JP2000192175A - Copper alloy for cold working and its production - Google Patents

Copper alloy for cold working and its production

Info

Publication number
JP2000192175A
JP2000192175A JP37342798A JP37342798A JP2000192175A JP 2000192175 A JP2000192175 A JP 2000192175A JP 37342798 A JP37342798 A JP 37342798A JP 37342798 A JP37342798 A JP 37342798A JP 2000192175 A JP2000192175 A JP 2000192175A
Authority
JP
Japan
Prior art keywords
content
cold
copper alloy
apparent
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37342798A
Other languages
Japanese (ja)
Inventor
Katsuaki Nakamura
克昭 中村
Nobuyuki Ashie
伸之 芦江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP37342798A priority Critical patent/JP2000192175A/en
Publication of JP2000192175A publication Critical patent/JP2000192175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To particularly improve the cold forgeability of an alloy and to make better its corrosion resistance and stress corrosion cracking resistance by controlling an apparent Zn content to a specified range and controlling an Sn content to a specified range. SOLUTION: In an alloy, an apparent Zn content is controlled to 10 to 35 wt.%, and an Sn content is controlled to 1 to 1.6 wt.%. The apparent Zn content is expressed by (B+t.Q)/(A+B+t.Q)×100, A denotes a Cu content (wt.%), B denotes a Zn content (wt.%), (t) denotes a Zn equivalent of the 3rd element to be added (such as Sn), and Q denotes the content (wt.%) of the 3rd element. As to this alloy, after cold drawing, annealing is executed for controlling the internal pressure, and the annealing temp. is controlled to <=450 deg.C, preferably to <=380 deg.C. Moreover, as to the one in which cold drawning and annealing are repeatedly executed, the final annealing temp. is controlled to <=450 deg.C, preferably to 380 deg.C, and the annealing temp. on the way is suitably controlled to about 550 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷間加工用、特に
冷間鍛造用銅合金、及びその製造方法に関する。
[0001] The present invention relates to a copper alloy for cold working, particularly for cold forging, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、冷間加工性(鍛造性)に優れる銅
合金として、黄銅(JIS C2600、JIS C2
700)が知られている。また、丹銅(JIS C22
00)が冷間加工(鍛造)に用いられている例もある。
2. Description of the Related Art Conventionally, as a copper alloy having excellent cold workability (forgeability), brass (JIS C2600, JIS C2
700) are known. In addition, copper bronze (JIS C22
00) is used for cold working (forging) in some cases.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、黄銅
(JIS C2600,JIS C2700)は耐食性
や耐応力腐食割れ性に劣るため、使用場所が限定される
ものであった。一方、丹銅(JIS C2200)にお
いては必ずしも冷間加工性(鍛造性)が良好とは言え
ず、鍛造欠陥等の問題があった。
However, since brass (JIS C2600, JIS C2700) is inferior in corrosion resistance and stress corrosion cracking resistance, its use place is limited. On the other hand, in copper (JIS C2200), the cold workability (forgeability) is not always good, and there are problems such as forging defects.

【0004】また、従来の冷間加工用銅合金の製造方法
においては、材料の硬度分布(表面と中心との硬度差)
の適正化や酸化被膜付着等について十分な対策がなされ
ているとは言い難く、冷間加工性低下の原因となってい
た。
Further, in a conventional method for producing a copper alloy for cold working, the hardness distribution of the material (the difference in hardness between the surface and the center).
It is hard to say that sufficient measures have been taken for the optimization of the thickness and the adhesion of the oxide film, and this has caused a reduction in cold workability.

【0005】本発明は、冷間加工性、特に冷間鍛造性に
優れるとともに、良好な耐食性、耐応力腐食割れ性を有
する銅合金を提供することを目的とする。
An object of the present invention is to provide a copper alloy which is excellent in cold workability, particularly cold forgeability, and has good corrosion resistance and stress corrosion cracking resistance.

【0006】本発明は、また、冷間加工用銅合金の製造
方法において、冷間加工性低下の原因を取り除くことを
目的とする。
Another object of the present invention is to eliminate the cause of deterioration in cold workability in a method of manufacturing a copper alloy for cold working.

