JP2000119778A - Method and equipment for manufacturing brass and brass material - Google Patents

Method and equipment for manufacturing brass and brass material

Info

Publication number
JP2000119778A
JP2000119778A JP11099390A JP9939099A JP2000119778A JP 2000119778 A JP2000119778 A JP 2000119778A JP 11099390 A JP11099390 A JP 11099390A JP 9939099 A JP9939099 A JP 9939099A JP 2000119778 A JP2000119778 A JP 2000119778A
Authority
JP
Japan
Prior art keywords
brass
phase
content
brass material
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11099390A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ashie
伸之 芦江
Ryuji Matsubara
隆二 松原
Katsuaki Nakamura
克昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP11099390A priority Critical patent/JP2000119778A/en
Publication of JP2000119778A publication Critical patent/JP2000119778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve the machinability of a brass material, particularly a brass material securing machinability in dependence on a hardness difference between α-phase and γ-phase grains, and to provide a method and equipment for manufacturing such a brass material. SOLUTION: Because this brass has >=2.5 wt.% Pb content, 68-94% area ratio of α-phase, 0-10% area ratio of β-phase, and 6-22% area ratio of γ-phase, strength is secured in dependence on the γ-phase and SCC resistance is secured in dependence on the presence of the plural phases as well as machinability is secured in dependence on a hardness difference between the grain boundaries of the α- and γ-phases. It is investigated that, in particular, regulation of area ratio of the γ-phase to 6-22% ts best suited for securing machinability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は黄銅材及びその製造
方法、製造設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brass material, a method for producing the same, and a production facility.

【0002】[0002]

【従来の技術】従来、黄銅材の切削性を向上させる方法
としては、C3604に見られるようにβ相に依存する
方法が公知であるが、この方法では、切削性以外の特性
である強度、耐SCC性に劣る問題があった。
2. Description of the Related Art Conventionally, as a method for improving the machinability of a brass material, a method relying on the β phase as shown in C3604 is known. There was a problem that the SCC resistance was poor.

【0003】そこで、本出願人は、α+γ相の結晶組織
とすることにより、α、γ相粒子の硬度差に依存してC
3604に従う快削黄銅棒を基準とした80以上の切削
抵抗指数を確保するほか、強度、耐SCC性も確保でき
ることをWO98/10106にて先に提案している。
[0003] Therefore, the applicant of the present invention has proposed a crystal structure of α + γ phase, which depends on the hardness difference between α and γ phase particles.
WO98 / 10106 has previously proposed that a cutting resistance index of 80 or more based on a free-cutting brass bar according to 3604 can be ensured, and that strength and SCC resistance can also be ensured.

【0004】しかしながら、このα+γ相の結晶組織と
するものでは、切削性向上に最適な結晶相比率、最適な
製造方法について十分究明されているとは言い難かっ
た。
[0004] However, it is difficult to say that the crystal structure of the α + γ phase has been sufficiently studied on the optimum crystal phase ratio and the optimum manufacturing method for improving the machinability.

【0005】本発明は、黄銅材、特にα、γ相粒子の硬
度差に依存して切削性を確保する黄銅材において、さら
に切削性を向上させること、およびこのような黄銅材の
製造方法、製造設備を提供することを目的とする。
The present invention is directed to a brass material, particularly a brass material which secures machinability depending on a difference in hardness between α and γ phase particles, further improving the machinability, and a method for producing such a brass material. The purpose is to provide manufacturing equipment.

【0006】[0006]

【課題を解決するための手段およびその作用・効果】本
発明に従う黄銅は、Pb含有量が2.5wt%以上であ
り、α相の面積比率が68〜94%、好ましくは76〜
92%、β相の面積比率が0〜10%、好ましくは0〜
6%、γ相の面積比率が6〜22%、好ましくは8〜1
8%であるため、α、γ相粒界の硬度差に依存して切削
性を確保するばかりか、γ相に依存して強度を確保し、
複数相の存在に依存して耐SCC性を確保している。
The brass according to the present invention has a Pb content of 2.5 wt% or more and an α-phase area ratio of 68 to 94%, preferably 76 to 94%.
92%, area ratio of β phase is 0 to 10%, preferably 0 to 10%.
6%, the area ratio of the γ phase is 6 to 22%, preferably 8 to 1
Since it is 8%, not only the cutability is ensured depending on the hardness difference between the α and γ phase grain boundaries, but also the strength is ensured depending on the γ phase,
SCC resistance is ensured depending on the existence of multiple phases.

【0007】特にγ相の面積比率を6〜22%、好まし
くは8〜18%にすることが、切削性確保には最適であ
ることを究明している。
In particular, it has been found that setting the area ratio of the γ-phase to 6 to 22%, preferably 8 to 18%, is optimal for ensuring the machinability.

【0008】また、β相の面積比率が0〜10%、好ま
しくは0〜6%であり、β相を完全に無くす必要がない
ため、製造上の制約が小さいことも特徴である。
Also, the area ratio of the β phase is 0 to 10%, preferably 0 to 6%, and it is not necessary to completely eliminate the β phase, so that the production restriction is small.

【0009】好適な実施形態としては、α相の平均結晶
粒径を15μm以下にすることにより、切削性、強度、
耐SCC性を共に向上することができる。
[0009] In a preferred embodiment, the average crystal grain size of the α phase is set to 15 µm or less, so that machinability, strength, and the like are improved.
Both SCC resistance can be improved.

【0010】具体的には、(1)C3604に従う快削
黄銅棒を基準とした90以上の切削抵抗指数を確保しつ
つ、(2)300N/mm2以上の0.2%耐力又は降
伏応力、日本工業規格JIS C−3604に従う快削
黄銅棒を基準とした90以上の切削抵抗指数と、(3)
黄銅の円筒形試料を14%アンモニア水溶液上のアンモ
ニア雰囲気中に荷重を加えながら24時間暴露したと
き、前記試料が割れない最大応力が180N/mm2以
上である耐SCC性を満たすことができる。
More specifically, (1) a 0.2% proof stress or yield stress of 300 N / mm2 or more while securing a cutting resistance index of 90 or more based on a free-cutting brass bar in accordance with C3604; A cutting resistance index of 90 or more based on a free-cutting brass bar according to industrial standard JIS C-3604, and (3)
When a brass cylindrical sample is exposed to an ammonia atmosphere on a 14% ammonia aqueous solution for 24 hours while applying a load, the sample can satisfy the SCC resistance of not more than 180 N / mm 2, at which the sample does not crack.

