JP5752937B2 - Copper-tin-nickel-phosphorus alloy with improved strength and formability - Google Patents

Copper-tin-nickel-phosphorus alloy with improved strength and formability Download PDF

Info

Publication number
JP5752937B2
JP5752937B2 JP2010529100A JP2010529100A JP5752937B2 JP 5752937 B2 JP5752937 B2 JP 5752937B2 JP 2010529100 A JP2010529100 A JP 2010529100A JP 2010529100 A JP2010529100 A JP 2010529100A JP 5752937 B2 JP5752937 B2 JP 5752937B2
Authority
JP
Japan
Prior art keywords
inch
alloy
copper
hours
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010529100A
Other languages
Japanese (ja)
Other versions
JP2011500963A (en
Inventor
トリバス、カロル、リン
ロビンソン、ピーター、ウィリアム
Original Assignee
ジービーシー メタルズ、エルエルシー
ジービーシー メタルズ、エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジービーシー メタルズ、エルエルシー, ジービーシー メタルズ、エルエルシー filed Critical ジービーシー メタルズ、エルエルシー
Publication of JP2011500963A publication Critical patent/JP2011500963A/en
Application granted granted Critical
Publication of JP5752937B2 publication Critical patent/JP5752937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

本出願は、2007年10月10日出願の米国特許仮出願第60/979,064号の優先権を主張し、その全開示は本明細書に組み込まれている。   This application claims priority from US Provisional Application No. 60 / 979,064, filed Oct. 10, 2007, the entire disclosure of which is incorporated herein.

本発明は銅合金、とりわけ強度及び成形性が改善された銅−錫−ニッケル−リン合金に関するものである。   The present invention relates to copper alloys, especially copper-tin-nickel-phosphorus alloys with improved strength and formability.

電気コネクターに使用するための、詳細には自動車の電気コネクターに使用するための、良好な成形性および妥当なコストの高強度銅合金に対するニーズが継続して存在する。現行の低コストCu−Sn−Ni−P系のコネクター合金は、実用的な強度(531MPa(77KSI))、中程度の導電率(37%IACS)、優れた成形性、および適度な応力緩和(150℃で65%)の特性の組み合わせを欠いている。この文献でいう成形性とは、公知の半径のダイの周りに約90°ロール曲げすることによるストリップ形成によって測定される。この比は、ストリップ厚さに対するストリップを割れなしに整形できる最小のダイ半径の割合である。曲げは、圧延の方向に対して平行な方向(不良な方向、BW)と直角な方向(良好な方向、GW)の両方で測定された。表1は現行で入手可能なCu−Sn−Ni−P合金を示す。   There continues to be a need for high formability copper alloys of good formability and reasonable cost for use in electrical connectors, particularly for use in automotive electrical connectors. The current low cost Cu—Sn—Ni—P based connector alloy has practical strength (531 MPa (77 KSI)), moderate electrical conductivity (37% IACS), excellent formability, and moderate stress relaxation ( The combination of properties at 65% at 150 ° C. is lacking. Formability in this document is measured by strip formation by roll bending about 90 ° around a known radius die. This ratio is the ratio of the minimum die radius that can shape the strip without cracking to the strip thickness. Bending was measured both in the direction parallel to the rolling direction (bad direction, BW) and in the direction perpendicular (good direction, GW). Table 1 shows currently available Cu-Sn-Ni-P alloys.

Figure 0005752937
Figure 0005752937

C19025は所望の特性を達成しそうであるが、許容できる成形性を伴う強度を欠いている。C40820は強度と優れた成形性を有するが、導電率を有さない。   C19025 is likely to achieve the desired properties, but lacks strength with acceptable moldability. C40820 has strength and excellent moldability but does not have electrical conductivity.

本発明の具体例は、特性の改善された組み合わせ、とりわけ耐力および成形性の改善された組み合わせを有する銅−錫−ニッケル−リン合金を提供するものである。   Embodiments of the present invention provide a copper-tin-nickel-phosphorus alloy having an improved combination of properties, particularly an improved combination of yield strength and formability.

好ましい具体例によれば、この合金は、
約1%〜約2%のSn、
約0.3%〜約1%のNi、
約0.05%〜約0.15%のP、
約0.01%〜約0.20%のMgおよび約0.02%〜約0.4%のFeのうちの少なくとも1つ、並びに
残部の銅
を含む。鉄の添加は、良好な応力緩和がその用途では要求されない場合、Mgの低コスト代替品として使用できる。
より好ましくは、この合金は、約1.1%〜約1.8%のSn、約0.4%〜約0.9%のNi、約0.05%〜約0.14%のP、および約0.05%〜約0.15%のMgを含む。FeはMgの一部を代替できる。
最も好ましくはこの合金は、約1.2%〜約1.5%のSn、約0.5%〜約0.7%のNi、約0.09%〜約0.13%のP、約0.02%〜約0.06%のMg、および残部の銅を含む。この合金は、少なくとも約531MPa(約77KSI)の耐力、少なくとも約37%のIACSの導電率、および1.0/1.0の成形性(90°GW/BW)を有するように処理されることが好ましい。この合金は、150℃で65%の応力緩和も有することが好ましい。
According to a preferred embodiment, the alloy is
About 1% to about 2% Sn,
About 0.3% to about 1% Ni,
About 0.05% to about 0.15% P;
At least one of about 0.01% to about 0.20% Mg and about 0.02% to about 0.4% Fe, and the balance copper. The addition of iron can be used as a low-cost alternative to Mg if good stress relaxation is not required for the application.
More preferably, the alloy comprises about 1.1% to about 1.8% Sn, about 0.4% to about 0.9% Ni, about 0.05% to about 0.14% P, And about 0.05% to about 0.15% Mg. Fe can replace a part of Mg.
Most preferably, the alloy comprises about 1.2% to about 1.5% Sn, about 0.5% to about 0.7% Ni, about 0.09% to about 0.13% P, about Contains 0.02% to about 0.06% Mg, and the balance copper. The alloy is treated to have a yield strength of at least about 531 MPa (about 77 KSI), an electrical conductivity of at least about 37% IACS, and a formability of 1.0 / 1.0 (90 ° GW / BW). Is preferred. The alloy preferably also has 65% stress relaxation at 150 ° C.

