyethyl cellulose and the like are suitable, and the concentration of the water-soluble polymer can be appropriately determined depending on the amount of the monomer to be added. 0.1 to 20 parts by weight, more preferably 0.5 to 10.0 parts by weight is appropriate for 100 parts by weight. By this method, it is possible to easily form monodisperse droplets having very uniform diameters in an average diameter range of 0.10 μm to 4.0 μm.

界面活性剤を利用する液滴形成方法と水溶性高分子を利用する液滴形成方法では、モノマーの中に重合開始剤を添加する必要がある。   In a droplet forming method using a surfactant and a droplet forming method using a water-soluble polymer, it is necessary to add a polymerization initiator in the monomer.

添加できる重合開始剤としては、ラジカル発生能を有する有機過酸化物のパーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル化合物等を利用する事が出来、ラジカル発生能を有するアゾ化合物としては、ジアゾアミノベンゼン、ビスアジドホーメート、ビスアゾエステル、ビスジオキソトリアゾリン誘導体、ジフルオロジアジン等を利用する事が出来る。   Polymerization initiators that can be added include peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyester compounds, etc., which have radical generating ability. As the azo compound having radical generating ability, diazoaminobenzene, bisazidoformate, bisazoester, bisdioxotriazoline derivative, difluorodiazine and the like can be used.

以上の様に形成される突起用液滴(シード重合法で言う「シード粒子」に相当)が架橋性単量体を吸収し易くする為には、膨潤助剤を分散媒中で使用する事が出来る。   In order for the droplets for protrusions formed as described above (corresponding to “seed particles” in the seed polymerization method) to easily absorb the crosslinkable monomer, a swelling aid should be used in the dispersion medium. I can do it.

膨潤助剤としては、シード重合法又は分散重合法において、液滴(種粒子とも言う)への吸着若しくは吸収を促進させ得るものであれば良く、特に制限されるものではないが、例えば、エタノール等のアルコール類やイソアミル等が挙げられる。これらの膨潤助剤は、単独で用いられても良いし、2種類以上が併用されても良い。また、単量体は、ホモジナイザ、超音波等による処理によって分散させて、液滴に吸収し易くする事が出来る。   The swelling auxiliary agent is not particularly limited as long as it can promote the adsorption or absorption to the droplets (also referred to as seed particles) in the seed polymerization method or the dispersion polymerization method. And alcohols such as isoamyl and the like. These swelling aids may be used alone or in combination of two or more. Further, the monomer can be dispersed by treatment with a homogenizer, ultrasonic waves, etc., and can be easily absorbed into the droplets.

突起用液滴に使用できる単量体としては、上述した様に、処理用微粒子に使用できる単量体を使用する事が出来るが、突起が難なく酸化皮膜を突き破る必要があるので、ある程度の硬度が必要である。したがって、液滴に用いる架橋性単量体100重量%のうち、20重量%以上、更に好ましくは、40重量%以上が多官能架橋性単量体である事が望ましい。突起になり得る液滴の大きさは、0.1μmから3μmまでの平均直径範囲のもので良く、望ましくは、0.2μmから1μmまでである。0.1μm未満では、突起として作用し難く、酸化皮膜を突き破る事が出来難い。逆に、3μmを超えると、粒子の形状がいびつになり易く、安定な導電性を得る事が難くなる。   As the monomer that can be used for the protrusion droplets, as described above, a monomer that can be used for the processing fine particles can be used. However, since the protrusions need to break through the oxide film without difficulty, a certain degree of hardness can be used. is necessary. Accordingly, it is desirable that 20% by weight or more, more preferably 40% by weight or more of 100% by weight of the crosslinkable monomer used in the droplets is a polyfunctional crosslinkable monomer. The size of the droplet that can become a protrusion may be in the average diameter range of 0.1 μm to 3 μm, and preferably 0.2 μm to 1 μm. If it is less than 0.1 μm, it does not easily act as a protrusion, and it is difficult to break through the oxide film. On the contrary, if it exceeds 3 μm, the shape of the particles tends to be distorted, and it becomes difficult to obtain stable conductivity.