【0007】[0007]

【課題を解決するための手段およびその作用・効果】本
発明では、見掛け上のZn含有量が10〜35wt%好
ましくは15〜30wt%、Snの含有量が1〜1.6
wt%である組成を有することによって、耐食性、耐応
力腐食割れ性に優れた特性ばかりでなく、冷間加工性、
特に冷間鍛造性に優れた特性を得ることができる。
In the present invention, the apparent Zn content is 10 to 35 wt%, preferably 15 to 30 wt%, and the Sn content is 1 to 1.6 wt%.
By having a composition that is wt.%, not only characteristics excellent in corrosion resistance and stress corrosion cracking resistance, but also cold workability,
In particular, characteristics excellent in cold forgeability can be obtained.

【0008】すなわち、見掛け上のZn含有量が10w
t%程度の銅合金では、元々耐食性は良好であるが、S
n添加により硬度が高くなり摩擦係数が下がるため、型
との凝着が抑制され、型かじりなどの鍛造欠陥が低減す
る。
That is, when the apparent Zn content is 10 w
With a copper alloy of about t%, corrosion resistance is originally good, but S
Since the addition of n increases the hardness and lowers the friction coefficient, adhesion to the mold is suppressed, and forging defects such as galling of the mold are reduced.

【0009】なお、見掛け上のZn含有量が10wt%
未満であると、同じくSn添加により硬度は向上するも
のの、冷間延性が低すぎるため、冷間加工(鍛造)には
不向きである。
The apparent Zn content is 10 wt%.
If it is less than the above, the hardness is also improved by the addition of Sn, but the cold ductility is too low, so that it is not suitable for cold working (forging).

【0010】一方、見掛け上のZn含有量が35wt%
程度の銅合金では、Sn添加により耐食性、耐応力腐食
割れ性が向上する。
On the other hand, the apparent Zn content is 35 wt%.
In some copper alloys, the addition of Sn improves the corrosion resistance and stress corrosion cracking resistance.

【0011】なお、見掛け上のZn含有量が35wt%
超の銅合金では、見掛け上のZn含有量が大きいため、
耐食性確保のためにSn添加量を大きくせざるを得ず、
その結果、冷間延性が低下してしまう。
The apparent Zn content is 35 wt%.
In super-copper alloys, the apparent Zn content is large,
In order to ensure corrosion resistance, the amount of Sn must be increased,
As a result, the cold ductility decreases.

【0012】ここで、「見かけ上のZn含有量」という
用語は、AをCu含有量〔wt%〕、BをZn含有量
〔wt%〕、tを添加した第3元素(例えばSn)のZ
n当量、Qをその第3元素の含有量〔wt%〕としたと
き、「{(B+t・Q)/(A+B+t・Q)}×10
0」の意味で用いる。
Here, the term "apparent Zn content" means that A is Cu content [wt%], B is Zn content [wt%], and t is a third element (for example, Sn). Z
When n equivalents and Q are the content of the third element [wt%], “{(B + t · Q) / (A + B + t · Q)} × 10
0 ”is used.

【0013】本発明は、また、冷間抽伸後、内部応力調
整のための焼鈍を行う冷間加工用、特に冷間鍛造用銅合
金の製造方法において、前記焼鈍温度を450℃以下、
好ましくは380℃以下にすることに特徴を有する。
[0013] The present invention also provides a method for producing a copper alloy for cold working, in particular, for cold forging, in which annealing for internal stress adjustment is performed after cold drawing, wherein the annealing temperature is 450 ° C or less.
It is characterized in that the temperature is preferably 380 ° C. or lower.

【0014】この製造方法によれば、材料表面の硬度が
高くなり摩擦係数が下がるため、型との凝着が抑制さ
れ、型かじりなどの鍛造欠陥が低減する。
According to this manufacturing method, the hardness of the material surface is increased and the friction coefficient is reduced, so that adhesion to the mold is suppressed, and forging defects such as mold galling are reduced.

【0015】好適な実施形態として、冷間抽伸と前記焼
鈍を繰り返し行うものでは、最後の焼鈍温度が、450
℃以下、好ましくは380℃以下であり、途中の焼鈍温
度は、550℃程度が好ましい。
As a preferred embodiment, in the case where the cold drawing and the annealing are repeatedly performed, the final annealing temperature is 450.
° C or lower, preferably 380 ° C or lower, and the annealing temperature during the process is preferably about 550 ° C.

【0016】これにより、途中の焼鈍後には材料の硬度
を低くできるため、続く冷間抽伸においては加工度を大
きくすることができる。
Thus, the hardness of the material can be lowered after annealing in the middle, so that the working ratio can be increased in the subsequent cold drawing.