Snにより合金は固溶体強化される。Ni及びMgはリン析出物を形成するために加えられ、Mgの添加により導電率が低下せずに強度が増加するという利益がある。Pに対する金属(Ni+Mg)の比(M/P比)は、4〜8.5の範囲に制御されることが好ましい。この比が4よりも小さい場合には強度が得られず、8.5よりも大きい場合にはこの材料は40%IACSを達成しない。   The alloy strengthens the solid solution by Sn. Ni and Mg are added to form phosphorus precipitates, and the addition of Mg has the advantage that the strength increases without lowering the conductivity. The ratio of metal (Ni + Mg) to P (M / P ratio) is preferably controlled in the range of 4 to 8.5. If this ratio is less than 4, no strength is obtained, and if it is greater than 8.5, this material does not achieve 40% IACS.

本発明の好ましい具体例によれば、この合金は、溶融及び鋳造と、約850〜約1000℃の熱間圧延と、約75%までの冷間圧延と、約450℃〜約600℃の焼鈍と、最大約60%圧下率の冷間圧延及びそれに続く425℃〜約600℃での焼鈍と、約50%までの冷間圧延及びそれに続く約400℃〜550℃の最終焼鈍とによって加工される。最終冷間圧延圧下率は、熱的応力除去処理に先立って所望の厚さ及び機械的強度を達成するために与えられる。別の好ましい具体例では、この処理は、2回の最終焼鈍処理を含み、上工程の焼鈍をなくし、それにより成形性及び強度がそれぞれ改善される。   According to a preferred embodiment of the present invention, the alloy is melted and cast, hot rolled at about 850 to about 1000 ° C., cold rolled to about 75%, and annealed at about 450 ° C. to about 600 ° C. And cold rolling up to about 60% reduction, followed by annealing at 425 ° C. to about 600 ° C., followed by cold rolling up to about 50% and subsequent final annealing at about 400 ° C. to 550 ° C. The The final cold rolling reduction is given to achieve the desired thickness and mechanical strength prior to the thermal stress relief process. In another preferred embodiment, this treatment includes two final annealing treatments, eliminating the upper step annealing, thereby improving formability and strength, respectively.

実例1の合金の顕微鏡写真。2 is a micrograph of the alloy of Example 1. YSとM/P比の間の関係を示し、Cu−Sn−Ni−P−Mg合金に対する好ましいM/P比を図示するグラフ。The graph which shows the relationship between YS and M / P ratio, and illustrates the preferable M / P ratio with respect to a Cu-Sn-Ni-P-Mg alloy. %IACSとM/P比の間の関係を示し、Cu−Sn−Ni−P−Mg合金に対する4〜8.5の比の好ましいM/P比を図示するグラフ。A graph illustrating the relationship between% IACS and M / P ratio and illustrating a preferred M / P ratio of a ratio of 4 to 8.5 for a Cu-Sn-Ni-P-Mg alloy. 本発明の原理により合金を処理する方法の好ましい実施例の流れ図。2 is a flow diagram of a preferred embodiment of a method for treating an alloy in accordance with the principles of the present invention. 本発明の原理により合金を処理する代替の好ましい実施例の流れ図。3 is a flow diagram of an alternative preferred embodiment for processing an alloy in accordance with the principles of the present invention. 本発明の原理により合金を処理する代替の好ましい実施例の流れ図。3 is a flow diagram of an alternative preferred embodiment for processing an alloy in accordance with the principles of the present invention. 完全に再結晶していない結晶粒を有するように見えるいくらかの領域を有する、6〜7μmの結晶粒サイズを示す、2回焼鈍後の合金4の顕微鏡写真。Photomicrograph of Alloy 4 after two annealing showing a grain size of 6-7 μm with some regions appearing to have grains that have not completely recrystallised. 4〜5μmの結晶粒サイズを示す、ストリップ焼鈍後の工程3の合金4の顕微鏡写真。Micrograph of alloy 4 of step 3 after strip annealing showing a grain size of 4-5 μm.

本発明の実施例は、特性の改善された組み合わせ、とりわけ耐力および成形性の改善された組み合わせを有する銅−錫−ニッケル−リン合金を提供する。好ましい一実施例では、この合金は、
約1%〜約2%のSn、
約0.3%〜約1%のNi、
約0.05%〜約0.15%のP、
約0.01%〜約0.20%のMgおよび約0.02%〜約0.4%のFeのうちの少なくとも1つ、並びに
残部の銅
を含む。鉄の添加は、良好な応力緩和がその用途において要求されない場合、Mgの低コストの代替として使用できる。
The embodiments of the present invention provide a copper-tin-nickel-phosphorus alloy having an improved combination of properties, particularly an improved combination of yield strength and formability. In a preferred embodiment, the alloy is
About 1% to about 2% Sn,
About 0.3% to about 1% Ni,
About 0.05% to about 0.15% P;
At least one of about 0.01% to about 0.20% Mg and about 0.02% to about 0.4% Fe, and the balance copper. The addition of iron can be used as a low cost alternative to Mg if good stress relaxation is not required in the application.

より好ましくは、この合金は、約1.2%〜約1.5%のSn、約0.5%〜約0.7%のNi、約0.09%〜約0.13%のP、約0.02%〜約0.06%のMg、及び残部の銅を含む。好ましくはこの合金は、少なくとも約531MPa(約77KSI)の耐力、少なくとも約37%IACSの導電率、及び1.0/1.0の成形性(90°GW/BW)を有するように処理される。好ましくはこの合金は、150℃で65%の応力緩和も有する。   More preferably, the alloy comprises about 1.2% to about 1.5% Sn, about 0.5% to about 0.7% Ni, about 0.09% to about 0.13% P, About 0.02% to about 0.06% Mg, and the balance copper. Preferably, the alloy is processed to have a yield strength of at least about 531 MPa (about 77 KSI), a conductivity of at least about 37% IACS, and a formability of 1.0 / 1.0 (90 ° GW / BW). . Preferably the alloy also has a 65% stress relaxation at 150 ° C.

Snにより合金は固溶体強化される。Ni及びMgはリン析出物を形成させるために加えられ、Mgの添加は導電率を低下させずに強度を増加させる利益を伴う。M/P比は、4〜8.5の範囲に制御されることが好ましい。この比が4よりも小さい場合は強度が得られず、8.5よりも大きい場合は材料が40%IACSを達成しない。   The alloy strengthens the solid solution by Sn. Ni and Mg are added to form phosphorus precipitates, and the addition of Mg is accompanied by the benefit of increasing strength without reducing conductivity. The M / P ratio is preferably controlled in the range of 4 to 8.5. If this ratio is less than 4, no strength is obtained, and if it is greater than 8.5, the material does not achieve 40% IACS.