(3)(突起微粒子の製造)
被突起形成微粒子とその表面上の突起とを備える突起微粒子を製造するにあたっては、上述の処理用微粒子、突起用液滴、分散媒、各種添加剤、超音波等の衝突手段等を用いる事が出来る。突起微粒子の製造方法は、具体的に、(a)被突起形成微粒子を媒体において分散させる工程、(b)単量体の液滴を分散させる工程、(c)被突起形成微粒子と液滴とを衝突させる工程、(d)被突起形成微粒子と液滴とを付着させる工程、及び(e)液滴を重合させる工程を含む。
(3) (Manufacture of protruding fine particles)
In manufacturing the projection fine particles including the projection-forming fine particles and the projections on the surface, it is possible to use the above-mentioned treatment fine particles, projection droplets, dispersion medium, various additives, collision means such as ultrasonic waves, and the like. I can do it. Specifically, the method for producing projection fine particles includes: (a) a step of dispersing projection-formed fine particles in a medium; (b) a step of dispersing monomer droplets; and (c) projection-formed fine particles and droplets. (D) a step of attaching the projection forming fine particles and the droplet, and (e) a step of polymerizing the droplet.

処理用微粒子と突起用液滴の分散、衝突には、分散媒に処理用微粒子を分散させたものに、分散媒に突起用液滴を分散させたものを混合する方法による事が出来、また、前者(処理用微粒子)を後者(突起用液滴)の分散物に、また逆に、後者を前者の分散物に添加する方法による事が出来る。分散媒は、特に制限されないが、処理用微粒子の製造や突起用液滴の製造等に用いるものを、そのままか、又は新たに作製して用いる事が出来る。   The dispersion and collision of the processing fine particles and the protrusion droplets can be performed by mixing the dispersion of the processing fine particles in a dispersion medium with the dispersion of the protrusion droplets in a dispersion medium. The former (fine particles for treatment) can be added to the dispersion of the latter (droplets for protrusions), and conversely, the latter can be added to the former dispersion. The dispersion medium is not particularly limited, and a dispersion medium used for the production of processing fine particles, the production of droplets for protrusions, or the like can be used as it is or newly prepared.

混合したものを撹拌等して、処理用微粒子と突起用液滴を衝突せしめ、処理用微粒子に液滴を付着させ、架橋前の突起を形成する。衝突のための手段は、特に制限されないが、撹拌や、ホモジナイザ、超音波等による処理が入手し易い一般的なものである。付着の性質、強さや突起の形状は、液滴の粘度、液滴と処理用微粒子との相性、架橋性単量体の大きさ等によって、任意に選択する事が出来る。   The mixture is agitated and the like so that the processing fine particles and the projection droplets collide with each other, and the droplets adhere to the processing fine particles to form projections before crosslinking. The means for collision is not particularly limited, but is a general one that is easily available for processing by stirring, homogenizer, ultrasonic waves, or the like. The nature of adhesion, strength, and shape of the protrusion can be arbitrarily selected depending on the viscosity of the droplet, the compatibility between the droplet and the processing fine particles, the size of the crosslinkable monomer, and the like.

液滴の付着や突起の数、形状等は、顕微鏡で観察しながら決める事が出来、この際には、液滴が好ましい状態になった段階で、加熱して架橋性単量体を重合せしめて、突起微粒子を得る事が出来る。液滴の被突起形成微粒子側に略円錐台形の基部を形成させ、この液滴の基部を介して突起を被突起形成微粒子の表面上に形成する事が出来る。   The adhesion of the droplets and the number and shape of the protrusions can be determined while observing under a microscope. At this time, when the droplets are in a preferable state, they are heated to polymerize the crosslinkable monomer. Thus, fine projection particles can be obtained. A substantially frustoconical base can be formed on the projection-forming fine particle side of the droplet, and the projection can be formed on the surface of the projection-forming fine particle via the base of the droplet.

衝突しなかった液滴や、液滴由来の不要な架橋粒子は、適宜に取り除く必要がある。取り除く方法としては、突起微粒子のみを沈降させて、浮遊している不要架橋粒子を流し捨てる方法、分級によって不要架橋粒子を除去する方法、篩や濾過によって不要架橋粒子を除去する方法等を採る事が出来る。   Droplets that did not collide and unnecessary crosslinked particles derived from the droplets need to be removed appropriately. As a removal method, a method in which only the protruding fine particles are settled and the unnecessary cross-linked particles floating are washed away, a method of removing unnecessary cross-linked particles by classification, a method of removing unnecessary cross-linked particles by sieving or filtration, etc. I can do it.