【0017】なお、組成の実施形態としては、見掛け上
のZn含有量が10〜35wt%好ましくは15〜30
wt%、Snの含有量が1〜1.6wt%の組成を有す
ることが望ましい。
As an embodiment of the composition, the apparent Zn content is 10 to 35 wt%, preferably 15 to 30 wt%.
It is desirable to have a composition in which the content of Sn and the content of Sn is 1 to 1.6 wt%.

【0018】本発明は、さらには、熱間押し出しを経て
製造される冷間鍛造用銅合金の製造方法において、熱間
押し出し温度が800℃以下であることに特徴を有す
る。
The present invention is further characterized in that in the method for producing a copper alloy for cold forging produced through hot extrusion, the hot extrusion temperature is 800 ° C. or less.

【0019】この製造方法によれば、酸化被膜等に伴う
表面欠陥が抑制され、冷間加工時の欠陥が低減する。よ
って、冷間鍛造等の本加工性ばかりでなく、冷間抽伸等
の予備加工性も向上するため、冷間抽伸回数低減等の効
果も奏する。
According to this manufacturing method, surface defects associated with oxide films and the like are suppressed, and defects during cold working are reduced. Therefore, not only the workability such as the cold forging but also the pre-processability such as the cold drawing is improved, and the effect of reducing the number of times of the cold drawing is also exerted.

【0020】好適な実施形態としては、熱間押し出し温
度を650℃以下、好ましくは断面減少率90%以上に
することにより、結晶粒径の粗大化抑止、微細化がなさ
れるため、表面及び皮下欠陥がさらに抑制される。
In a preferred embodiment, the hot extrusion temperature is set to 650 ° C. or less, and preferably, the cross-sectional reduction rate is set to 90% or more to suppress the coarsening of the crystal grain size and make the crystal grain size smaller. Defects are further suppressed.

【0021】なお、上記のように800℃以下で押し出
しする場合、見掛け上のZn含有量が10〜35wt%
好ましくは15〜30wt%、Snの含有量が1〜1.
6wt%の組成を有することが望ましい。なぜならば、
このような組成範囲では熱間延性が良好であるため、低
温度でも押し出し成形性が良いからである。
When extruding at 800 ° C. or less as described above, the apparent Zn content is 10 to 35 wt%.
Preferably, the content of Sn is 15 to 30% by weight and the content of Sn is 1 to 1.
It is desirable to have a composition of 6 wt%. because,
This is because, in such a composition range, the hot ductility is good, and the extrusion moldability is good even at a low temperature.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る実施形態を説
明する。まず、図1は見掛け上のZn含有量に対する、
冷間延性、硬さ、耐食性の関係を示している。
Embodiments of the present invention will be described below. First, FIG. 1 shows the apparent Zn content,
It shows the relationship between cold ductility, hardness and corrosion resistance.

【0023】図1において、まずSn無しの場合の特性
を説明すると、丹銅(JIS C2200)に対応する
見掛け上のZn含有量10wt%のものは、Zn含有量
が小さいため耐食性は良好であるが、冷間延性、硬さに
おいて劣り、冷間加工性に劣っている。なお、見掛け上
のZn含有量が5wt%になると、冷間加工性はさらに
低下する。
Referring to FIG. 1, first, the characteristics without Sn will be described. If the apparent Zn content is 10 wt% corresponding to copper (JIS C2200), the corrosion resistance is good because the Zn content is small. However, it is inferior in cold ductility and hardness and inferior in cold workability. When the apparent Zn content is 5 wt%, the cold workability is further reduced.

【0024】一方、黄銅(JIS C2600、JIS
C2700)に対応する見掛け上のZn含有量30、
35wt%のものは、冷間延性、硬さに優れ、冷間加工
性は良好であるものの、耐食性や耐応力腐食割れ性に劣
っている。なお、見掛け上のZn含有量が40wt%に
なると、冷間延性がやや低下し、冷間加工性がやや低下
する。
On the other hand, brass (JIS C2600, JIS
C2700), an apparent Zn content of 30,
35% by weight has excellent cold ductility and hardness and good cold workability, but is inferior in corrosion resistance and stress corrosion cracking resistance. When the apparent Zn content is 40 wt%, the cold ductility is slightly lowered, and the cold workability is slightly lowered.