本発明の好ましい実施例によれば、この合金は溶融及び鋳造と、850〜1000℃の熱間圧延と、約75%までの冷間圧延と、450〜600℃の焼鈍と、約60%の冷間圧延に続く425〜600℃での焼鈍、および約50%の冷間圧延に続く400〜550℃の最終焼鈍によって加工される。最終冷間圧延圧下率は、熱的応力除去処理に先立って所望の厚さ及び機械的強度を達成するために与えられる。別の好ましい実施例では、この処理は、2回最終焼鈍処理を含み、上工程の焼鈍を除去し、それにより成形性及び強度がそれぞれ改善される。   According to a preferred embodiment of the present invention, the alloy is melted and cast, hot rolled at 850-1000 ° C., cold rolled up to about 75%, annealed at 450-600 ° C., and about 60%. Processed by cold rolling followed by annealing at 425-600 ° C. and approximately 50% cold rolling followed by final annealing at 400-550 ° C. The final cold rolling reduction is given to achieve the desired thickness and mechanical strength prior to the thermal stress relief process. In another preferred embodiment, this process includes a two-time final annealing process that eliminates the upper annealing, thereby improving formability and strength, respectively.

実施例1
表2に記載された成分を有する一連の4.54kg(10ポンド)の研究用インゴットをシリカるつぼ内で溶融し、湯口から101.6mm×101.6mm×44.45mm(4インチ×4インチ×1.75インチ)の鋼鋳型に鋳造した。900℃で2時間の均熱処理後、それらを3パスで27.94mm(40.64mm/34.29mm/27.94mm)(1.1インチ(1.6インチ/1.35インチ/1.1インチ))に熱間圧延し、900℃で10分間再加熱し、3パスで12.70mm(22.86mm/17.78mm/12.70mm)(0.50インチ(0.9インチ/0.7インチ/0.5インチ))まで熱間圧延によってさらに圧下し、続いて水焼入れした。トリミング及びフライス削りを行い表面酸化物を取り除いた後で、この合金を3.048mm(0.120インチ)に冷間圧延し、570℃で2時間焼鈍した。この合金を洗浄し、1.219mm(0.048インチ)に冷間圧延し、525℃で2時間焼鈍した。この合金を0.762mm(0.030インチ)に冷間圧延し、500℃で2時間焼鈍した。最終冷間圧延は0.305mm(0.012インチ)への60%であり、応力除去熱処理を250℃で2時間行った。
Example 1
A series of 4.54 kg (10 pounds) research ingots having the ingredients listed in Table 2 were melted in a silica crucible and 101.6 mm × 101.6 mm × 44.45 mm (4 inches × 4 inches × 1.75 inch) steel mold. After soaking for 2 hours at 900 ° C., they were 27.94 mm (40.64 mm / 34.29 mm / 27.94 mm) (1.1 inch (1.6 inch / 1.35 inch / 1.1) in 3 passes. Inch)), reheated at 900 ° C. for 10 minutes, and 12.70 mm (22.86 mm / 17.78 mm / 12.70 mm) (0.50 inch (0.9 inch / 0.00 mm) in 3 passes. 7 inches / 0.5 inches))) and further reduced by hot rolling, followed by water quenching. After trimming and milling to remove surface oxide, the alloy was cold rolled to 3.048 mm (0.120 inch) and annealed at 570 ° C. for 2 hours. The alloy was washed, cold rolled to 1.219 mm (0.048 inch) and annealed at 525 ° C. for 2 hours. The alloy was cold rolled to 0.762 mm (0.030 inches) and annealed at 500 ° C. for 2 hours. The final cold rolling was 60% to 0.305 mm (0.012 inch) and a stress relief heat treatment was performed at 250 ° C. for 2 hours.

Figure 0005752937

*この表およびこの文書全体を通じて、YSは耐力を表し、MPa(KSI)単位で示される。
Figure 0005752937

* Throughout this table and throughout this document, YS represents yield strength and is expressed in units of MPa (KSI).

実例2のデータから、Ni量は好ましくは少なくとも0.5であり、最良の総合的な合金は7〜9のNi/P比を有することが求められた。曲げは全て、図1に示すように長い糸状体を形成する硫黄の混入物質の存在のために劣っていた。   From the data of Example 2, the amount of Ni is preferably at least 0.5, and the best overall alloy was determined to have a Ni / P ratio of 7-9. All bends were inferior due to the presence of sulfur contaminants forming long filaments as shown in FIG.

実施例2
表3に記載された成分を有する一連の4.54kg(10ポンド)の研究用インゴットをシリカるつぼ内で溶融し、湯口から101.6mm×101.6mm×44.45mm(4インチ×4インチ×1.75インチ)の鋼鋳型に鋳造した。900℃で2時間の均熱処理後、それらを3パスで27.94mm(40.64mm/34.29mm/27.94mm)(1.1インチ(1.6インチ/1.35インチ/1.1インチ))に熱間圧延し、900℃で10分間再加熱し、3パスで12.70mm(22.86mm/17.78mm/12.70mm)(0.50インチ(0.9インチ/0.7インチ/0.5インチ))まで熱間圧延によってさらに圧下し、続いて水焼入れした。トリミング及びフライス削りを行い表面酸化物を取り除いた後で、この合金を3.048mm(0.120インチ)に冷間圧延し、570℃で2時間焼鈍した。この合金を洗浄し、1.219mm(0.048インチ)に冷間圧延し、525℃で2時間焼鈍した。この合金を0.610mm(0.024インチ)に冷間圧延し、450℃で8時間焼鈍した。最終冷間圧延は0.305mm(0.012インチ)への50%であり、応力除去熱処理を250℃で2時間行った。
Example 2
A series of 4.54 kg (10 pounds) research ingots having the ingredients listed in Table 3 were melted in a silica crucible and 101.6 mm × 101.6 mm × 44.45 mm (4 inches × 4 inches × 1.75 inch) steel mold. After soaking for 2 hours at 900 ° C., they were 27.94 mm (40.64 mm / 34.29 mm / 27.94 mm) (1.1 inch (1.6 inch / 1.35 inch / 1.1) in 3 passes. Inch)), reheated at 900 ° C. for 10 minutes, and 12.70 mm (22.86 mm / 17.78 mm / 12.70 mm) (0.50 inch (0.9 inch / 0.00 mm) in 3 passes. 7 inches / 0.5 inches))) and further reduced by hot rolling, followed by water quenching. After trimming and milling to remove surface oxide, the alloy was cold rolled to 3.048 mm (0.120 inch) and annealed at 570 ° C. for 2 hours. The alloy was washed, cold rolled to 1.219 mm (0.048 inch) and annealed at 525 ° C. for 2 hours. The alloy was cold rolled to 0.610 mm (0.024 inch) and annealed at 450 ° C. for 8 hours. The final cold rolling was 50% to 0.305 mm (0.012 inch) and a stress relief heat treatment was performed at 250 ° C. for 2 hours.