【0011】さらに好適には、γ相中のSn濃度を8w
t%以上にすることにより、耐脱亜鉛腐食性を向上させ
ることができる。尚、β相が存在する場合は、β相中の
Sn濃度は1.8wt%以上が望ましい。
[0011] More preferably, the Sn concentration in the γ phase is 8w.
By setting the content to t% or more, the dezincification corrosion resistance can be improved. When the β phase exists, the Sn concentration in the β phase is desirably 1.8 wt% or more.

【0012】具体的には、(4)日本伸銅協会技術標準
JBMA T−303に従う脱亜鉛腐食試験を行なった
とき、最大脱亜鉛浸透深さ方向が加工方向と平行な場合
には最大脱亜鉛深さ100μm以下であること、及び最
大脱亜鉛浸透深さ方向が加工方向と直角な場合には最大
脱亜鉛深さ70μm以下であることの少なくとも一方の
条件を満たすような耐食性を有することができる。
Specifically, (4) When a zinc removal corrosion test is performed in accordance with the Japan Copper and Brass Association technical standard JBMA T-303, when the maximum zinc removal depth direction is parallel to the machining direction, the maximum zinc removal It is possible to have corrosion resistance that satisfies at least one of the condition that the depth is 100 μm or less, and the maximum dezincing penetration depth direction is perpendicular to the processing direction and the maximum dezincing depth is 70 μm or less. .

【0013】以上のような結晶組織を有する黄銅材は、
Pb含有量が2.5wt%以上であり、例えば見掛け上
のZn含有量が37〜46wt%である黄銅材を、40
0〜520℃の温度域で10分以上(460℃以下の温
度域の場合は、1〜2時間)保持する焼鈍ステップを有
する製造方法により製造される。
The brass material having the above crystal structure is
A brass material having a Pb content of 2.5% by weight or more, for example, an apparent Zn content of 37 to 46% by weight is used for 40%
It is manufactured by a manufacturing method having an annealing step of holding for 10 minutes or more (1 to 2 hours in a case of a temperature range of 460 ° C. or less) in a temperature range of 0 to 520 ° C.

【0014】尚、この焼鈍ステップは、必ずしも400
〜520℃の温度域でなくても、β相が安定して存在せ
ずγ相が安定して存在する温度域であって、所定時間保
持した結果β相の面積比率を10%以下、好ましくは6
%以下、γ相の面積比率を6%以上、好ましくは8%以
上にできる温度域であれば良い。
The annealing step is not necessarily performed at 400
Even if the temperature is not in the temperature range of 5520 ° C., the β phase is not stably present and the γ phase is stably present. Is 6
% Or less, and may be in a temperature range in which the area ratio of the γ phase can be 6% or more, preferably 8% or more.

【0015】ここで、「見掛け上のZn含有量」という
用語は、AをCu含有量〔wt%〕、BをZn含有量
〔wt%〕、tを添加した第3元素(例えばSn)のZ
n当量、Qをその第3元素の含有量〔wt%〕としたと
き、「{(B+t・Q)/(A+B+t・Q)}×10
0」の意味で用いる。
Here, the term "apparent Zn content" means that A is Cu content [wt%], B is Zn content [wt%], and t is the third element (for example, Sn). Z
When n equivalents and Q are the content of the third element [wt%], “{(B + t · Q) / (A + B + t · Q)} × 10
0 ”is used.

【0016】また、耐脱亜鉛腐食性の向上を狙うのなら
ば、黄銅材はSnを0.5〜7wt%、好ましくは0.
9〜2wt%含有することが好ましい。
In order to improve the dezincification corrosion resistance, the brass material contains Sn in an amount of 0.5 to 7% by weight, preferably 0.1 to 7% by weight.
It is preferable to contain 9 to 2% by weight.

【0017】さらに好適には、焼鈍ステップ以前に、P
b含有量が2.5wt%以上であり、見掛け上のZn含
有量が37〜46wt%である黄銅素材を、650℃以
下の温度、断面減少率90%以上で熱間押し出しして黄
銅押出し物を作る押し出しステップを有することによ
り、結晶粒径の微細化を果たすことができる。
More preferably, prior to the annealing step, P
A brass material having a b content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% is hot-extruded at a temperature of 650 ° C. or less and a cross-sectional reduction rate of 90% or more, and is extruded from brass. By having an extruding step for making the crystal grain size, the crystal grain size can be reduced.

【0018】尚、押し出しステップは、必ずしも650
℃以下の温度、断面減少率90%以上でなくても、黄銅
押出し物の結晶粒径が15μm以下になるような熱間押
し出し時の温度、断面減少率であれば良い。
Note that the extrusion step is not always 650
The temperature and the cross-sectional reduction rate at the time of hot extrusion such that the crystal grain size of the brass extruded product becomes 15 μm or less may be used even if the temperature is not more than 90 ° C. and the cross-sectional reduction rate is not 90% or more.

【0019】さらに好ましくは、押出しステップ後に、
前記黄銅押出し物を400℃以下になるまで0.4K/
sec以上で冷却する冷却ステップを有することによ
り、一旦微細化した結晶が粗大化するのを防止できる。
More preferably, after the extrusion step,
The brass extruded product is heated to 0.4 K /
By having a cooling step of cooling in seconds or more, it is possible to prevent the crystal once refined from becoming coarse.