【0025】次に、図1において、Sn有りの場合の特
性を説明すると、まず、見掛け上のZn含有量15、3
0wt%のものは、Sn添加により耐食性が改善された
結果、耐食性、冷間加工性ともに優れた特性を有する。
Next, referring to FIG. 1, the characteristics in the presence of Sn will be described.
The alloy containing 0 wt% has excellent corrosion resistance and cold workability as a result of the improvement in corrosion resistance due to the addition of Sn.

【0026】見掛け上のZn含有量35wt%のもの
は、Sn添加により同様に耐食性が改善される反面、耐
食性確保のために多量のSnを添加せざるを得ないた
め、冷間延性がやや低下するが、実用上は問題はない。
なお、見掛け上のZn含有量が40wt%になると、S
n添加による冷間延性の低下が大きく、実用は困難であ
る。
With an apparent Zn content of 35 wt%, the corrosion resistance is similarly improved by the addition of Sn, but a large amount of Sn must be added to secure the corrosion resistance, so that the cold ductility is slightly reduced. However, there is no problem in practical use.
When the apparent Zn content reaches 40 wt%, S
The decrease in cold ductility due to the addition of n is large, and practical use is difficult.

【0027】また、見掛け上のZn含有量10wt%の
ものは、Sn添加により硬さが向上する。なお、見掛け
上のZn含有量が5wt%になると、Sn添加により硬
さは向上するものの、冷間延性が悪いままであるため、
実用は困難である。
In the case of an apparent Zn content of 10 wt%, the hardness is improved by adding Sn. In addition, when the apparent Zn content becomes 5 wt%, although the hardness is improved by the addition of Sn, the cold ductility remains poor.
Practical is difficult.

【0028】以上のように、見掛け上のZn含有量10
〜35wt%の組成範囲の黄銅であれば、Snの適量添
加により、冷間加工性と耐食性の両方を満たすことがで
きるのである。
As described above, an apparent Zn content of 10
Brass having a composition range of up to 35 wt% can satisfy both cold workability and corrosion resistance by adding an appropriate amount of Sn.

【0029】次に、具体的な組成について図2を用いて
説明する。図2は、実施例、比較例1〜3の組成、特性
の対比表である。
Next, a specific composition will be described with reference to FIG. FIG. 2 is a comparison table of the composition and characteristics of Examples and Comparative Examples 1 to 3.

【0030】図2において、冷間鍛造(加工)性は、冷
間延性と硬さから評価し、耐食性(耐脱亜鉛腐食性)
は、日本伸銅協会技術標準(JBMA T−303)に
よる脱亜鉛腐食試験で最大腐食深さが、加工方向と平行
な場合は100μm以下を○、加工方向と直角な場合は
70μm以下を○とし、これらの基準に満たないものを
×とした。
In FIG. 2, the cold forgeability (workability) was evaluated from the cold ductility and hardness, and the corrosion resistance (dezincification corrosion resistance) was evaluated.
In the dezincification corrosion test according to the Japan Copper and Brass Association technical standard (JBMA T-303), the maximum corrosion depth is 100 μm or less when parallel to the processing direction, and 70 μm or less when it is perpendicular to the processing direction. , Those that do not meet these criteria are marked as x.

【0031】耐応力腐食割れ性(耐SCC性)は、円筒
形試料を14%アンモニア水溶液上のアンモニア雰囲気
中に荷重を加えながら24時間暴露したとき、試料が割
れない最大応力が50N/mm2以上を○、50N/m
2未満を×とした。
The stress corrosion cracking resistance (SCC resistance) is such that when a cylindrical sample is exposed to an ammonia atmosphere on a 14% aqueous ammonia solution for 24 hours while applying a load, the maximum stress at which the sample does not crack is 50 N / mm 2. ○, 50N / m
less than m 2 was ×.

【0032】この耐SCC性試験は、図3に示すよう
に、ガラスデジケータ52内で円筒状の試料53に垂直
に荷重を加えた状態で、NH3蒸気雰囲気中に24時間
暴露した後、割れの発生を調査した。
As shown in FIG. 3, the SCC resistance test was performed by exposing the cylindrical sample 53 to a NH3 vapor atmosphere for 24 hours while applying a vertical load to the cylindrical sample 53 in the glass dicator 52. Was investigated.