Figure 0005752937
Figure 0005752937

全体的に合金K293及びK294を除き強度が低い。これらの両合金は、他のどれよりも約0.5%だけSnをより多く含み、より大きいSn量はより大きい強度に関連付けられる。K286、K287及びK288の強度は、非常に近い成分であるがMgを含まない合金K282及びK284と対照的にMgの利益を示す。耐力の増加に伴う導電率(%IACS)の低下がないことは注目に値する。両方ともNiを含まないK291に鉄を、K289にMgを加えることで強度の増加があった。鉄を含む合金についての導電率は、Mgを含む合金よりも約4%IACSだけ低かった。これらの合金の両方ともほとんど均衡が取れており、Mg/P比はK289が1.2の理想値に近い1.81であり、K291のFe/P比は、3.6の理想値にやはり近い4.00である。鉄はより効果的な強化剤であるが、導電率をより低くする。   Overall, the strength is low except for alloys K293 and K294. Both of these alloys contain about 0.5% more Sn than any other, with higher Sn content associated with greater strength. The strengths of K286, K287 and K288 show the benefits of Mg in contrast to alloys K282 and K284 which are very close components but do not contain Mg. It is noteworthy that there is no decrease in conductivity (% IACS) with increasing proof stress. In both cases, strength was increased by adding iron to K291 containing no Ni and Mg to K289. The conductivity for the alloy containing iron was about 4% IACS lower than the alloy containing Mg. Both of these alloys are almost balanced, the Mg / P ratio is 1.81, which is close to the ideal value of K289 of 1.2, and the Fe / P ratio of K291 is still at the ideal value of 3.6. It is close to 4.00. Iron is a more effective strengthener, but lowers conductivity.

実施例3
表4に記載された成分を有する一連の4.54kg(10ポンド)の研究用インゴットをシリカるつぼ内で溶融し、湯口から101.6mm×101.6mm×44.45mm(4インチ×4インチ×1.75インチ)である鋼鋳型に鋳造した。900℃で2時間の均熱処理後、それらを3パスで27.94mm(40.64mm/34.29mm/27.94mm)(1.1インチ(1.6インチ/1.35インチ/1.1インチ))に熱間圧延し、900℃で10分間再加熱し、3パスで12.70mm(22.86mm/17.78mm/12.70mm)(0.50インチ(0.9インチ/0.7インチ/0.5インチ))まで熱間圧延によってさらに圧下し、続いて水焼入れした。トリミング及びフライス削りを行い表面酸化物を取り除いた後で、この合金を3.048mm(0.120インチ)に冷間圧延し、570℃で2時間焼鈍した。この合金を洗浄し、1.219mm(0.048インチ)に冷間圧延し、525℃で2時間焼鈍した。この合金を0.610mm(0.024インチ)に冷間圧延し、単一焼鈍条件のためだけに450℃で4時間、2回焼鈍条件を構成するように450℃で4時間、追加で375℃でさらに4時間焼鈍した。最終冷間圧延は0.305mm(0.012インチ)への50%であり、応力除去熱処理を250℃で2時間両方の条件に対して行った。
Example 3
A series of 4.54 kg (10 pounds) research ingots having the ingredients listed in Table 4 were melted in a silica crucible and 101.6 mm × 101.6 mm × 44.45 mm (4 inches × 4 inches × 1.75 inches). After soaking for 2 hours at 900 ° C., they were 27.94 mm (40.64 mm / 34.29 mm / 27.94 mm) (1.1 inch (1.6 inch / 1.35 inch / 1.1) in 3 passes. Inch)), reheated at 900 ° C. for 10 minutes, and 12.70 mm (22.86 mm / 17.78 mm / 12.70 mm) (0.50 inch (0.9 inch / 0.00 mm) in 3 passes. 7 inches / 0.5 inches))) and further reduced by hot rolling, followed by water quenching. After trimming and milling to remove surface oxide, the alloy was cold rolled to 3.048 mm (0.120 inch) and annealed at 570 ° C. for 2 hours. The alloy was washed, cold rolled to 1.219 mm (0.048 inch) and annealed at 525 ° C. for 2 hours. The alloy is cold rolled to 0.610 mm (0.024 inches) and 450 ° C. for 4 hours only for single annealing conditions, 4 hours at 450 ° C. to constitute double annealing conditions, an additional 375 Annealing was further performed at 4 ° C. for 4 hours. The final cold rolling was 50% to 0.305 mm (0.012 inch) and the stress relief heat treatment was performed at 250 ° C. for 2 hours for both conditions.

Figure 0005752937
Figure 0005752937

より高いSn量は、強度を相当に大きくするが電導率をより低くする。合金K320とK319を比較すると、YSで48MPa(7KSI)の、導電率で3%IACSの差がある。この傾向は、強度に対する影響はどのような他の添加物も含まない合金よりも少ないが、鉄を有するこれらの合金(K312とK313)と、マグネシウムを有するこれらの合金(K314でK315)に対して保持される。K310と対照的に亜鉛を含むK311の全体的な利点は、強度は増加するが導電率がより低くなるので、存在しない。2回焼鈍は、成形性(すなわち、達成することができる90°曲げ半径の減少)の増加を示した。導電率のわずかな増加にも留意されたい。   Higher Sn content increases the strength considerably but lowers the conductivity. Comparing alloys K320 and K319, there is a difference of 3% IACS in conductivity, 48 MPa (7 KSI) in YS. This trend has less impact on strength than alloys without any other additives, but for those alloys with iron (K312 and K313) and those with magnesium (K314 and K315) Held. The overall advantage of K311 containing zinc as opposed to K310 does not exist because it increases strength but lowers conductivity. Double annealing showed an increase in formability (ie, 90 ° bend radius reduction that can be achieved). Note also the slight increase in conductivity.