【0020】本発明は、また、Pb含有量が2.5wt
%以上であり、見掛け上のZn含有量が37〜46wt
%である黄銅素材を、熱間押し出しして黄銅押出し物を
作るとともに、熱間押し出し時の温度、断面減少率を制
御して結晶粒径を微細化する押し出しステップと、押出
しステップ後に、前記黄銅押出し物を、β相が安定して
存在せずγ相が安定して存在する温度域で所定時間保持
し、β相の面積比率を減少させてγ相の面積比率を増加
させる焼鈍ステップと、焼鈍ステップ後に、前記黄銅押
出し物を400℃以下になるまで冷却する冷却ステップ
とを有し、冷却ステップ後に、α相の平均結晶粒径が1
5μm以下、β相の面積比率が10%以下、好ましくは
6%以下、γ相の面積比率が6%以上、好ましくは8%
以上の結晶組織にすることを特徴する。
According to the present invention, it is also provided that the Pb content is 2.5 wt.
% Or more, and the apparent Zn content is 37 to 46 wt.
% Brass material is hot-extruded to produce a brass extruded product, and at the time of hot extrusion, the extrusion step of controlling the temperature and the reduction rate of the area to reduce the crystal grain size, and after the extrusion step, An extruded product is held for a predetermined time in a temperature range where the β phase is not stably present and the γ phase is stably present, and an annealing step of decreasing the area ratio of the β phase and increasing the area ratio of the γ phase, After the annealing step, a cooling step of cooling the brass extrudate to 400 ° C. or less, and after the cooling step, the average crystal grain size of the α phase is 1
5 μm or less, β phase area ratio is 10% or less, preferably 6% or less, γ phase area ratio is 6% or more, preferably 8%
It is characterized by having the above crystal structure.

【0021】好適には、黄銅素材のSn含有量を0.5
〜7wt%、好ましくは0.9〜2wt%にすることに
より、冷却ステップ後に、γ相中のSn濃度が8wt%
以上にすることができる。
Preferably, the Sn content of the brass material is 0.5
-7 wt%, preferably 0.9-2 wt%, so that the Sn concentration in the γ phase is 8 wt% after the cooling step.
Or more.

【0022】また、Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%である黄
銅素材を、熱間押し出しして黄銅押出し物を作るととも
に、熱間押し出し時の温度、断面減少率を制御して結晶
粒径を微細化する押し出しステップと、押出しステップ
後に、前記黄銅押出し物を、β相が安定して存在せずγ
相が安定して存在する温度域で所定時間保持し、β相の
面積比率を減少させてγ相の面積比率を増加させる焼鈍
ステップと、焼鈍ステップ後に、前記黄銅押出し物を4
00℃以下になるまで冷却する冷却ステップとを有し、
冷却ステップ後に、日本工業規格JIS C−3604
に従う快削黄銅棒を基準とした90以上の切削抵抗指数
と、300N/mm2以上の0.2%耐力又は降伏応力
を満たすことができる。
Also, a brass material having a Pb content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% is hot-extruded to produce a brass extruded product. Temperature, the extrusion step of controlling the cross-sectional reduction rate to refine the crystal grain size, and after the extrusion step, the extruded brass is subjected to γ without β phase being stably present.
Holding the phase in a temperature range where the phase is stably present for a predetermined time, reducing the area ratio of the β phase to increase the area ratio of the γ phase, and after the annealing step, extruding the brass material for 4 hours.
A cooling step of cooling the temperature to 00 ° C. or less,
After the cooling step, the Japanese Industrial Standard JIS C-3604
And a 0.2% proof stress or a yield stress of 300 N / mm2 or more based on a free-cutting brass bar according to JIS.

【0023】さらには、Pb含有量が2.5wt%以上
であり、見掛け上のZn含有量が37〜46wt%であ
る黄銅素材を、熱間押し出しして黄銅押出し物を作ると
ともに、熱間押し出し時の温度、断面減少率を制御して
結晶粒径を微細化する押し出しステップと、押出しステ
ップ後に、前記黄銅押出し物を、β相が安定して存在せ
ずγ相が安定して存在する温度域で所定時間保持し、β
相の面積比率を減少させてγ相の面積比率を増加させる
焼鈍ステップと、焼鈍ステップ後に、前記黄銅押出し物
を400℃以下になるまで冷却する冷却ステップとを有
し、冷却ステップ後に、日本工業規格JIS C−36
04に従う快削黄銅棒を基準とした90以上の切削抵抗
指数と、黄銅の円筒形試料を14%アンモニア水溶液上
のアンモニア雰囲気中に荷重を加えながら24時間暴露
したとき、前記試料が割れない最大応力が180N/m
m2以上である耐SCC性を満たすことができる。
Further, a brass material having a Pb content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% is hot-extruded to produce a brass extruded product and hot-extruded. Temperature, the extrusion step of controlling the cross-sectional reduction rate to refine the crystal grain size, and after the extrusion step, the brass extruded product is a temperature at which the β phase is not stably present and the γ phase is stably present. Area for a predetermined time, β
An annealing step of reducing the area ratio of the phase to increase the area ratio of the γ phase, and after the annealing step, a cooling step of cooling the brass extruded product to 400 ° C. or less, and after the cooling step, Standard JIS C-36
A cutting resistance index of 90 or more based on a free-cutting brass bar according to No. 04, and a maximum value at which a cylindrical sample of brass is not cracked when exposed to an ammonia atmosphere on a 14% aqueous ammonia solution for 24 hours while applying a load. Stress is 180N / m
The SCC resistance of not less than m2 can be satisfied.

【0024】本発明は、また、Pb含有量が2.5wt
%以上であり、見掛け上のZn含有量が37〜46wt
%、Sn含有量が0.5〜7wt%、好ましくは0.9
〜2wt%である黄銅素材を、熱間押し出しして黄銅押
出し物を作るとともに、熱間押し出し時の温度、断面減
少率を制御して結晶粒径を微細化する押し出しステップ
と、押出しステップ後に、前記黄銅押出し物を、β相が
安定して存在せずγ相が安定して存在する温度域で所定
時間保持し、β相の面積比率を減少させてγ相の面積比
率を増加させる焼鈍ステップと、焼鈍ステップ後に、前
記黄銅押出し物を400℃以下になるまで冷却する冷却
ステップとを有し、冷却ステップ後に、日本工業規格J
IS C−3604に従う快削黄銅棒を基準とした90
以上の切削抵抗指数と、日本伸銅協会技術標準JBMA
T−303に従う脱亜鉛腐食試験を行なったとき、最
大脱亜鉛浸透深さ方向が加工方向と平行な場合には最大
脱亜鉛深さ100μm以下であること、及び最大脱亜鉛
浸透深さ方向が加工方向と直角な場合には最大脱亜鉛深
さ70μm以下であることの少なくとも一方の条件を満
たすような耐食性を有することができる。
According to the present invention, the Pb content is 2.5 wt.
% Or more, and the apparent Zn content is 37 to 46 wt.
%, Sn content is 0.5 to 7% by weight, preferably 0.9%
~ 2wt% brass material is hot-extruded to produce a brass extruded product, and at the time of hot-extrusion, the temperature and cross-section reduction rate are controlled to reduce the crystal grain size, and after the extrusion step, The brass extruded product is kept for a predetermined time in a temperature range where the β phase is not stably present and the γ phase is stably present, and an annealing step of decreasing the β phase area ratio and increasing the γ phase area ratio is performed. And a cooling step of cooling the brass extruded product to 400 ° C. or less after the annealing step.
90 based on a free-cutting brass bar according to IS C-3604
The above cutting force index and the Japan Copper and Brass Association technical standard JBMA
When a dezincification corrosion test in accordance with T-303 is performed, if the maximum dezincification depth direction is parallel to the processing direction, the maximum dezincification depth is 100 μm or less, and the maximum dezincification depth direction is processed. When it is perpendicular to the direction, it can have corrosion resistance that satisfies at least one of the conditions of a maximum dezincing depth of 70 μm or less.