得られる突起微粒子は、突起導電微粒子にする為には、導電処理を施す必要がある。導電性材料としては、Ni、Cu、Au、Ag、Pd、In等の金属等を用いる事が出来る。突起樹脂微粒子の表面に導電層を形成する方法としては、特に制限されず、例えば、無電解メッキ、蒸着、スパッタリング、イオンプレーティング、物理的乾式又は湿式コーティング等、公知の手法等で行う事が出来る。   In order to make the resulting projection fine particles into bump conductive fine particles, it is necessary to conduct a conductive treatment. As the conductive material, metals such as Ni, Cu, Au, Ag, Pd, and In can be used. The method for forming the conductive layer on the surface of the protruding resin fine particles is not particularly limited, and may be performed by a known method such as electroless plating, vapor deposition, sputtering, ion plating, physical dry or wet coating, etc. I can do it.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれらの実施例のみに制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
(被突起形成微粒子の製造)
予め、ビーカに単量体として1,6-ヘキサンジオール20重量部、n-ラウリルアクリレート1重量部及び重合開始剤として過酸化ベンゾイル0.2重量部を入れ、均一に混合し単量体溶液を準備する。別に、セパラブルフラスコ反応器に、ポリビニルアルコール(日本合成化学工業(株)製)の5%水溶液20重量部を入れ、これに前記の単量体溶液を加え、良く撹拌した後、イオン交換水を120重量部加える。次に、この溶液を撹拌しながら、窒素気流下、80℃で18時間反応を行う。得られる微粒子を熱水で洗浄し、その後、水ひ分級操作を行い、平均粒子径3.8μm、Cv値4.8%の樹脂粒子を得る。
(Example 1)
(Manufacture of protrusion-forming fine particles)
First, 20 parts by weight of 1,6-hexanediol as a monomer, 1 part by weight of n-lauryl acrylate and 0.2 part by weight of benzoyl peroxide as a polymerization initiator are mixed in a beaker, and uniformly mixed to prepare a monomer solution. . Separately, in a separable flask reactor, 20 parts by weight of a 5% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was added, and the monomer solution was added to this and stirred well, followed by ion-exchanged water. 120 parts by weight are added. Next, while stirring this solution, the reaction is carried out at 80 ° C. for 18 hours under a nitrogen stream. The obtained fine particles are washed with hot water and then subjected to a water classification operation to obtain resin particles having an average particle diameter of 3.8 μm and a Cv value of 4.8%.

(突起微粒子及び突起導電微粒子の製造)
300mlのセパラブルフラスコ内へ、被突起処理用微粒子を30重量部、エタノール80重量部、脱イオン水30重量部、PVP(和光純薬(株)製K-30)3.6重量部を投入し、超音波分散により被突起処理用微粒子の分散液を作製する。次に、50mlのビーカに対し、ネオペンチルグリコールジメタクリレート0.6重量部、スチレン2.4重量部、及び開始剤としてのアゾビスイソブチロニトリル0.03gを入れ、均一に混合し、架橋性単量体溶液を作製する。被突起処理用微粒子の分散液中へ、架橋性単量体溶液を均一混合した後、この溶液を撹拌しながら、窒素雰囲気下70℃で、18時間分散重合を行う事により突起微粒子を得る。突起微粒子は、0.5μmの平均直径の液滴の衝突、付着及び重合によって作製する。不要微粒子を分離する為、分級を行い、不要微粒子のみを除去し、突起微粒子のみを得る。次に、この微粒子に、ニッケル層0.16μm、金層0.02μmの無電解メッキを施して、突起導電性微粒子を得る。なお、液滴の平均直径は、堀場製作所製 動的光散乱粒子分布測定装置LB-500で行う。
(Manufacture of protruding fine particles and protruding conductive particles)
Into a 300 ml separable flask, 30 parts by weight of projection processing fine particles, 80 parts by weight of ethanol, 30 parts by weight of deionized water, 3.6 parts by weight of PVP (K-30 manufactured by Wako Pure Chemical Industries, Ltd.) A dispersion of fine particles for treatment of protrusions is prepared by ultrasonic dispersion. Next, into 50 ml beaker, 0.6 parts by weight of neopentylglycol dimethacrylate, 2.4 parts by weight of styrene, and 0.03 g of azobisisobutyronitrile as an initiator are mixed and mixed uniformly to obtain a crosslinkable monomer solution. Is made. After the crosslinkable monomer solution is uniformly mixed into the dispersion of the fine particles for treatment of protrusions, the dispersion fine particles are obtained by carrying out dispersion polymerization at 70 ° C. for 18 hours in a nitrogen atmosphere while stirring the solution. Protruding microparticles are produced by impact, adhesion and polymerization of droplets having an average diameter of 0.5 μm. In order to separate unnecessary fine particles, classification is performed, and only unnecessary fine particles are removed to obtain only protruding fine particles. Next, the fine particles are subjected to electroless plating with a nickel layer of 0.16 μm and a gold layer of 0.02 μm to obtain protruding conductive fine particles. The average diameter of the droplets is measured using a dynamic light scattering particle distribution measuring device LB-500 manufactured by Horiba.