実施例4
表4に記載された成分を有する一連の4.54kg(10ポンド)の研究用インゴットをシリカるつぼ内で溶融し、湯口から101.6mm×101.6mm×44.45mm(4インチ×4インチ×1.75インチ)である鋼鋳型に鋳造した。900℃で2時間の均熱後、それらを3パスで27.94mm(40.64mm/34.29mm/27.94mm)(1.1インチ(1.6インチ/1.35インチ/1.1インチ))に熱間圧延し、900℃で10分間再加熱し、3パスで12.70mm(22.86mm/17.78mm/12.70mm)(0.50インチ(0.9インチ/0.7インチ/0.5インチ))まで熱間圧延によってさらに圧下し、続いて水焼入れした。トリミング及びフライス削りを行い表面酸化物を取り除いた後で、この合金を3.048mm(0.120インチ)に冷間圧延し、570℃で2時間焼鈍した。この合金を洗浄し、1.219mm(0.048インチ)に冷間圧延し、525℃で2時間焼鈍した。この合金を0.610mm(0.024インチ)に冷間圧延し、450℃で4時間、追加で375℃でさらに4時間だけ焼鈍した。最終冷間圧延は0.305mm(0.012インチ)への50%であり、応力除去熱処理を250℃で2時間行った。
Example 4
A series of 4.54 kg (10 pounds) research ingots having the ingredients listed in Table 4 were melted in a silica crucible and 101.6 mm × 101.6 mm × 44.45 mm (4 inches × 4 inches × 1.75 inches). After soaking at 900 ° C. for 2 hours, they were 27.94 mm (40.64 mm / 34.29 mm / 27.94 mm) (1.1 inch (1.6 inch / 1.35 inch / 1.1) in 3 passes. Inch)), reheated at 900 ° C. for 10 minutes, and 12.70 mm (22.86 mm / 17.78 mm / 12.70 mm) (0.50 inch (0.9 inch / 0.00 mm) in 3 passes. 7 inches / 0.5 inches))) and further reduced by hot rolling, followed by water quenching. After trimming and milling to remove surface oxide, the alloy was cold rolled to 3.048 mm (0.120 inch) and annealed at 570 ° C. for 2 hours. The alloy was washed, cold rolled to 1.219 mm (0.048 inch) and annealed at 525 ° C. for 2 hours. The alloy was cold rolled to 0.610 mm (0.024 inches) and annealed at 450 ° C. for 4 hours and an additional 375 ° C. for an additional 4 hours. The final cold rolling was 50% to 0.305 mm (0.012 inch) and a stress relief heat treatment was performed at 250 ° C. for 2 hours.

Figure 0005752937
Figure 0005752937

この群の22個の合金のうちの13個は、517MPa(75KSI)以上の耐力を有していた。鉄を含有する6個(K338、K339、K345、K346、K355及びK361)は、K338が38%IACSのところで最も近いが、それらのうちのどれもが40%IACSの導電率を得られなかった。4個(K350、K351、K352及びK356)がMgを含有し、これらの4個のうちの3個が40%IACSを超えた。40%IACSを達成しなかったK350が、推奨される8.5よりも大きな9の金属対リン比を有していたことに留意されたい。517MPa(75ksi)以上の耐力を有する合金のうちの3個(K343、K345、及びK348)は鉄もMgも含有しなかったが、これらの合金のどれも40%IACSの導電率を有さなかった。   Thirteen of the 22 alloys in this group had a yield strength of 517 MPa (75 KSI) or higher. The six containing iron (K338, K339, K345, K346, K355 and K361) were closest to K338 at 38% IACS, but none of them obtained 40% IACS conductivity . Four (K350, K351, K352 and K356) contained Mg, and three of these four exceeded 40% IACS. Note that K350, which did not achieve 40% IACS, had a metal-to-phosphorus ratio of 9 greater than the recommended 8.5. Three of the alloys with a yield strength of 517 MPa (75 ksi) or more (K343, K345, and K348) contained neither iron nor Mg, but none of these alloys had a conductivity of 40% IACS. It was.

実施例5
Mg含有合金及びMg非含有合金に対する全てのデータが表6及び表7に纏められている。これらのデータは、実施例2(2回焼鈍され表6及び表7に含まれる表3の合金)、実施例3(表4)、および実施例4(表5)のものであり、実施例3からのデータを含む。全ての合金に対して使用された工程は、450℃で4時間(又は8時間、注参照)+375℃で4時間の最終2回焼鈍で使用された工程については同一である。
Example 5
All data for Mg containing alloys and non-Mg containing alloys are summarized in Tables 6 and 7. These data are for Example 2 (alloys of Table 3 annealed twice and included in Tables 6 and 7), Example 3 (Table 4), and Example 4 (Table 5). Includes data from 3. The process used for all alloys is the same for the process used in the final two anneals at 450 ° C. for 4 hours (or 8 hours, see note) + 375 ° C. for 4 hours.

Figure 0005752937
Figure 0005752937

Figure 0005752937
Figure 0005752937

全体的に見て、Mgを有する表6のYSは、Mgを有さない表7のYSよりも大きい。いくつかのMg非含有合金K293、K294、K310、K326、K343、K345、及びK348のみが517MPa(75KSI)の最小YSに到達し、それぞれ42.2、38.5、38.5、38.5、38.4、38.6及び32.8%IACSの対応する導電率を有する。K293を除いて、どの合金も40%IACSを達成しないことに留意されたい。合金K293、K294及びK326は全て、C19025に近いYS及び導電率の特性を有するが、より良好な曲げを有する。表6のMg合金と対照的に、(Niを有さず、4よりも小さいM/P比を有する)K289及びK290を除き、全ては少なくとも517MPa(75KSI)のYSを有する。全ての合金の導電率は、7.66のM/Pを有するK318(38.7%IACS)及び9.02のM/P比を有するK350(38.1%IACS)を除き、40%IACS以上である。リンに対する金属の比が増加すると導電率は低下し、望ましい特性の組み合わせを達成することがより困難になる。Mgの添加は、適切な処理を採用し、4〜8.5のM/P比を維持するとき、517MPa(75KSI)を超える耐力と少なくとも40%IACSの導電率との組み合わせを達成可能にすることができる。図2及び図3は、この比とYS、%IACSそれぞれの関係を図示する。図2の垂直線は、4〜8.5の好ましいM/P比を示す。   Overall, the YS in Table 6 with Mg is larger than the YS in Table 7 without Mg. Only some Mg-free alloys K293, K294, K310, K326, K343, K345, and K348 reach the minimum YS of 517 MPa (75 KSI), 42.2, 38.5, 38.5, 38.5, respectively. , 38.4, 38.6 and 32.8% IACS with corresponding conductivity. Note that no alloy, except K293, achieves 40% IACS. Alloys K293, K294, and K326 all have YS and conductivity properties close to C19025, but have better bends. In contrast to the Mg alloys in Table 6, all have a YS of at least 517 MPa (75 KSI) except K289 and K290 (which do not have Ni and have an M / P ratio less than 4). The conductivity of all alloys is 40% IACS except for K318 (38.7% IACS) with a M / P of 7.66 and K350 (38.1% IACS) with a M / P ratio of 9.02. That's it. As the metal to phosphorus ratio increases, the conductivity decreases, making it more difficult to achieve the desired combination of properties. The addition of Mg makes it possible to achieve a combination of proof stress over 517 MPa (75 KSI) and conductivity of at least 40% IACS when using appropriate processing and maintaining a M / P ratio of 4 to 8.5. be able to. 2 and 3 illustrate the relationship between this ratio and YS and% IACS. The vertical line in FIG. 2 shows a preferred M / P ratio of 4 to 8.5.