【0025】以上のような製造方法は、Pb含有量が
2.5wt%以上であり、見掛け上のZn含有量が37
〜46wt%である黄銅材を受入れることができ、黄銅
材を、400〜520℃の温度範囲で10分以上(46
0℃以下の温度域の場合は、1〜2時間)保持できる装
置を有する黄銅材の製造設備により実現できる。
In the above manufacturing method, the Pb content is 2.5 wt% or more, and the apparent Zn content is 37 wt.
~ 46 wt% of brass material can be accepted, and the brass material is heated at a temperature range of 400 to 520 ° C for 10 minutes or more (46%).
In the case of a temperature range of 0 ° C. or lower, it can be realized by a brass material manufacturing facility having a device capable of holding for 1 to 2 hours.

【0026】好適には、Pb含有量が2.5wt%以上
であり、見掛け上のZn含有量が37〜46wt%であ
る黄銅材を受入れることができ、押出し時の温度が48
0〜650℃、押出し時の断面減少率が90%以上であ
る条件下で熱間押出しして黄銅押出し物を作る押出し装
置と、黄銅押出し物を受入れることができ、前記黄銅押
出し物を、400〜520℃の温度範囲で10分以上
(460℃以下の温度域の場合は、1〜2時間)保持す
ることができる装置を有し、さらに押出し装置から出て
きた前記黄銅押出し物を400℃以下になるまで冷却す
る装置を備えることが望ましい。
Preferably, a brass material having a Pb content of 2.5% by weight or more and an apparent Zn content of 37 to 46% by weight can be received, and the temperature at the time of extrusion is 48%.
An extruder for hot-extruding a brass extruded product under the conditions of 0 to 650 ° C. and a cross-sectional reduction rate of 90% or more during extrusion, and a brass extruded product can be received. It has a device capable of holding for 10 minutes or more (1-2 hours in the case of a temperature range of 460 ° C. or less) in a temperature range of 〜520 ° C. It is desirable to have a device that cools until:

【0027】[0027]

【発明の実施の形態】本発明の実施形態を以下詳説す
る。図1、2は、本発明に係る実施例1、2と比較例1
〜3との、各種対比表である。
Embodiments of the present invention will be described in detail below. 1 and 2 show Examples 1 and 2 according to the present invention and Comparative Example 1.
3 is a table showing various comparisons with Tables 1 to 3.

【0028】図2中の「見掛け上のZn(含有)量」と
いう用語は、AをCu含有量〔wt%〕、BをZn含有
量〔wt%〕、tを添加した第3元素(例えばSn)の
Zn当量、Qをその第3元素の含有量〔wt%〕とした
とき、「{(B+t・Q)/(A+B+t・Q)}×1
00」の意味で用いる。
The term "apparent Zn (content) content" in FIG. 2 means that A is Cu content [wt%], B is Zn content [wt%], and t is a third element (for example, When Zn equivalent of Sn) and Q of the third element are the content [wt%], “{(B + tQ) / (A + B + tQ)} × 1
00 ”.

【0029】図1において、耐食性(耐脱亜鉛腐食性)
は、日本伸銅協会技術標準(JBMA T−303)に
よる脱亜鉛腐食試験で最大脱亜鉛深さが、加工方向と平
行な場合は100μm以下を○、加工方向と直角な場合
は70μm以下を○とし、これらの基準に満たないもの
を×とした。
In FIG. 1, corrosion resistance (dezincification corrosion resistance)
In the dezincification corrosion test according to the Japan Copper and Brass Association Technical Standard (JBMA T-303), the maximum dezincification depth is 100 μm or less when parallel to the processing direction, and 70 μm or less when perpendicular to the processing direction. And those that did not meet these criteria were marked as x.

【0030】また切削性は、快削黄銅棒(JIS C3
604)を基準とした切削抵抗指数が棒材の場合、80
未満を×、80以上を○とし、90以上を◎とした。
The machinability was measured using a free-cutting brass bar (JIS C3
If the cutting resistance index based on 604) is a bar,
Less than was rated as x, 80 or more as ○, and 90 or more as ◎.

【0031】この切削抵抗指数について図3を用いて詳
説すると、切削試験では、旋盤で丸棒状の試料1の周面
を100〔m/min〕と400〔m/min〕の2つ
の異なる速度で切削しつつ、主分力Fvを測定した。切
削抵抗指数は、主分力に対する切削性が最も良いといわ
れる快削黄銅棒(日本工業規格JIS C−3604)
の主分力の百分率である。(切削速度毎の切削抵抗指数
を平均した。)
The cutting resistance index will be described in detail with reference to FIG. 3. In the cutting test, the peripheral surface of the round bar-shaped sample 1 is turned on a lathe at two different speeds of 100 [m / min] and 400 [m / min]. While cutting, the main component force Fv was measured. The cutting resistance index is a free-cutting brass bar that is said to have the best machinability for the main component force (Japanese Industrial Standard JIS C-3604).
Is the percentage of the main component. (The cutting resistance index for each cutting speed was averaged.)