【0033】図2に戻って、実施例がSn添加により、
冷間鍛造(加工)性、耐食性(耐脱亜鉛腐食性)、耐S
CC性の全てに優れた特性を示すのに対して、比較例
1、2は、冷間鍛造性は良好なものの、耐食性(耐脱亜
鉛腐食性)、耐SCC性に劣る。
Returning to FIG. 2, the embodiment shows that the addition of Sn
Cold forging (working), corrosion resistance (dezincification corrosion resistance), S resistance
Comparative Examples 1 and 2 have good cold forgeability, but are inferior in corrosion resistance (dezincification corrosion resistance) and SCC resistance, while exhibiting excellent properties in all CC properties.

【0034】また、比較例3は、耐食性(耐脱亜鉛腐食
性)、耐SCC性は良好なものの、冷間鍛造性にやや劣
る。
In Comparative Example 3, the corrosion resistance (anti-zinc corrosion resistance) and the SCC resistance were good, but the cold forgeability was slightly inferior.

【0035】以上の対比のほかに、実施例は、Snの添
加により強度も向上する。なお、Snの添加量について
は、1〜1.6wt%の範囲が望ましい。
In addition to the above comparisons, in the examples, the strength is improved by adding Sn. The amount of Sn added is preferably in the range of 1 to 1.6 wt%.

【0036】続いて、実施例と比較例3について、製造
工程の対比を行なう。図4は、比較例3の製造工程であ
って、溶解、鋳造後、900℃で熱間押し出しを行なっ
た後、絞り、削りを2回繰り返した後、550℃で2時
間焼鈍する。その後、酸洗、削り、絞り、矯正を経て、
550℃の2時間焼鈍を再度行なった後、酸洗い、矯正
を行ない、棒材製品となる。
Subsequently, a comparison of the manufacturing process between the example and the comparative example 3 will be made. FIG. 4 shows a manufacturing process of Comparative Example 3, in which after melting and casting, hot extrusion is performed at 900 ° C., then drawing and shaving are repeated twice, and then annealing is performed at 550 ° C. for 2 hours. After that, after pickling, shaving, squeezing, straightening,
After annealing at 550 ° C. for 2 hours again, pickling and straightening are performed to obtain a bar product.

【0037】図4において、絞りを3回、焼鈍を2回行
なう理由は、以下の通りである。すなわち、熱間押し出
し工程が900℃で行われているため、酸化被膜付着や
結晶粒径粗大化により表面及び皮下欠陥が生じていた。
In FIG. 4, the reasons why the drawing is performed three times and the annealing is performed twice are as follows. That is, since the hot extrusion step was performed at 900 ° C., surface and subcutaneous defects were generated due to adhesion of an oxide film and coarsening of crystal grain size.

【0038】このように欠陥が多いと、1回の絞りでの
断面減少率を大きくできないため、絞り工程が3回と多
くなっていた。また、3回の絞り工程の中途では、欠陥
をなくすため、また材料を軟化して絞りしやすくするた
めに中間焼鈍が必要となり、焼鈍が2回になっているの
である。
If the number of defects is large as described above, the reduction rate of the cross section in one drawing cannot be increased, so that the number of drawing steps is increased to three. Also, in the middle of the three drawing steps, intermediate annealing is required to eliminate defects and to soften the material to facilitate drawing, and the annealing is performed twice.

【0039】また、図4の例では、最終焼鈍温度が55
0℃であるため、棒材表面が焼きなまされて、図5に示
すような硬度分布となる。このような硬度分布である
と、冷間加工(鍛造)した場合、材料表面の摩擦係数が
大きく、加工中に型との凝着が生じて型かじりなどの鍛
造欠陥が発生する。
In the example of FIG. 4, the final annealing temperature is 55
Since the temperature is 0 ° C., the surface of the bar is annealed to have a hardness distribution as shown in FIG. With such a hardness distribution, in the case of cold working (forging), the coefficient of friction of the material surface is large, and adhesion with a mold occurs during working, and forging defects such as mold galling occur.

【0040】以上のように、比較例3の製造方法は、製
造工程が長く、製造された棒材にも冷間加工性(鍛造
性)に問題があった。
As described above, the manufacturing method of Comparative Example 3 requires a long manufacturing process, and the manufactured bar has a problem in cold workability (forgeability).