実施例7
表8に記載された成分を有する一連の4.54kg(10ポンド)の研究用インゴットをシリカるつぼ内で溶融し、湯口から101.6mm×101.6mm×44.45mm(4インチ×4インチ×1.75インチ)の鋼鋳型に鋳造した。900℃で2時間の均熱後、それらを3パスで27.94mm(40.64mm/34.29mm/27.94mm)(1.1インチ(1.6インチ/1.35インチ/1.1インチ))に熱間圧延し、900℃で10分間再加熱し、3パスで12.70mm(22.86mm/17.78mm/12.70mm)(0.50インチ(0.9インチ/0.7インチ/0.5インチ))まで熱間圧延によってさらに圧下し、続いて水焼入れした。トリミング及びフライス削りを行い表面酸化物を取り除いた後で、この合金を2.032mm(0.080インチ)に冷間圧延し、550℃で2時間焼鈍した。この合金を洗浄し、0.914mm(0.036インチ)に冷間圧延し、450℃で4時間、追加で375℃でさらに4時間だけ焼鈍した。最終冷間圧延は0.305mm(0.012インチ)への60%であり、応力除去熱処理を250℃で2時間行った。
Example 7
A series of 4.54 kg (10 pounds) research ingots having the ingredients listed in Table 8 were melted in a silica crucible and 101.6 mm × 101.6 mm × 44.45 mm (4 inches × 4 inches × 1.75 inch) steel mold. After soaking at 900 ° C. for 2 hours, they were 27.94 mm (40.64 mm / 34.29 mm / 27.94 mm) (1.1 inch (1.6 inch / 1.35 inch / 1.1) in 3 passes. Inch)), reheated at 900 ° C. for 10 minutes, and 12.70 mm (22.86 mm / 17.78 mm / 12.70 mm) (0.50 inch (0.9 inch / 0.00 mm) in 3 passes. 7 inches / 0.5 inches))) and further reduced by hot rolling, followed by water quenching. After trimming and milling to remove surface oxide, the alloy was cold rolled to 2.032 mm (0.080 inch) and annealed at 550 ° C. for 2 hours. The alloy was washed and cold rolled to 0.914 mm (0.036 inches) and annealed at 450 ° C. for 4 hours and an additional 375 ° C. for an additional 4 hours. The final cold rolling was 60% to 0.305 mm (0.012 inch) and a stress relief heat treatment was performed at 250 ° C. for 2 hours.

Figure 0005752937
Figure 0005752937

冷間加工の増加は、全ての合金に対して強度を改善した。しかし、9よりも小さいM/P比を有するMg含有合金(K352)が、導電率を維持又は改善しながらYSを改善するただ1つのものであった。   The increase in cold work improved the strength for all alloys. However, the Mg-containing alloy (K352) having an M / P ratio of less than 9 was the only one that improved YS while maintaining or improving conductivity.

実施例8
表3に記載された成分を有する一連の4.54kg(10ポンド)の研究用インゴットをシリカるつぼ内で溶融し、湯口から101.6mm×101.6mm×44.45mm(4インチ×4インチ×1.75インチ)である鋼鋳型に鋳造した。900℃で2時間の均熱処理後、それらを3パスで27.94mm(40.64mm/34.29mm/27.94mm)(1.1インチ(1.6インチ/1.35インチ/1.1インチ))に熱間圧延し、900℃で10分間再加熱し、3パスで12.70mm(22.86mm/17.78mm/12.70mm)(0.50インチ(0.9インチ/0.7インチ/0.5インチ))まで熱間圧延によってさらに圧下し、続いて水焼入れした。トリミング及びフライス削りを行い表面酸化物を取り除いた後で、この合金を3.048mm(0.120インチ)に冷間圧延し、570℃で2時間焼鈍した。この合金を洗浄し、1.219mm(0.048インチ)に冷間圧延し、525℃で2時間焼鈍した。この合金を、0.610mm(0.024インチ)に冷間圧延し、450℃で最小限4時間焼鈍した。最終冷間圧延は0.305mm(0.012インチ)への50%であり、応力除去熱処理を250℃で2時間行った。この試料に対して、150℃で1000時間の応力緩和試験を行った。この結果は以下の表9に示す。
Example 8
A series of 4.54 kg (10 pounds) research ingots having the ingredients listed in Table 3 were melted in a silica crucible and 101.6 mm × 101.6 mm × 44.45 mm (4 inches × 4 inches × 1.75 inches). After soaking for 2 hours at 900 ° C., they were 27.94 mm (40.64 mm / 34.29 mm / 27.94 mm) (1.1 inch (1.6 inch / 1.35 inch / 1.1) in 3 passes. Inch)), reheated at 900 ° C. for 10 minutes, and 12.70 mm (22.86 mm / 17.78 mm / 12.70 mm) (0.50 inch (0.9 inch / 0.00 mm) in 3 passes. 7 inches / 0.5 inches))) and further reduced by hot rolling, followed by water quenching. After trimming and milling to remove surface oxide, the alloy was cold rolled to 3.048 mm (0.120 inch) and annealed at 570 ° C. for 2 hours. The alloy was washed, cold rolled to 1.219 mm (0.048 inch) and annealed at 525 ° C. for 2 hours. The alloy was cold rolled to 0.610 mm (0.024 inch) and annealed at 450 ° C. for a minimum of 4 hours. The final cold rolling was 50% to 0.305 mm (0.012 inch) and a stress relief heat treatment was performed at 250 ° C. for 2 hours. This sample was subjected to a stress relaxation test at 150 ° C. for 1000 hours. The results are shown in Table 9 below.