【0032】さらに耐SCC性は、円筒形試料を14%
アンモニア水溶液上のアンモニア雰囲気中に応力180
N/mm2の荷重を加えながら24時間暴露したとき、
試料が割れたものを×、割れなかったものを○とした。
Further, the SCC resistance is as follows:
Stress 180 in ammonia atmosphere on aqueous ammonia solution
When exposed for 24 hours while applying a load of N / mm2,
When the sample was broken, it was evaluated as x, and when it was not broken, it was evaluated as ○.

【0033】この耐SCC性試験は、図4に示すよう
に、ガラスデジケータ2内で円筒状の試料3に垂直に荷
重を加えた状態で、NH3蒸気雰囲気中に24時間暴露
した後、割れの発生を調査した。
As shown in FIG. 4, the SCC resistance test was carried out by exposing the cylindrical sample 3 to the NH 3 vapor atmosphere for 24 hours in a state where a load was applied vertically to the cylindrical sample 3 in the glass digitizer 2. Was investigated.

【0034】図1、2からわかるように、実施例1、2
はSnの含有量が多く、γ相の面積比率が8〜15%の
最適範囲のため、全ての特性に優れている。
As can be seen from FIGS.
Has a high Sn content and an optimum range of the area ratio of the γ phase of 8 to 15%, so that all the characteristics are excellent.

【0035】これに対して比較例1、3は、Snの添加
量が多いため耐食性は良好なものの、γ相の面積比率が
低く粒径が大きいため耐SCC性に劣り、柔らかいα相
が多すぎるため0.2%耐力、切削性に劣っている。
On the other hand, in Comparative Examples 1 and 3, although the corrosion resistance was good due to the large amount of Sn added, the SCC resistance was inferior due to the small area ratio of the γ phase and the particle size was large, and the soft α phase was large. Because it is too much, it is inferior in 0.2% proof stress and machinability.

【0036】尚、比較例1の方が切削性にやや優れてい
るのは、β、γ相を多少とも析出させているからであ
る。
The reason why Comparative Example 1 is slightly superior in machinability is that the β and γ phases are more or less precipitated.

【0037】次に比較例2は、β相が多いため切削性が
良いものの、Snが少なくβ相が多いため耐食性に劣
り、γ相の面積比率が低く粒径が大きいため耐SCC性
に劣っている。
Next, Comparative Example 2 is inferior in corrosion resistance due to a small amount of Sn and a large amount of β phase, but inferior in SCC resistance due to a small area ratio of γ phase and a large particle diameter, although the cutability is good due to the large β phase. ing.

【0038】ここで、実施例1、2のような結晶組織
は、図1に示す製造方法により得られる。
Here, the crystal structures as in Examples 1 and 2 are obtained by the manufacturing method shown in FIG.

【0039】すなわち、実施例1、2は、比較例1〜3
に比べて低い温度(580℃、610℃)で押出しして
いるため、図1に示す小さい結晶粒径が得られるのであ
り、また、比較例に1、3に比べて低い温度(450
℃;γ相が安定して析出するがβ相は安定して存在しな
い温度域)で長時間(2h)焼鈍しているため、図1に
示すようにγ相の面積比率を多くし、かつβ相の面積比
率を小さくできるのである。
That is, Examples 1 and 2 are Comparative Examples 1 to 3.
Extrusion is performed at a lower temperature (580 ° C., 610 ° C.) than in the comparative example, so that a small crystal grain size shown in FIG. 1 is obtained.
° C; the γ-phase is stably precipitated, but the β-phase is annealed for a long time (2 h) in a temperature range in which the γ-phase is not stably present). As shown in FIG. The area ratio of the β phase can be reduced.

【0040】焼鈍について補足すると、焼鈍温度が高す
ぎるとβ相が多くなり、低すぎるとβ相からα、γ相へ
の変態速度が遅くなるため、400℃〜520℃の温度
域が最適なのである。(460℃以下の温度域の場合
は、1〜2時間)
To supplement the annealing, if the annealing temperature is too high, the β phase increases, and if the annealing temperature is too low, the rate of transformation from the β phase to the α and γ phases slows down. is there. (In case of temperature range below 460 ° C, 1-2 hours)

【0041】また、焼鈍時間が10分未満だとβ相が1
0%以上残るのに対して、焼鈍時間が10分以上になる
とβ相が10%以下、γ相が6%以上になり、さらに焼
鈍時間が1時間を越えるとγ相が球状化することが認め
られ、それによって0.2%耐力、切削性が向上するの
である。(460℃以下の温度域の場合は、変態速度が
遅いため、1時間以上の焼鈍が好適である。)
If the annealing time is less than 10 minutes, the β phase becomes 1
When the annealing time is 10 minutes or more, the β phase becomes 10% or less and the γ phase becomes 6% or more, and when the annealing time exceeds 1 hour, the γ phase becomes spherical. It is recognized, thereby improving 0.2% proof stress and machinability. (In the case of a temperature range of 460 ° C. or lower, annealing for 1 hour or more is preferable because the transformation speed is low.)

【0042】続いて、図1には示していないが、実施例
1、2は以下の耐エロージョン腐食性を満たしている。
Subsequently, although not shown in FIG. 1, Examples 1 and 2 satisfy the following erosion corrosion resistance.

【0043】図5は、その耐エロージョン腐食性試験の
方法を示している。耐エロージョン腐食性試験では、図
5に示すように、オリフィス4を内部に有する円筒状試
料5を用い、そのオリフィス4に水を流速40m/se
cで所定時間流した後、4.9×105Pa(5Kg/
cm2)の水圧下でオリフィス4をシールするのに要す
る樹脂栓6への締めつけトルクを測定した。
FIG. 5 shows a method of the erosion corrosion resistance test. In the erosion corrosion resistance test, as shown in FIG. 5, a cylindrical sample 5 having an orifice 4 therein was used, and water was flowed through the orifice 4 at a flow rate of 40 m / sec.
4.9 × 105 Pa (5 kg /
The tightening torque to the resin stopper 6 required for sealing the orifice 4 under a water pressure of 2 cm 2 was measured.

【0044】図5の試験の結果は図6に示す通りであ
り、実施例1、2は比較例1〜3よりも良好な特性を得
た。
The results of the test in FIG. 5 are as shown in FIG. 6, and Examples 1 and 2 obtained better characteristics than Comparative Examples 1 to 3.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う実施形態の実施例1、2と比較例
1〜3の対比表(結晶組織、特性)
FIG. 1 is a comparison table (crystal structure and characteristics) between Examples 1 and 2 of an embodiment according to the present invention and Comparative Examples 1 to 3.