【0041】これに対して、以下に示す実施例の製造方
法はこの問題を解決している。すなわち、図6は実施例
の製造工程であって、溶解、鋳造後、650℃で熱間押
し出しを行なった後、絞り、削りを行なった後、550
℃で2時間焼鈍する。その後、酸洗、削り、絞り、矯正
を経て、370℃の焼鈍を30分行なった後、酸洗い、
矯正を行ない、棒材製品となる。
On the other hand, the manufacturing method of the embodiment described below solves this problem. That is, FIG. 6 shows a manufacturing process of the embodiment, in which after melting and casting, after hot extrusion at 650 ° C., drawing and shaving, and then 550
Anneal for 2 hours at ° C. Then, after pickling, shaving, squeezing, and straightening, annealing at 370 ° C. for 30 minutes, followed by pickling,
After straightening, it becomes a bar product.

【0042】このように図6の例では、熱間押し出し工
程を650℃で行なっているため、酸化被膜付着や結晶
粒径粗大化が低減され、表面及び皮下欠陥が低減する。
そして、このように欠陥が少ないと、1回の絞りでの断
面減少率を大きくできるため、絞り工程を2回に減らす
ことができるのである。
As described above, in the example of FIG. 6, since the hot extrusion step is performed at 650 ° C., adhesion of an oxide film and coarsening of crystal grain size are reduced, and surface and subcutaneous defects are reduced.
When the number of defects is small as described above, the reduction rate of the cross section in one drawing can be increased, so that the number of drawing steps can be reduced to two.

【0043】なお、熱間押し出し温度を下げることに伴
う、押し出し成形性低下の懸念については、見掛け上の
Zn含有量が10〜35wt%好ましくは15〜30w
t%、Snの含有量が1〜1.6wt%の組成を有する
ことにより、熱間延性が良好になり、低温度でも押し出
し成形性が良い。
With respect to the concern about the lowering of the extrudability due to lowering the hot extrusion temperature, the apparent Zn content is 10 to 35 wt%, preferably 15 to 30 watts.
By having a composition in which the content of t% and Sn is 1 to 1.6 wt%, the hot ductility is good and the extrusion moldability is good even at a low temperature.

【0044】また、図6の例では、最終焼鈍温度が37
0℃であるため、棒材表面が過剰に焼きなまされること
がなく、図7に示すような硬度分布となる。このような
硬度分布であると、冷間加工(鍛造)した場合、材料表
面の摩擦係数が小さく、加工中に型との凝着が生じにく
く型かじりなどの鍛造欠陥が低減する。
In the example of FIG. 6, the final annealing temperature is 37.
Since the temperature is 0 ° C., the surface of the bar is not excessively annealed, and the hardness distribution is as shown in FIG. With such a hardness distribution, when cold working (forging) is performed, the coefficient of friction of the material surface is small, and adhesion to the mold is less likely to occur during working, and forging defects such as mold galling are reduced.

【0045】このように鍛造欠陥が抑制された原因とし
ては、加工硬化係数(n値)が適正化されていたことも
考えられる。また、図6の例によると、変形抵抗・摩擦
係数低減により鍛造荷重も低減するというメリットもあ
る。
The reason why the forging defects are suppressed as described above may be that the work hardening coefficient (n value) has been optimized. According to the example of FIG. 6, there is also an advantage that the forging load is reduced by reducing the deformation resistance and the friction coefficient.

【0046】続いて、図8は図6の実施例の変形例とし
ての製造工程であって、溶解、鋳造後、650℃で熱間
押し出しを行なった後、絞り、削りを行なった後、37
0℃の焼鈍を30分行なった後、酸洗い、矯正を行な
い、棒材製品となる。
FIG. 8 shows a manufacturing process as a modification of the embodiment of FIG. 6, in which after melting and casting, hot extrusion at 650 ° C., drawing and shaving, and then 37
After annealing at 0 ° C. for 30 minutes, pickling and straightening are performed to obtain a bar product.

【0047】このように図8の例では、熱間押し出し温
度低下による表面及び皮下欠陥の低減に基づき、1回の
絞りでの断面減少率を可能な限り大きくした結果、絞り
工程を1回のみにしている。
As described above, in the example of FIG. 8, based on the reduction of the surface and subcutaneous defects due to the reduction of the hot extrusion temperature, the cross-section reduction rate in one drawing is made as large as possible. I have to.