Figure 0005752937
Figure 0005752937

鉄を含有する合金K291及びK312は、当初の応力の60%を維持しなかった。この結果は、K312内にNiが存在するにも関わらず、この2つの間で同様であった。NiとMgの組み合わせを有するK314は、当初応力の65%超を維持した。   Alloys K291 and K312 containing iron did not maintain 60% of the original stress. This result was similar between the two despite the presence of Ni in K312. K314 with the combination of Ni and Mg maintained over 65% of the initial stress.

実施例9
Mg含有及びMg非含有合金の1組を、示したスケジュールを使用して加工した。表10及び表11は、この結果を要約する。合金の両方の組が552MPa(80KSI)を超える耐力を達成した。Mg含有合金は全て38%IACSの目標導電率を超えたが、Mg非含有合金は、K412を除いて超えなかった。その上、Mg含有合金の成形性は全体的により良好であった。
Example 9
One set of Mg-containing and non-Mg-containing alloys was processed using the schedule shown. Tables 10 and 11 summarize the results. Both sets of alloys achieved yield strengths in excess of 552 MPa (80 KSI). All Mg-containing alloys exceeded the target conductivity of 38% IACS, but no Mg-containing alloys except K412. Moreover, the overall formability of the Mg-containing alloy was better.

Figure 0005752937
Figure 0005752937

Figure 0005752937
Figure 0005752937

実施例10
公称成分が表12に記載された6つの合金に対して工場での処理を実施した。この工程は表13に詳細に記載されており、工程1が比較のための研究用工程であり、工程2、工程3、及び工程4が工場工程である。
Example 10
Factory processing was performed on six alloys with nominal components listed in Table 12. This process is described in detail in Table 13, where process 1 is a research process for comparison, and processes 2, 3, and 4 are factory processes.

Figure 0005752937
Figure 0005752937

表12に示した化学成分は、鋳造された棒材を分析した化学成分である。合金6は、C19025のCDA範囲内にあり、比較例として存在する。全ての合金は、同じ方法で処理され、それらは全て900℃から熱間圧延され、コイルに成型され次いで3.175mm(0.125インチ)又は2.54mm(0.100インチ)の寸法に冷間圧延された。   The chemical components shown in Table 12 are chemical components obtained by analyzing cast bars. Alloy 6 is in the C19025 CDA range and is present as a comparative example. All alloys were processed in the same way, they were all hot rolled from 900 ° C., formed into coils and then cooled to dimensions of 3.175 mm (0.125 inches) or 2.54 mm (0.100 inches). It was rolled for a while.

Figure 0005752937
Figure 0005752937

最終寸法での結果として得られる特性を表14に示す。工程3及び工程4を使用して処理された合金6は、この合金に対する予想された特性を有しており、工程3と対比して工程4は、より耐力が高く曲げが劣っている。合金5は、工程3の金属と対照的に工程2により処理すると、耐力(YS)がより低く、曲げが不良な方向でより劣っていた。合金3は、工程2及び工程3の両方の処理に対して同程度の耐力及び導電率を有していたが、工程3により処理された金属は不良な方向の曲げが優れていた。   The resulting properties at the final dimensions are shown in Table 14. Alloy 6 treated using Step 3 and Step 4 has the expected properties for this alloy, and in contrast to Step 3, Step 4 is more proof and inferior in bending. When alloy 5 was processed in step 2 as opposed to the metal in step 3, alloy 5 had a lower yield strength (YS) and was inferior in the direction of poor bending. Alloy 3 had comparable proof stress and electrical conductivity to both Step 2 and Step 3 treatments, but the metal treated in Step 3 was excellent in bending in the wrong direction.

Figure 0005752937
Figure 0005752937

工程3及び工程4は全体的に最良の結果を与えた。合金1及び合金4に対する工程1及び2についての結果は、この工程が研究室(工程1)ではなく工場(工程2)で実施された場合、結晶粒成長を生じさせた可能性のある、わずかに異なった結果を示す。表15は、研究室で模擬実験されるとき2回焼鈍工程(工程2)が良好な曲げを与えることを示す。   Steps 3 and 4 gave the best overall results. The results for Steps 1 and 2 for Alloy 1 and Alloy 4 show that, if this step was performed in the factory (Step 2) rather than the laboratory (Step 1), there was a slight chance of causing grain growth. Shows different results. Table 15 shows that the double annealing step (Step 2) gives good bending when simulated in the laboratory.

Figure 0005752937
Figure 0005752937

横方向に対する結果のみ、以下に表16に示す。合金2を除く全ての合金は、150℃で1000時間後に残る少なくとも65%の応力を有していた。   Only the results for the horizontal direction are shown in Table 16 below. All alloys except Alloy 2 had at least 65% stress remaining after 1000 hours at 150 ° C.

Figure 0005752937
Figure 0005752937

Claims (13)

銅基合金であって、
1%〜2%のSn、
0.3%〜1%のNi、
0.05%〜0.15%のP、
最大0.20%のMgを含み、
残部
であり、1.0以下/1.0以下の曲げ成形性(90°GW/BW)及び少なくとも37%IACSの導電率を維持しながら、少なくとも531MPaの耐力を有する銅基合金。
A copper-based alloy,
1% to 2% Sn,
0.3% to 1% Ni,
0.05% to 0.15% P,
Up to 0.20% Mg ,
The balance is copper
, And the while maintaining less than 1.0 /1.0 following bend formability (90 ° GW / BW) and conductivity of at least 37% IACS, have a yield strength of at least 531MPa, copper-based alloys.
最大0.06%のMgを含有する、請求項1に記載された銅基合金。   The copper-based alloy of claim 1 containing up to 0.06% Mg. 少なくとも40%IACSの導電率を有する、請求項1に記載された銅基合金。 That having a conductivity of at least 40% IACS, copper-based alloy according to claim 1. Ni:P比が9未満である、請求項1に記載された銅基合金。   The copper-based alloy according to claim 1, wherein the Ni: P ratio is less than 9. (Ni+Mg):P比が4〜8.5である、請求項1に記載された銅基合金。   The copper-based alloy according to claim 1, wherein the (Ni + Mg): P ratio is 4 to 8.5. Snが1.2%〜1.5%であり、Niが0.5%〜0.7%であり、Pが0.09%〜0.13%である、請求項1に記載された銅基合金。   The copper according to claim 1, wherein Sn is 1.2% to 1.5%, Ni is 0.5% to 0.7%, and P is 0.09% to 0.13%. Base alloy. Ni:Pの比が9未満である、請求項に記載された銅基合金。 The copper-based alloy of claim 6 , wherein the ratio of Ni: P is less than 9. (Ni+Mg):Pの比が4〜8.5である、請求項に記載された銅基合金。 The copper-based alloy according to claim 6 , wherein the ratio of (Ni + Mg): P is 4 to 8.5. 前記銅基合金が少なくとも40%IACSの伝導率を有する、請求項に記載された銅基合金。 It said copper base alloy that have a conductivity of at least 40% IACS, copper-based alloy according to claim 8. 1.2%〜1.5%のSn、
0.5%〜0.7%のNi、
0.09%〜0.13%のP、
最大0.20%のMgを含み、
残部
である銅基合金であって、少なくとも531MPaの耐力および少なくとも37%IACSの導電率を有する、銅基合金。
1.2% to 1.5% Sn,
0.5% to 0.7% Ni,
0.09% to 0.13% P,
Up to 0.20% Mg ,
The balance is copper
A copper-based alloy is, that have a conductivity of strength of at least 531MPa and at least 37% IACS, copper-based alloys.
少なくとも40%IACSの導電率を有する、請求項10に記載された銅基合金。 That having a conductivity at least 40% IACS, copper-based alloy according to claim 10. 1.0以下/1.0以下の曲げ成形性(90°GW/BW)を有する、請求項10に記載された銅基合金。 1.0 /1.0 that Yusuke following bend formability (90 ° GW / BW), copper-based alloy according to claim 10. (Ni+Mg):Pの比が4〜8.5である、請求項に記載された銅基合金。 The copper-based alloy according to claim 6 , wherein the ratio of (Ni + Mg): P is 4 to 8.5.
JP2010529100A 2007-10-10 2008-10-10 Copper-tin-nickel-phosphorus alloy with improved strength and formability Active JP5752937B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US97906407P 2007-10-10 2007-10-10
US60/979,064 2007-10-10
PCT/US2008/079573 WO2009049201A1 (en) 2007-10-10 2008-10-10 Copper tin nickel phosphorus alloys with improved strength and formability
US12/249,530 2008-10-10
US12/249,530 US20090098011A1 (en) 2007-10-10 2008-10-10 Copper Tin Nickel Phosphorus Alloys With Improved Strength and Formability and Method of Making Same

Publications (2)

Publication Number Publication Date
JP2011500963A JP2011500963A (en) 2011-01-06
JP5752937B2 true JP5752937B2 (en) 2015-07-22

Family

ID=40534408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010529100A Active JP5752937B2 (en) 2007-10-10 2008-10-10 Copper-tin-nickel-phosphorus alloy with improved strength and formability

Country Status (8)

Country Link
US (1) US20090098011A1 (en)
EP (1) EP2215278A4 (en)
JP (1) JP5752937B2 (en)
CN (1) CN101874122A (en)
CA (1) CA2702358A1 (en)
MX (1) MX2010003995A (en)
TW (1) TW200934882A (en)
WO (1) WO2009049201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102648370B1 (en) * 2017-02-04 2024-03-15 마테리온 코포레이션 Copper-nickel-tin alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821655B1 (en) 2010-12-02 2014-09-02 Fisk Alloy Inc. High strength, high conductivity copper alloys and electrical conductors made therefrom
CN113981265A (en) * 2021-09-07 2022-01-28 铜陵有色金属集团股份有限公司金威铜业分公司 Copper alloy having excellent hot rolling properties and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616522B2 (en) * 1987-03-04 1994-03-02 日本鉱業株式会社 Copper alloy foil for tape carrier
US4908275A (en) * 1987-03-04 1990-03-13 Nippon Mining Co., Ltd. Film carrier and method of manufacturing same
US5322575A (en) * 1991-01-17 1994-06-21 Dowa Mining Co., Ltd. Process for production of copper base alloys and terminals using the same
US6254702B1 (en) * 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP4810703B2 (en) * 2005-09-30 2011-11-09 Dowaメタルテック株式会社 Copper alloy production method
JP4984108B2 (en) * 2005-09-30 2012-07-25 Dowaメタルテック株式会社 Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP4680765B2 (en) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 Copper alloy with excellent stress relaxation resistance
JP5075438B2 (en) * 2007-03-20 2012-11-21 Dowaメタルテック株式会社 Cu-Ni-Sn-P copper alloy sheet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102648370B1 (en) * 2017-02-04 2024-03-15 마테리온 코포레이션 Copper-nickel-tin alloy

Also Published As

Publication number Publication date
JP2011500963A (en) 2011-01-06
EP2215278A4 (en) 2015-09-02
CA2702358A1 (en) 2009-04-16
WO2009049201A1 (en) 2009-04-16
TW200934882A (en) 2009-08-16
CN101874122A (en) 2010-10-27
MX2010003995A (en) 2010-09-30
EP2215278A1 (en) 2010-08-11
US20090098011A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
EP1520054B1 (en) Copper alloy containing cobalt, nickel, and silicon
JP2011231393A (en) Copper alloy sheet, method for production of copper alloy sheet, and electric/electronic component
WO2008038593A1 (en) Cu-Ni-Si ALLOY
JP2006009137A (en) Copper alloy
JP2008081846A (en) High-conductivity, stress relaxation-resistant beryllium-nickel-copper lean-alloy
JP2011508081A (en) Copper-nickel-silicon alloy
JP2005060773A (en) Special brass and method for increasing strength of the special brass
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
JP5752937B2 (en) Copper-tin-nickel-phosphorus alloy with improved strength and formability
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JPS63103041A (en) Alloy of copper, chromium, titanium and silicon, and its production and use
JPS6132386B2 (en)
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
JP6045635B2 (en) Method for producing copper alloy sheet
JP4144188B2 (en) Manufacturing method of heat-resistant aluminum alloy wire for electric conduction
JP4831969B2 (en) Brass material manufacturing method and brass material
KR20210149830A (en) Copper alloys having high strength and high conductivity and methods for producing such copper alloys
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JP7215735B2 (en) Age-hardenable copper alloy
JP6185799B2 (en) Cu-Ti-based copper alloy and manufacturing method
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPS6293357A (en) Manufacture of high strength copper alloy
JPH05255779A (en) Production of copper alloy for electrical and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130930

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131028

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5752937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250