【図2】同実施例1、2と比較例1〜3の対比表(組
成、製法)
FIG. 2 is a comparison table (composition, production method) between Examples 1 and 2 and Comparative Examples 1 to 3.

【図3】同実施形態の切削試験の説明図FIG. 3 is an explanatory diagram of a cutting test of the embodiment.

【図4】同実施形態の耐応力腐食割れ性(耐SCC性)
試験の説明図
FIG. 4 shows stress corrosion cracking resistance (SCC resistance) of the embodiment.
Illustration of test

【図5】同実施形態の耐エロージョン腐食性試験の説明
FIG. 5 is an explanatory diagram of an erosion corrosion resistance test of the same embodiment.

【図6】同実施形態の耐エロージョン腐食性試験結果FIG. 6 shows a result of an erosion corrosion resistance test of the same embodiment.

【符号の説明】[Explanation of symbols]

1…試料、2…ガラスデジケータ、3…円筒状の試料、
4…オリフィス、5…円筒状試料、6…樹脂栓
1 ... sample, 2 ... glass digitizer, 3 ... cylindrical sample,
4: Orifice, 5: cylindrical sample, 6: resin stopper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 640 C22F 1/00 640A 683 683 684 684C 691 691B 691C 692 692Z 694 694B 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 640 C22F 1/00 640A 683 683 684 684C 691 691B 691C 692 694Z 694 694B 694A