(異方性導電膜の作製)
エポキシ樹脂JER828(ジャパンエポキシレジン(株)製)30重量部、エポキシ樹脂JER1256(ジャパンエポキシレジン(株)製)30重量部、硬化剤ノバキュアHX3721(旭化成ケミカルズ(株)製)60重量部(但し固形分67重量%)を十分溶解した中に、突起導電性微粒子5重量部を分散し、絶縁性接着剤を調製する。この絶縁性接着剤を、剥離フィルム上に、乾燥後の厚みが30μmになる様に、塗布・乾燥して、異方性導電膜を得る。
(Preparation of anisotropic conductive film)
Epoxy resin JER828 (manufactured by Japan Epoxy Resin Co., Ltd.) 30 parts by weight, epoxy resin JER1256 (manufactured by Japan Epoxy Resin Co., Ltd.) 30 parts by weight, curing agent Novacure HX3721 (manufactured by Asahi Kasei Chemicals Corporation) 60 parts by weight (but solid) 5 parts by weight of the protruding conductive fine particles are dispersed in a sufficiently dissolved amount of 67 wt%) to prepare an insulating adhesive. This insulating adhesive is applied and dried on a release film so that the thickness after drying becomes 30 μm, and an anisotropic conductive film is obtained.

(導通試験)
ポリイミド基板に設けられた50μmピッチのアルミニウム配線パターンに、異方性導電膜を貼り付けて、剥離フィルムを剥がした後、同じアルミニウム電極を有するガラス基板を、電極同士が重なる様に位置合わせし、貼り合わせる。異方性導電膜の部分を、10N、170℃で、20秒間熱圧着した後、上下電極間の抵抗値、及び近接する電極間のリークの有無を測定する。電極間の抵抗値は3オームであり、電極間のリークは認められず、良好な結果が得られる。
(Continuity test)
After attaching an anisotropic conductive film to the 50 μm pitch aluminum wiring pattern provided on the polyimide substrate and peeling off the release film, align the glass substrate having the same aluminum electrode so that the electrodes overlap each other, to paste together. A portion of the anisotropic conductive film is thermocompression bonded at 10 N and 170 ° C. for 20 seconds, and then the resistance value between the upper and lower electrodes and the presence or absence of leakage between adjacent electrodes are measured. The resistance value between the electrodes is 3 ohms, no leakage between the electrodes is observed, and good results are obtained.

(実施例2)
実施例1と同様にして、平均粒子径4.2μm、Cv値3.5%の樹脂微粒子を作製し、0.1μmの平均直径の液滴の分散、衝突、付着及び重合から突起微粒子を作製し、その後に、導電処理によって、ニッケル厚み0.3μm及び金厚み0.05μmの突起導電性微粒子を得る。但し、導電層は無電解メッキではなく、乾式表面処理装置ノビルタNOB-130(ホソカワミクロン(株)製)を使用して作製する。実施例1と同様な割合で、異方性導電膜を調製し、同様な方法で、導電性及びリーク電流を測定する。電極間の抵抗値は5オームであり、電極間のリークは認められず、実施例1と同様に良好な結果が得られる。
(Example 2)
In the same manner as in Example 1, resin fine particles having an average particle diameter of 4.2 μm and a Cv value of 3.5% were prepared, and protrusion fine particles were prepared from dispersion, collision, adhesion and polymerization of droplets having an average diameter of 0.1 μm, and thereafter By conducting the conductive treatment, protruding conductive fine particles having a nickel thickness of 0.3 μm and a gold thickness of 0.05 μm are obtained. However, the conductive layer is not formed by electroless plating, but is produced using a dry surface treatment apparatus Nobilta NOB-130 (manufactured by Hosokawa Micron Corporation). An anisotropic conductive film is prepared at the same ratio as in Example 1, and the conductivity and leakage current are measured by the same method. The resistance value between the electrodes is 5 ohms, no leakage between the electrodes is observed, and good results are obtained as in Example 1.