【0048】図8の製造方法を実現するためには、熱間
押し出し工程時の断面減少率を90%以上にすることに
より、結晶粒径を微細化し、表面及び皮下欠陥はさらに
低減しておくことが好ましい。また、このように断面減
少率を大きくすると、熱間押し出し終了時により小径に
できるため、絞り工程での負荷が軽減されて、絞り工程
が1回であっても対応できるようになるのである。
In order to realize the manufacturing method shown in FIG. 8, the crystal grain size is reduced and the surface and subcutaneous defects are further reduced by setting the cross-sectional reduction rate in the hot extrusion step to 90% or more. Is preferred. Further, when the cross-section reduction rate is increased in this manner, the diameter can be made smaller at the end of hot extrusion, so that the load in the drawing step is reduced, and it is possible to cope with even a single drawing step.

【0049】そして、図8の例では、上記のように絞り
工程を1回にした結果、焼鈍工程も1回で済むようにな
ったのである。
In the example of FIG. 8, as described above, the drawing step is performed once, so that the annealing step can be performed only once.

【0050】さらに、図8の例では、焼鈍工程が1回の
みであるため、図9に示すような硬度分布となる。この
ような硬度分布では、より表面硬度を高いため、型かじ
りなどの鍛造欠陥がより低減する。
Further, in the example of FIG. 8, since the annealing step is performed only once, the hardness distribution is as shown in FIG. In such a hardness distribution, forging defects such as mold galling are further reduced because the surface hardness is higher.

【0051】以上のように、実施例とその変形例では、
製造工程を簡略化したため、製造コストの大幅な低減が
見込めるばかりでなく、冷間加工性(鍛造性)も確保で
きるのである。
As described above, in the embodiment and its modifications,
Since the manufacturing process is simplified, not only can the manufacturing cost be significantly reduced, but also cold workability (forgeability) can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】見掛け上のZn含有量に対する、冷間延性、硬
さ、耐食性の関係
FIG. 1. Relationship between cold ductility, hardness and corrosion resistance with respect to apparent Zn content

【図2】本発明の実施形態としての実施例と、比較例1
〜3の組成、特性の対比表
FIG. 2 shows an example as an embodiment of the present invention and Comparative Example 1.
Comparison table of composition and characteristics of 3

【図3】同実施形態の耐応力腐食割れ性(耐SCC性)
試験の説明図
FIG. 3 shows stress corrosion cracking resistance (SCC resistance) of the embodiment.
Illustration of test

【図4】比較例3の製造工程の説明図FIG. 4 is an explanatory view of a manufacturing process of Comparative Example 3.

【図5】比較例3の硬度分布の説明図FIG. 5 is an explanatory diagram of a hardness distribution of Comparative Example 3.

【図6】本発明の実施形態としての実施例の製造工程の
説明図
FIG. 6 is an explanatory diagram of a manufacturing process of an example as an embodiment of the present invention.

【図7】同実施例の硬度分布の説明図FIG. 7 is an explanatory diagram of a hardness distribution of the embodiment.

【図8】同実施例の変形例の製造工程の説明図FIG. 8 is an explanatory view of a manufacturing process according to a modification of the embodiment.

【図9】同実施例の変形例の硬度分布の説明図FIG. 9 is an explanatory diagram of a hardness distribution according to a modification of the embodiment.

【符号の説明】[Explanation of symbols]