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 Pb含有量が2.5wt%以上であり、
α相の面積比率が68〜94%、β相の面積比率が0〜
10%、γ相の面積比率が6〜22%である黄銅。
(1) a Pb content is 2.5 wt% or more;
The area ratio of the α phase is 68 to 94%, and the area ratio of the β phase is 0 to
Brass having an area ratio of 10% and a γ phase of 6 to 22%.
【請求項2】 α相の平均結晶粒径が15μm以下であ
る請求項1記載の黄銅。
2. The brass according to claim 1, wherein the average crystal grain size of the α phase is 15 μm or less.
【請求項3】 γ相中のSn濃度が8wt%以上である
請求項1または2記載の黄銅。
3. The brass according to claim 1, wherein the Sn concentration in the γ phase is 8 wt% or more.
【請求項4】 Pb含有量が2.5wt%以上であり、
見掛け上のZn含有量が37〜46wt%である黄銅材
を、400℃〜520℃の温度域で10分以上保持する
焼鈍ステップを有してなる黄銅材の製造方法。
4. The composition according to claim 1, wherein the Pb content is at least 2.5 wt%.
A method for producing a brass material, comprising an annealing step of holding a brass material having an apparent Zn content of 37 to 46 wt% in a temperature range of 400 ° C to 520 ° C for 10 minutes or more.
【請求項5】 前記黄銅材は、Snを0.5〜7wt%
含有してなる請求項4記載の黄銅材の製造方法。
5. The brass material contains 0.5 to 7 wt% of Sn.
The method for producing a brass material according to claim 4, wherein the brass material is contained.
【請求項6】 前記焼鈍ステップ以前に、見掛け上のZ
n含有量が37〜46wt%である黄銅素材を、650
℃以下の温度、断面減少率90%以上で熱間押し出しし
て黄銅押出し物を作る押し出しステップを有してなる請
求項4または5記載の黄銅材の製造方法。
6. An apparent Z value prior to said annealing step.
The brass material whose n content is 37-46 wt% is 650
The method for producing a brass material according to claim 4 or 5, further comprising an extruding step of hot-extruding the brass extruded product at a temperature of not more than 0 ° C and a cross-sectional reduction rate of 90% or more.
【請求項7】 前記焼鈍ステップ以前に、見掛け上のZ
n含有量が37〜46wt%である黄銅素材を、熱間押
し出しして黄銅押出し物を作るとともに、熱間押し出し
時の温度、断面減少率を制御して結晶粒径を15μm以
下にする押し出しステップを有してなる請求項4または
5記載の黄銅材の製造方法。
7. Prior to the annealing step, the apparent Z
An extruding step in which a brass material having an n content of 37 to 46 wt% is hot-extruded to produce a brass extruded product, and the temperature and the cross-sectional reduction rate during hot extrusion are controlled to reduce the crystal grain size to 15 μm or less. The method for producing a brass material according to claim 4, comprising:
【請求項8】 Pb含有量が2.5wt%以上であり、
見掛け上のZn含有量が37〜46wt%である黄銅材
を、β相が安定して存在せずγ相が安定して存在する温
度域で所定時間保持し、β相の面積比率を10%以下、
γ相の面積比率を6%以上にする焼鈍ステップを有して
なる黄銅材の製造方法。
8. A Pb content of 2.5 wt% or more,
A brass material having an apparent Zn content of 37 to 46 wt% is maintained for a predetermined time in a temperature range in which the β phase is not stably present and the γ phase is stably present, and the area ratio of the β phase is 10%. Less than,
A method for producing a brass material, comprising an annealing step of setting an area ratio of a γ phase to 6% or more.
【請求項9】 前記黄銅材は、Snを0.5〜7wt%
含有してなる請求項8記載の黄銅材の製造方法。
9. The brass material contains 0.5 to 7 wt% of Sn.
The method for producing a brass material according to claim 8, wherein the brass material is contained.
【請求項10】 前記焼鈍ステップ以前に、見掛け上の
Zn含有量が37〜46wt%である黄銅素材を、65
0℃以下の温度、断面減少率90%以上で熱間押し出し
して黄銅押出し物を作る押し出しステップを有してなる
請求項8または9記載の黄銅材の製造方法。
10. Prior to the annealing step, a brass material having an apparent Zn content of 37 to 46% by weight is prepared by adding 65% by weight to a brass material.
The method for producing a brass material according to claim 8 or 9, further comprising an extrusion step of hot-extruding at a temperature of 0 ° C or less and a cross-section reduction rate of 90% or more to produce an extruded brass product.
【請求項11】 前記焼鈍ステップ以前に、見掛け上の
Zn含有量が37〜46wt%である黄銅素材を、熱間
押し出しして黄銅押出し物を作るとともに、熱間押し出
し時の温度、断面減少率を制御して結晶粒径を15μm
以下にする押し出しステップを有してなる請求項8また
は9記載の黄銅材の製造方法。
11. Prior to the annealing step, a brass material having an apparent Zn content of 37 to 46% by weight is hot-extruded to produce a brass extruded product, and a temperature and a cross-sectional reduction rate during the hot extrusion. Controlling the crystal grain size to 15 μm
The method for producing a brass material according to claim 8 or 9, further comprising an extruding step.
【請求項12】 Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%である黄
銅素材を、熱間押し出しして黄銅押出し物を作るととも
に、熱間押し出し時の温度、断面減少率を制御して結晶
粒径を微細化する押し出しステップと、 前記押出しステップ後に、前記黄銅押出し物を、β相が
安定して存在せずγ相が安定して存在する温度域で所定
時間保持し、β相の面積比率を減少させてγ相の面積比
率を増加させる焼鈍ステップと、 前記焼鈍ステップ後に、前記黄銅押出し物を400℃以
下になるまで冷却する冷却ステップとを有し、前記冷却
ステップ後に、α相の平均結晶粒径が15μm以下、β
相の面積比率が10%以下、γ相の面積比率が6%以上
の結晶組織にしてなる黄銅材の製造方法。
12. A brass material having a Pb content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% is hot-extruded to produce a brass extruded product. And an extrusion step of controlling the cross-sectional reduction rate to refine the crystal grain size.After the extrusion step, the extruded brass is heated to a temperature at which the β phase is not stably present and the γ phase is stably present. Holding for a predetermined time in the zone, an annealing step of reducing the area ratio of the β phase to increase the area ratio of the γ phase, and after the annealing step, a cooling step of cooling the brass extruded product to 400 ° C. or less. Having an average crystal grain size of the α phase of 15 μm or less, β
A method for producing a brass material having a crystal structure in which the area ratio of a phase is 10% or less and the area ratio of a γ phase is 6% or more.
【請求項13】 前記黄銅素材のSn含有量が0.5〜
7wt%であって、前記冷却ステップ後に、γ相中のS
n濃度が8wt%以上である請求項12記載の黄銅材の
製造方法。
13. The brass material having a Sn content of 0.5 to 0.5.
7 wt%, and after the cooling step,
The method for producing a brass material according to claim 12, wherein the n concentration is 8 wt% or more.
【請求項14】 Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%である黄
銅素材を、熱間押し出しして黄銅押出し物を作るととも
に、熱間押し出し時の温度、断面減少率を制御して結晶
粒径を微細化する押し出しステップと、 前記押出しステップ後に、前記黄銅押出し物を、β相が
安定して存在せずγ相が安定して存在する温度域で所定
時間保持し、β相の面積比率を減少させてγ相の面積比
率を増加させる焼鈍ステップと、 前記焼鈍ステップ後に、前記黄銅押出し物を400℃以
下になるまで冷却する冷却ステップとを有し、前記冷却
ステップ後に、日本工業規格JIS C−3604に従
う快削黄銅棒を基準とした90以上の切削抵抗指数と、
300N/mm2以上の0.2%耐力又は降伏応力を満
たしてなる黄銅材の製造方法。
14. A brass material having a Pb content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% is hot-extruded to produce a brass extruded product. And an extrusion step of controlling the cross-sectional reduction rate to refine the crystal grain size.After the extrusion step, the extruded brass is heated to a temperature at which the β phase is not stably present and the γ phase is stably present. Holding for a predetermined time in the zone, an annealing step of reducing the area ratio of the β phase to increase the area ratio of the γ phase, and after the annealing step, a cooling step of cooling the brass extruded product to 400 ° C. or less. Having a cutting resistance index of 90 or more based on a free-cutting brass bar according to Japanese Industrial Standard JIS C-3604 after the cooling step,
A method for producing a brass material satisfying a 0.2% proof stress or a yield stress of 300 N / mm2 or more.
【請求項15】 Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%である黄
銅素材を、熱間押し出しして黄銅押出し物を作るととも
に、熱間押し出し時の温度、断面減少率を制御して結晶
粒径を微細化する押し出しステップと、 前記押出しステップ後に、前記黄銅押出し物を、β相が
安定して存在せずγ相が安定して存在する温度域で所定
時間保持し、β相の面積比率を減少させてγ相の面積比
率を増加させる焼鈍ステップと、 前記焼鈍ステップ後に、前記黄銅押出し物を400℃以
下になるまで冷却する冷却ステップとを有し、前記冷却
ステップ後に、日本工業規格JIS C−3604に従
う快削黄銅棒を基準とした90以上の切削抵抗指数と、
黄銅の円筒形試料を14%アンモニア水溶液上のアンモ
ニア雰囲気中に荷重を加えながら24時間暴露したと
き、前記試料が割れない最大応力が180N/mm2以
上である耐SCC性を満たしてなる黄銅材の製造方法。
15. A brass material having a Pb content of 2.5% by weight or more and an apparent Zn content of 37 to 46% by weight is hot-extruded to produce a brass extruded product. And an extrusion step of controlling the cross-sectional reduction rate to refine the crystal grain size.After the extrusion step, the extruded brass is heated to a temperature at which the β phase is not stably present and the γ phase is stably present. Holding for a predetermined time in the zone, an annealing step of reducing the area ratio of the β phase to increase the area ratio of the γ phase, and after the annealing step, a cooling step of cooling the brass extruded product to 400 ° C. or less. Having a cutting resistance index of 90 or more based on a free-cutting brass bar according to Japanese Industrial Standard JIS C-3604 after the cooling step,
When a cylindrical sample of brass is exposed to an ammonia atmosphere on a 14% aqueous ammonia solution for 24 hours while applying a load, the sample is not broken and has a maximum stress of 180 N / mm 2 or more. Production method.
【請求項16】 Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%、Sn含
有量が0.5〜7wt%である黄銅素材を、熱間押し出
しして黄銅押出し物を作るとともに、熱間押し出し時の
温度、断面減少率を制御して結晶粒径を微細化する押し
出しステップと、 前記押出しステップ後に、前記黄銅押出し物を、β相が
安定して存在せずγ相が安定して存在する温度域で所定
時間保持し、β相の面積比率を減少させてγ相の面積比
率を増加させる焼鈍ステップと、 前記焼鈍ステップ後に、前記黄銅押出し物を400℃以
下になるまで冷却する冷却ステップとを有し、 前記冷
却ステップ後に、日本工業規格JIS C−3604に
従う快削黄銅棒を基準とした90以上の切削抵抗指数
と、日本伸銅協会技術標準JBMA T−303に従う
脱亜鉛腐食試験を行なったとき、最大脱亜鉛浸透深さ方
向が加工方向と平行な場合には最大脱亜鉛深さ100μ
m以下であること、及び最大脱亜鉛浸透深さ方向が加工
方向と直角な場合には最大脱亜鉛深さ70μm以下であ
ることの少なくとも一方の条件を満たすような耐食性を
有する黄銅材の製造方法。
16. A brass material having a Pb content of 2.5 wt% or more, an apparent Zn content of 37 to 46 wt%, and an Sn content of 0.5 to 7 wt% is hot-extruded. Extruding step of making the brass extruded product, controlling the temperature at the time of hot extrusion and reducing the cross-sectional reduction rate to refine the crystal grain size, and after the extruding step, the brass extruded product has a stable β phase. Holding for a predetermined time in a temperature range in which the γ phase is stably present, and reducing the area ratio of the β phase to increase the area ratio of the γ phase; and, after the annealing step, extruding the brass material for 400 hours. A cooling step of cooling to a temperature of not more than 90 ° C. or less, and after the cooling step, a cutting resistance index of 90 or more based on a free-cutting brass bar according to Japanese Industrial Standard JIS C-3604, and a technical standard JBM When performing a dezincification corrosion test according to AT-303, when the maximum dezincification penetration depth direction is parallel to the processing direction, the maximum dezincification depth is 100 μm.
m or less, and a method for producing a brass material having corrosion resistance that satisfies at least one of the following conditions: when the maximum dezincing penetration depth direction is perpendicular to the processing direction, the maximum dezincing depth is 70 μm or less. .
【請求項17】 Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%である黄
銅材を受入れることができ、 前記黄銅材を、400〜520℃の温度範囲で10分以
上保持できる装置を有する黄銅材の製造設備。
17. A brass material having a Pb content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% can be received, and the brass material is subjected to a temperature range of 400 to 520 ° C. Production equipment for brass materials with equipment that can hold for more than 10 minutes.
【請求項18】 Pb含有量が2.5wt%以上であ
り、見掛け上のZn含有量が37〜46wt%である黄
銅材を受入れることができ、押出し時の温度が480〜
650℃、押出し時の断面減少率が90%以上である条
件下で熱間押出しして黄銅押出し物を作る押出し装置
と、 前記黄銅押出し物を受入れることができ、前記黄銅押出
し物を、400〜520℃の温度範囲で10分以上保持
することができる装置を有する黄銅材の製造設備。
18. A brass material having a Pb content of 2.5 wt% or more and an apparent Zn content of 37 to 46 wt% can be received, and the temperature at the time of extrusion is 480 to 480.
An extruder for hot extrusion under conditions of 650 ° C. and a cross-sectional reduction rate of 90% or more during extrusion to produce a brass extruded product; and an extruder capable of receiving the brass extruded product; A brass material manufacturing facility having an apparatus capable of holding a temperature in a temperature range of 520 ° C. for 10 minutes or more.
【請求項19】 前記押出し装置から出てきた前記黄銅
押出し物を400℃以下になるまで冷却する装置を備え
てなる請求項18記載の黄銅材の製造設備。
19. The brass material manufacturing equipment according to claim 18, further comprising a device for cooling the brass extruded product coming out of the extruder to 400 ° C. or less.
JP11099390A 1998-08-12 1999-04-06 Method and equipment for manufacturing brass and brass material Pending JP2000119778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11099390A JP2000119778A (en) 1998-08-12 1999-04-06 Method and equipment for manufacturing brass and brass material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-241100 1998-08-12
JP24110098 1998-08-12
JP11099390A JP2000119778A (en) 1998-08-12 1999-04-06 Method and equipment for manufacturing brass and brass material