(比較例1)
実施例1と同じ被突起処理用微粒子を使用するが、突起形成の工程のみ行わず、同様な処方で異方性導電膜を調製する。実施例1と同様な方法で導電性及びリーク電流を測定する。電極間のリークは認められないが、電極間の抵抗値は96オームと高い値で、良好な導電性は認められない。
(Comparative Example 1)
The same fine particles for treatment of protrusions as in Example 1 are used, but an anisotropic conductive film is prepared by the same formulation without performing only the step of forming protrusions. Conductivity and leakage current are measured in the same manner as in Example 1. There is no leakage between the electrodes, but the resistance between the electrodes is as high as 96 ohms, and good conductivity is not recognized.

突起が微粒子表面上に液滴の重合によって強固に形成された突起微粒子は、導電処理等によって高い接続信頼性を発揮させ得る突起導電微粒子として十分な機能を発揮し、異方性導電材料、特に異方性導電接着剤等に有用である。   Protrusion fine particles in which the protrusions are firmly formed on the surface of the fine particles by polymerization of the droplets exhibit sufficient functions as protrusion conductive fine particles that can exhibit high connection reliability by conducting a conductive treatment, etc. Useful for anisotropic conductive adhesives and the like.

Claims (7)

被突起形成微粒子とその表面上の突起とを備え、かつ、導電性を有するとともに、液晶表示装置またはプラズマディスプレイ装置の製造に用いられる異方性導電材料の構成成分となる突起導電微粒子であって、
単量体の架橋物からなる突起が、上記被突起形成微粒子の表面上に形成されており、媒体における、上記被突起形成微粒子の分散、単量体の液滴の分散、上記被突起形成微粒子と液滴との衝突、上記被突起形成微粒子への液滴の付着、及び液滴の重合によって形成され
金属を用いた導電処理が表面に施されていることを特徴とする、突起導電微粒子。
Provided with an object projection formation particulates and projections on the surface, and which has a conductivity, a protrusion conductive fine particles of the components of the anisotropic conductive material used for manufacturing liquid crystal display device or plasma display device ,
Projection comprising a crosslinked product of monomer, the are formed on the surface of the protrusions forming particulate, in the medium, the dispersion of the target projection forming particulate, dispersed droplets of the monomer, the target projection forming particulate and collision with the droplets, deposition of the droplets to the target projection forming fine particles, and are formed by polymerization of droplets,
Conductive treatment using a metal characterized that you have been subjected to a surface, the projection conducting particles.
液滴が、架橋性単量体中、20重量%以上の多官能架橋性単量体を含む、請求項1の突起導電微粒子。 2. The bump conductive fine particle according to claim 1, wherein the droplet contains 20% by weight or more of a polyfunctional crosslinkable monomer in the crosslinkable monomer. 液滴が0.1μmから3μmまでの範囲の平均直径を有する、請求項1又は2の突起導電微粒子。 The protruding conductive fine particles according to claim 1 or 2, wherein the droplets have an average diameter in the range of 0.1 µm to 3 µm. 突起導電微粒子を備える異方性導電材料であって、請求項1の突起導電微粒子を用いることを特徴とする、異方性導電材料。 2. An anisotropic conductive material comprising projecting conductive fine particles, wherein the projecting conductive fine particles according to claim 1 are used. 被突起形成微粒子とその表面上の突起とを備え、かつ、導電性を有するとともに、液晶表示装置またはプラズマディスプレイ装置の製造に用いられる異方性導電材料の構成成分となる突起導電微粒子を得るにあたり、
(a)被突起形成微粒子を媒体において分散させる工程、
(b)単量体の液滴を分散させる工程、
(c)被突起形成微粒子と液滴とを衝突させる工程、
(d)被突起形成微粒子と液滴とを付着させる工程
(e)液滴を重合させる工程、及び
(f)表面に金属を用いた導電処理を施す工程
を含むことを特徴とする、突起導電微粒子の製造方法。
Provided with an object projection forming particulate and projections on its surface, and which has a conductivity, in obtaining the projection conductive fine particles of the components of the anisotropic conductive material used for manufacturing the liquid crystal display device or plasma display device ,
(a) a step of dispersing the projection-forming fine particles in the medium,
(b) a step of dispersing monomer droplets;
(c) a step of colliding the projection-forming fine particles with the droplets,
(d) a step of attaching the projection-forming fine particles and the droplets ;
(e) a step of polymerizing the droplets ; and
(f) A method for producing protruding conductive fine particles, comprising a step of conducting a conductive treatment using metal on the surface .
液滴の被突起形成微粒子側に略円錐台形の基部を形成させ、前記基部を介して突起を被突起形成微粒子の表面上に形成する、請求項5の方法。 6. The method according to claim 5 , wherein a base having a substantially frustoconical shape is formed on the protrusion forming fine particle side of the droplet, and the protrusion is formed on the surface of the protrusion forming fine particle via the base. 液滴をシード重合方式によって形成する、請求項5又は6の方法。 The method according to claim 5 or 6 , wherein the droplet is formed by a seed polymerization method.
JP2007001635A 2007-01-09 2007-01-09 Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles Active JP5235305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001635A JP5235305B2 (en) 2007-01-09 2007-01-09 Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001635A JP5235305B2 (en) 2007-01-09 2007-01-09 Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles

Publications (2)

Publication Number Publication Date
JP2008171594A JP2008171594A (en) 2008-07-24
JP5235305B2 true JP5235305B2 (en) 2013-07-10

Family

ID=39699501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001635A Active JP5235305B2 (en) 2007-01-09 2007-01-09 Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles

Country Status (1)

Country Link
JP (1) JP5235305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111152A1 (en) * 2010-03-08 2011-09-15 積水化学工業株式会社 Electroconductive particle, anisotropic electroconductive material and connecting structure
CN102608777A (en) 2011-11-04 2012-07-25 深圳市华星光电技术有限公司 COF (chip on film) packaging unit and COF packaging winding tape

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315110B2 (en) * 1990-03-28 2002-08-19 触媒化成工業株式会社 Spherical spacer particles and display device using the same
JPH05331216A (en) * 1992-05-29 1993-12-14 Mita Ind Co Ltd Resin particle having roughened surface and electrophotographic toner
JP4660985B2 (en) * 2001-06-27 2011-03-30 Jsr株式会社 Projection material for vertical alignment color LCD panel
JP3967915B2 (en) * 2001-12-19 2007-08-29 宇部日東化成株式会社 Resin protrusion-coated polyorganosiloxane fine particles and method for producing the same
JP2003192939A (en) * 2001-12-27 2003-07-09 Ube Nitto Kasei Co Ltd Resin-coated fine particle, method for producing the same and spacer for liquid crystal display device
JP2004164910A (en) * 2002-11-11 2004-06-10 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
JP2006184882A (en) * 2004-12-02 2006-07-13 Sony Corp Liquid crystal device, liquid crystal display and liquid crystal projector

Also Published As

Publication number Publication date
JP2008171594A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4505017B2 (en) Insulating conductive fine particles and anisotropic conductive adhesive film containing the same
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
US7291393B2 (en) Coated conductive particle coated conductive particle manufacturing method anisotropic conductive material and conductive connection structure
JP4732424B2 (en) Microcapsule-conductive particle composite body, manufacturing method thereof, and anisotropic conductive adhesive film using the same
WO2007026981A1 (en) Insulated conductive particles and anisotropic conductive adhesive film using the same
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
JP2001515090A (en) Contact printing adhesive composition and method for producing said composition
JP4902853B2 (en) Resin fine particles and conductive fine particles
JP7259113B2 (en) Anisotropic conductive film, display device including same and/or semiconductor device including same
JP3587398B2 (en) Conductive particles and anisotropic conductive adhesive
WO2005109448A1 (en) Insulated conductive ball for anisotropic electric connection and its method of preparation and products using the same
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP5235305B2 (en) Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles
JP5535507B2 (en) Conductive particles and manufacturing method thereof
KR100752533B1 (en) Conducting particle complex with polymer microcapsules and preparation thereof
JP2003208813A (en) Conductive fine grain and anisotropic conductive material
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP2002163930A (en) Conductive particle, conductive adhesion paste, and anisotropic conductivity adhesion film
KR100637764B1 (en) Insulated conductive ball for anisotropic electric connection and its method of preparation and products using the same
WO2023083202A1 (en) Method for arranging particles, method for manufacturing anisotropic functional adhesive film, and functional particle and manufacturing method therefor
JP2005327510A (en) Conductive fine particle and anisotropic conductive material
KR100719807B1 (en) Insulated conductive particle composition with anisotropic conduction and anisotropic conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Ref document number: 5235305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250