52…ガラスデジケータ、53…円筒状の試料 52: glass digitizer, 53: cylindrical sample

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 683 C22F 1/00 683 685 685Z 686 686Z 691 691B 694 694B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 683 C22F 1/00 683 685 685Z 686 686 686Z 691 691B 694 694B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 見掛け上のZn含有量が10〜35w
t%、Snの含有量が1〜1.6wt%である冷間加工
用銅合金。
1. An apparent Zn content of 10 to 35 watts
A copper alloy for cold working wherein the content of t% and Sn is 1 to 1.6 wt%.
【請求項2】 冷間抽伸後、内部応力調整のための焼
鈍を行う冷間鍛造用銅合金の製造方法において、前記焼
鈍温度を450℃以下、好ましくは380℃以下にして
なる冷間加工用銅合金の製造方法。
2. A method for producing a copper alloy for cold forging, in which annealing for adjusting internal stress is performed after cold drawing, wherein the annealing temperature is 450 ° C. or lower, preferably 380 ° C. or lower. Copper alloy manufacturing method.
【請求項3】 前記冷間抽伸と前記焼鈍を繰り返し行
うものであって、最後の焼鈍温度が、450℃以下、好
ましくは380℃以下である請求項2記載の冷間加工用
銅合金の製造方法。
3. The production of a copper alloy for cold working according to claim 2, wherein the cold drawing and the annealing are repeatedly performed, and a final annealing temperature is 450 ° C. or lower, preferably 380 ° C. or lower. Method.
【請求項4】 途中の焼鈍温度は、前記最後の焼鈍温
度より高い請求項3記載の冷間加工用銅合金の製造方
法。
4. The method for producing a copper alloy for cold working according to claim 3, wherein the intermediate annealing temperature is higher than the final annealing temperature.
【請求項5】 見掛け上のZn含有量が10〜35w
t%、Snの含有量が1〜1.6wt%の組成を有して
なる請求項2〜4の何れか記載の冷間加工用銅合金の製
造方法。
5. An apparent Zn content of 10 to 35 watts.
The method for producing a copper alloy for cold working according to any one of claims 2 to 4, wherein the content of t% and Sn has a composition of 1 to 1.6 wt%.
【請求項6】 熱間押し出しを経て製造される冷間鍛
造用銅合金の製造方法において、熱間押し出し温度が8
00℃以下である冷間加工用銅合金の製造方法。
6. A method for producing a copper alloy for cold forging produced through hot extrusion, wherein the hot extrusion temperature is 8%.
A method for producing a copper alloy for cold working having a temperature of 00 ° C. or lower.
【請求項7】 熱間押し出し温度が650℃以下であ
る請求項6記載の冷間加工用銅合金の製造方法。
7. The method for producing a copper alloy for cold working according to claim 6, wherein the hot extrusion temperature is 650 ° C. or lower.
【請求項8】 見掛け上のZn含有量が10〜35w
t%の組成を有する請求項6または7記載の冷間加工用
銅合金の製造方法。
8. An apparent Zn content of 10 to 35 watts.
The method for producing a copper alloy for cold working according to claim 6 or 7, having a composition of t%.
JP37342798A 1998-12-28 1998-12-28 Copper alloy for cold working and its production Pending JP2000192175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37342798A JP2000192175A (en) 1998-12-28 1998-12-28 Copper alloy for cold working and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37342798A JP2000192175A (en) 1998-12-28 1998-12-28 Copper alloy for cold working and its production

Publications (1)

Publication Number Publication Date
JP2000192175A true JP2000192175A (en) 2000-07-11

Family

ID=18502143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37342798A Pending JP2000192175A (en) 1998-12-28 1998-12-28 Copper alloy for cold working and its production

Country Status (1)

Country Link
JP (1) JP2000192175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034186A1 (en) * 2008-09-29 2010-04-01 Zhu Junsheng A brass alloy used for producing distributor of air conditioner
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034186A1 (en) * 2008-09-29 2010-04-01 Zhu Junsheng A brass alloy used for producing distributor of air conditioner
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Similar Documents

Publication Publication Date Title
TWI327601B (en) Copper alloy containing cobalt, nickel and silicon
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP2011508081A (en) Copper-nickel-silicon alloy
KR100709908B1 (en) Copper alloy with improved resistance to cracking and processes for making the same
JP4756195B2 (en) Cu-Ni-Sn-P copper alloy
EP1762630B1 (en) Beryllium nickel copper alloy sheet and method of manufacturing the same
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JP2000192175A (en) Copper alloy for cold working and its production
JPH0123526B2 (en)
JP4831969B2 (en) Brass material manufacturing method and brass material
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JP5752937B2 (en) Copper-tin-nickel-phosphorus alloy with improved strength and formability
JP2792020B2 (en) Titanium alloy cold-forged parts and their manufacturing method
JP5032011B2 (en) Hard α brass and method for producing the hard α brass
JPS6238415B2 (en)
JP2003034852A (en) Aluminum alloy plate for structural member superior in bending formability
JPH09143597A (en) Copper alloy for lead frame and its production
JPH11189856A (en) Brass material, brass pipe material and its production
JP4942524B2 (en) Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape
JPH11302763A (en) High strength aluminum alloy excellent in stress corrosion cracking resistance
JPS60174845A (en) Aluminum alloy for forging having superior strength and cold forgeability
JPH0762223B2 (en) Method of manufacturing deep drawing closure
JPS6312930B2 (en)
TW202104606A (en) Copper-beryllium alloy with high strength
JP2002285263A (en) Brass