Publications (1)

Publication Number Publication Date
JP2000119778A true JP2000119778A (en) 2000-04-25

Family

ID=26440530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11099390A Pending JP2000119778A (en) 1998-08-12 1999-04-06 Method and equipment for manufacturing brass and brass material

Country Status (1)

Country Link
JP (1) JP2000119778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354188A (en) * 2022-08-26 2022-11-18 宁波金田铜业(集团)股份有限公司 Easily-welded brass and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354188A (en) * 2022-08-26 2022-11-18 宁波金田铜业(集团)股份有限公司 Easily-welded brass and preparation method thereof
CN115354188B (en) * 2022-08-26 2023-09-15 宁波金田铜业(集团)股份有限公司 Easily-welded brass and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1947204B1 (en) Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature
CA2563561A1 (en) Free-machining wrought aluminium alloy product and process for producing such an alloy product
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JP2000119778A (en) Method and equipment for manufacturing brass and brass material
CN113215458A (en) Aluminum alloy and manufacturing method thereof
JP2000119777A (en) Method and equipment for manufacturing brass and brass material
JP2000169919A (en) Lead-free copper base alloy material
JP2002030364A (en) High strength free cutting brass
JP2002003967A (en) Lead-free free cutting brass excellent in dezincification corrosion resistance and its production method
JP2000309835A (en) Brass material, production of brass material and method for working brass material
JP2006077298A (en) Aluminum alloy material superior in machinability, and manufacturing method therefor
JP4200657B2 (en) Method for manufacturing brass pipe material
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JP2002155326A (en) Brass material and its manufacturing method
JPH07207392A (en) Heat resistant conductive aluminum alloy and manufacture of wire made of the alloy
JP2006188722A (en) Method for producing brass material and brass material
JPS61119643A (en) Free-cutting aluminum alloy and its production
JPH07197152A (en) Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production
US4490188A (en) Method of imparting a fine grain structure to 2000 & 7000 series aluminum alloys
US9399805B2 (en) Lead free dezincification alloy and method of making same
US20220220597A1 (en) Copper-beryllium alloy with high strength
JP2000192175A (en) Copper alloy for cold working and its production
JP2001294956A (en) Free cutting brass excellent in dezincification resistance and its producing method
JP2002285263A (en) Brass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees