JP2002285263A - Brass - Google Patents

Brass

Info

Publication number
JP2002285263A
JP2002285263A JP2001087461A JP2001087461A JP2002285263A JP 2002285263 A JP2002285263 A JP 2002285263A JP 2001087461 A JP2001087461 A JP 2001087461A JP 2001087461 A JP2001087461 A JP 2001087461A JP 2002285263 A JP2002285263 A JP 2002285263A
Authority
JP
Japan
Prior art keywords
phase
brass
area ratio
crystal structure
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001087461A
Other languages
Japanese (ja)
Inventor
Ryuji Matsubara
隆二 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001087461A priority Critical patent/JP2002285263A/en
Publication of JP2002285263A publication Critical patent/JP2002285263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide brass which has industrially satisfiable recycling properties and stable feedability, improved elution of Pb, and excellent machinability. SOLUTION: The brass has a crystal structure having a soft phase, and a hard phase, and in which a brittle phase is interposed into the boundary between the phases. The brass has an apparent Zn content of 37 to 50 wt.%, and an Sn content of 0.5 to 7 wt.%. The above crystal structure consists of α+γ; wherein, the area ratio of the α phase is 60 to 95%, and the area ratio of the γ phase is 5 to 40%, or consists of α+β+γ; wherein, the area ratio of the α phase is 40 to 95%, the area ratio of the βphase is 1 to 30%, and the area ratio of the γ phase is 5 to 30%. The above brittle phase consists of at least one selected from S, Ti and Zr of 0.01 to 0.2 wt.%, or their compound; wherein, the α phase is the hard phase, the γ phase is the hard phase, and the β phase is the brittle phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削性に優れた黄
銅に関する。
TECHNICAL FIELD The present invention relates to brass having excellent machinability.

【0002】[0002]

【従来の技術】切削性に優れた黄銅として、快削黄銅
(C3604)が、良く利用されているが、近年、Pb
の溶出を懸念し、切削性に優れ、且つ、Pbの溶出を改
善した黄銅の提案がなされている。例えば、特開200
0−119775は、Pbの代わりにBi、Seなど他
の元素を添加することで、γ相またはκ相を析出させ、
被削性を改善しているが、BiやSeについては、リサ
イクル性、安定供給、コストなどが課題として挙げられ
る。
2. Description of the Related Art Free-cutting brass (C3604) is often used as brass having excellent machinability.
There has been proposed a brass which is concerned about elution of Pb and has excellent machinability and improved Pb elution. For example, JP-A-200
0-119775 precipitates a γ phase or a κ phase by adding other elements such as Bi and Se instead of Pb,
Although the machinability is improved, Bi and Se have problems in recyclability, stable supply, cost, and the like.

【0003】また、本出願人は、先に、特開2000−
09835として、リサイクル性や安定供給など工業的
に満足でき、Pbの溶出を改善した素材として、γ相の面
積比率や結晶粒径を制御したものを提案した。
[0003] The applicant of the present application has disclosed in
As 09835, a material in which the area ratio of γ phase and the crystal grain size are controlled is proposed as a material which is industrially satisfactory such as recyclability and stable supply and has improved Pb elution.

【0004】[0004]

【発明が解決しようとする課題】γ相が存在すると他の
相との硬度差を利用して、切削加工において、歪みを受
けたとき、比較的硬質な相であるγ相の近傍に応力が集
中し、破壊及びボイド(空隙)を発生させ、切削性を向
上させるのであるが、軟質なα相は、γ相と相間の結合
力が比較的強く、また、切削加工において、歪みを受け
たとき、γ相の近傍に応力が集中する前に、α相の変形
が起き、応力を緩和し、破壊及びボイド発生を阻害して
しまうおそれがあり、更に、改善の余地が残されてい
た。
When a γ-phase is present, a stress is generated in the vicinity of a relatively hard γ-phase when receiving a strain in a cutting process by utilizing a difference in hardness from other phases. It concentrates, breaks and generates voids (voids), and improves the machinability. However, soft α-phase has a relatively strong binding force between γ-phase and the phase, and suffers distortion during cutting. At this time, before the stress is concentrated near the γ phase, the α phase may be deformed to relieve the stress, hinder the destruction and the generation of voids, and there is still room for improvement.

【0005】本発明は、上記従来の技術の問題を解決す
るものであり、リサイクル性や安定供給など工業的に満
足でき、Pbの溶出を改善した切削性に優れた黄銅を提
供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide brass that is industrially satisfactory in terms of recyclability and stable supply, and that has improved Pb elution and excellent machinability. And

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
になされた本発明は、結晶組織は、軟質な相と硬質な相
を有し、前記相界面に脆弱な相又は粒子を介在させたこ
とを特徴とする黄銅とする。
According to the present invention, which has been made to solve the above problems, the crystal structure has a soft phase and a hard phase, and a fragile phase or particle is interposed at the phase interface. It is a brass characterized by that.

【0007】軟質な相と硬質な相から成る結晶組織は、
切削加工において歪みを受けたとき、特に硬質な相の近
傍に応力が集中し、破壊およびボイドが発生しやすくな
るので、相の界面に脆弱な相を介在させることで、応力
が集中した際には、この脆弱な相から、容易にボイドを
発生させることができ、変形に要するエネルギーを低減
することができるため、切削抵抗の低減が実現できる。
[0007] The crystal structure consisting of a soft phase and a hard phase is
When stress is applied during cutting, stress concentrates especially near the hard phase, and fracture and voids are likely to occur.When stress is concentrated by interposing a fragile phase at the phase interface Can easily generate voids from this fragile phase, and can reduce the energy required for deformation, so that cutting resistance can be reduced.

【0008】また、見掛け上のZn含有量が、37〜5
0wt%、Snの含有量が、0.5〜7wt%からなる
ことを特徴とする黄銅とすることで、軟質な相と硬質な
相が混在存在するようにでき、Snを前記範囲にするこ
とで、γ相を析出し易くするとともに耐食性に劣るβ相
中に固溶し、耐食性を向上させることもできる。
Further, the apparent Zn content is 37 to 5
The brass is characterized in that the content of Sn is 0 wt% and the content of Sn is 0.5 to 7 wt%, so that a soft phase and a hard phase can coexist, and the Sn is in the above range. Thus, the γ phase can be easily precipitated, and can be solid-solved in the β phase having poor corrosion resistance to improve the corrosion resistance.

【0009】更に、結晶組織は、α+γからなり、α相
の面積比率が、60〜95%、γ相の面積比率が、5〜
40%であることを特徴とする黄銅とすることで、切削
加工による歪みを受けた時に切削抵抗を低減するための
ボイドが、適度に分散存在できるので、切削性に優れた
黄銅を提供できる。
Further, the crystal structure is composed of α + γ, the area ratio of the α phase is 60 to 95%, and the area ratio of the γ phase is 5 to 95%.
By using brass characterized by being 40%, voids for reducing cutting resistance when subjected to distortion due to cutting can be appropriately dispersed and present, so that brass excellent in machinability can be provided.

【0010】また、結晶組織は、α+β+γからなり、
α相の面積比率が、40%〜95%、β相の面積比率が
1〜30%、γ相の面積比率が、5〜30%であること
を特徴とする黄銅とすることで、切削加工による歪みを
受けた時に切削抵抗を低減するためのボイドが、適度に
分散存在できるので、切削性に優れた黄銅を提供できる
とともに、β相を薄く析出させることで、β相を脆弱な
相として利用できる。
The crystal structure is composed of α + β + γ,
The brass is characterized in that the area ratio of the α phase is 40% to 95%, the area ratio of the β phase is 1 to 30%, and the area ratio of the γ phase is 5 to 30%. Voids to reduce cutting resistance when subjected to strain due to moderately dispersed existence can provide brass with excellent machinability, and by depositing β phase thinly, β phase becomes brittle phase Available.

【0011】また、γ相は、結晶組織内に分散存在し、
γ相の粒径は、0.3〜15μmとすることで、前記ボ
イドは、γ相近傍に発生し易いので、ボイドが適度に分
散存在できるので、切削性に優れた黄銅を提供できる。
Further, the γ phase is dispersed in the crystal structure,
When the particle size of the γ phase is 0.3 to 15 μm, the voids are easily generated in the vicinity of the γ phase, and the voids can be appropriately dispersed and present, so that brass excellent in machinability can be provided.

【0012】また、軟質な相であるα相と硬質な相であ
るγ相は、相間の結合力が、強く、α相が高い延性を有
し、応力の集中が起きにくいので、この相間に脆弱相を
介在させることで、低い変形エネルギーで、脆弱相が破
壊及びボイドを発生することができ、効率的に切削抵抗
の低減を行える。
Further, the α phase which is a soft phase and the γ phase which is a hard phase have a strong bonding force between the phases, the α phase has a high ductility, and the concentration of stress hardly occurs. By interposing the fragile phase, the fragile phase can break and generate voids with low deformation energy, and the cutting resistance can be reduced efficiently.

【0013】更に、脆弱相は、S、Ti、Zrの少なく
とも1つ又はそれらの化合物からなるようにすること
で、相間に容易に脆弱相としての前記金属又はそれらの
化合物が凝集した粒子を介在できる。
Further, the brittle phase is made of at least one of S, Ti, and Zr or a compound thereof, so that the metal or the compound of the compound as the brittle phase easily intervenes between the phases. it can.

【0014】また、結晶組織を形成する軟質な相と硬質
な相を有し、前記相界面に両者の相の中間の強度を有す
る相を介在させたことを特徴とする黄銅とする。
Further, there is provided a brass having a soft phase and a hard phase forming a crystal structure, and having a phase having an intermediate strength between the two phases at the phase interface.

【0015】本発明によれば、軟質な相と硬質な相との
強度差が、大き過ぎると、軟質な相の延性により硬質な
相近傍に応力が集中せず、破壊及びボイドの発生を抑制
してしまうため、その中間の強度を有する相を介在させ
ることにより中間の強度を有する相と硬質な相との界面
に応力を集中させることができ、前記界面に破壊及びボ
イドの発生を引き起こし、切削抵抗を低減できる。
According to the present invention, when the strength difference between the soft phase and the hard phase is too large, stress is not concentrated near the hard phase due to the ductility of the soft phase, and the occurrence of fracture and voids is suppressed. Therefore, stress can be concentrated at the interface between the phase having the intermediate strength and the hard phase by interposing the phase having the intermediate strength, causing breakage and generation of voids at the interface, Cutting resistance can be reduced.

【0016】また、見掛け上のZn含有量が、37〜5
0wt%、Snの含有量が、0.5〜7wt%からなる
ことを特徴とする黄銅とすることで、軟質な相と硬質な
相が混在存在するようにでき、Snを前記範囲にするこ
と、γ相を析出し易くするとともに耐食性に劣るβ相中
に固溶し、耐食性を向上させることもできる。
Further, when the apparent Zn content is 37 to 5
The brass is characterized in that the content of Sn is 0 wt% and the content of Sn is 0.5 to 7 wt%, so that a soft phase and a hard phase can coexist, and the Sn is in the above range. And γ phase can be easily precipitated and solid solution in β phase having poor corrosion resistance to improve corrosion resistance.

【0017】また、結晶組織は、α+β+γからなり、
α相の面積比率が、40%〜95%、β相の面積比率が
1〜30%、γ相の面積比率が、5〜30%であること
を特徴とする黄銅とすることで、切削加工による歪みを
受けた時に切削抵抗を低減するためのボイドが、適度に
分散存在できるので、切削性に優れた黄銅を提供でき
る。
The crystal structure is composed of α + β + γ,
The brass is characterized in that the area ratio of the α phase is 40% to 95%, the area ratio of the β phase is 1 to 30%, and the area ratio of the γ phase is 5 to 30%. The voids for reducing the cutting resistance when subjected to the strain caused by the deformation can be appropriately dispersed and present, so that brass excellent in the machinability can be provided.

【0018】また、γ相は、結晶組織内に分散存在し、
γ相の粒径は、0.3〜15μmとすることで、前記ボ
イドは、γ相近傍に発生し易いので、ボイドが適度に分
散存在できるので、切削性に優れた黄銅を提供できる。
Further, the γ phase is dispersed in the crystal structure,
When the particle size of the γ phase is 0.3 to 15 μm, the voids are easily generated in the vicinity of the γ phase, and the voids can be appropriately dispersed and present, so that brass excellent in machinability can be provided.

【0019】[0019]

【発明の実施の形態】以上説明した本発明の構成・作用
を一層明らかにするために、詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to further clarify the configuration and operation of the present invention described above, a detailed description will be given.

【0020】本発明に利用できる素材としては、見掛け
上のZn含有量37〜50wt%で、Sn含有量が、
0.5〜7wt%のものが利用できる。「見掛け上のZ
n含有量」という用語は、AをCu含有量〔wt%〕、
BをZn含有量〔wt%〕、tを添加した第3元素(例
えばSn)のZn当量、Qをその第3元素の含有量〔w
t%〕としたとき、「{(B+t×Q)/(A+B+t
×Q)}×100」の意味で用いる。すなわち、Snの
ような第三元素は、特別な相を形成しないで、α相やβ
相中に固溶され、Zn量を増減したような組織が生じ、
それに対応した性質を示すことから見掛け上のZn含有
量で定義している。
Materials that can be used in the present invention include an apparent Zn content of 37 to 50 wt% and a Sn content of:
0.5 to 7 wt% can be used. "The apparent Z
The term “n content” means that A is the Cu content [wt%],
B is the Zn content [wt%], t is the Zn equivalent of the third element (for example, Sn), and Q is the content of the third element [w
t%], “{(B + t × Q) / (A + B + t
× Q)} × 100 ”. That is, the third element such as Sn does not form a special phase,
A solid solution is formed in the phase, and a structure in which the amount of Zn is increased or decreased is generated,
Since it shows properties corresponding thereto, it is defined by the apparent Zn content.

【0021】見掛け上のZn含有量が、37wt%以下
では有効なγ相が得られず、50wt%より大きいと黄
銅が脆くなるのため、望ましくない。また、Snの添加
は、黄銅の持つ良好なリサイクル性を損なわず硬質なγ
相を得ることができ、特に、β相に多く固溶し、耐食性
に劣るβ相の耐食性も向上させことができる。その添加
量は、0.5wt%より少ないと効果が無く、7wt%
より多いと黄銅が脆くなるため望ましくない。
If the apparent Zn content is less than 37 wt%, no effective γ phase can be obtained, and if it exceeds 50 wt%, the brass becomes brittle, which is not desirable. In addition, the addition of Sn is a hard γ without impairing the good recyclability of brass.
A phase can be obtained, and in particular, a large amount of solid solution can be formed in the β phase to improve the corrosion resistance of the β phase having poor corrosion resistance. If the addition amount is less than 0.5 wt%, there is no effect, and 7 wt%
If it is larger, the brass becomes brittle, which is not desirable.

【0022】上記組成の鋳造物や押出し物、更に鍛造物
などの素材から軟質なα相、硬質なγ相、及びその中間
の強度を有するβ相を加熱、冷却速度を制御して析出さ
せることができる。例えば、α+γ相を形成するために
は、前記素材を、400〜480℃に加熱、保持し、冷
却することで調整できる。この際、α相の面積比率を6
0〜95%、γ相の面積比率を5〜40%に設定するこ
とが、延性と切削性の両立の点で望ましい。なお、前記
素材を製造する際の鋳造工程、押出し工程、鍛造工程の
最後の冷却ステップにおいて、前記温度範囲、冷却速度
で結晶を調整しても良い。
Precipitation of a soft α phase, a hard γ phase, and a β phase having intermediate strength by controlling the heating and cooling rates from raw materials such as castings, extrudates, and forgings having the above composition. Can be. For example, in order to form an α + γ phase, the material can be adjusted by heating, holding, and cooling the material at 400 to 480 ° C. At this time, the area ratio of the α phase was 6
It is desirable to set the area ratio of the γ phase to 0 to 95% and the area ratio of the γ phase to 5 to 40% in terms of compatibility between ductility and machinability. In the last cooling step of the casting step, the extrusion step, and the forging step when producing the raw material, the crystal may be adjusted in the above-mentioned temperature range and cooling rate.

【0023】また、γ相をβ相で囲むように形成するた
めには、前記素材を、400〜480℃に加熱し、α+
γ相組織を得た後、480〜550℃で1〜60秒保持
し、400℃以下まで5〜1000℃/秒で急冷するこ
とで調整できる。この際、α相の面積比率を40〜95
%、β相の面積比率を1〜30%、γ相の面積比率を5
〜30%に設定することが、延性と切削性の両立の点で
望ましい。この際、β相をγ相を囲むように、調整する
ことで、α相の延性によるボイドの発生を抑制でき、β
相とγ相との間で容易にボイドを発生できるので、望ま
しく、更に、β相を短径10μm以下に薄くすることに
より、β相が脆弱相となり、β相からボイドを発生する
ことができるようになる。
Further, in order to form the γ phase so as to surround the β phase, the material is heated to 400 to 480 ° C. and α +
After obtaining the γ-phase structure, it can be adjusted by holding at 480 to 550 ° C. for 1 to 60 seconds and rapidly cooling to 400 ° C. or lower at 5 to 1000 ° C./second. At this time, the area ratio of the α phase is 40 to 95.
%, The area ratio of the β phase is 1 to 30%, and the area ratio of the γ phase is 5
It is desirable to set it to 3030% in terms of compatibility between ductility and machinability. At this time, by adjusting the β phase so as to surround the γ phase, the generation of voids due to the ductility of the α phase can be suppressed.
Voids can be easily generated between the γ phase and the γ phase, and it is desirable. Further, by reducing the β phase to a minor axis of 10 μm or less, the β phase becomes a fragile phase, and voids can be generated from the β phase. Become like

【0024】γ相は、通常β相を取り囲むように、即
ち、αβ界面に析出しやすいが、まず、α+γ相を結晶
組織を形成させ、β相の析出する温度域、例えば、52
0℃まで急加熱し、数秒保持後急冷することによって、
γ相を取り囲むようにβ相を析出させることができる。
加熱速度が遅いとβ相はαγ界面の1ヶ所から析出し、
γ相を取り囲むようにはならない。保持時間が長いと、
γ相が小さくなりすぎたり、消滅したりしてしまう。ま
た、冷却速度が遅いとβ相の一部がα相とγ相に変化
し、γ相を取り囲むようにはならない。また、β相を高
温(550℃付近)から急冷することでβ相中からγ相
を析出させてもβ相は、γ相を囲む形態となる。
The γ phase usually surrounds the β phase, that is, easily precipitates at the αβ interface. First, the α + γ phase forms a crystal structure, and the temperature range in which the β phase precipitates, for example, 52
By rapidly heating to 0 ° C, holding for several seconds, and then rapidly cooling,
The β phase can be precipitated so as to surround the γ phase.
If the heating rate is slow, β phase precipitates from one place of αγ interface,
It does not surround the gamma phase. If the retention time is long,
The γ phase becomes too small or disappears. When the cooling rate is low, a part of the β phase changes to the α phase and the γ phase, and does not surround the γ phase. Further, even when the β phase is rapidly cooled from a high temperature (around 550 ° C.) to precipitate a γ phase from the β phase, the β phase has a form surrounding the γ phase.

【0025】なお、前記γ相は、結晶組織内に分散存在
し、粒径は、0.3〜15μm以下にすることが望まし
い。γ相粒子が0.3μm未満では、粒子が小さすぎて
切削時に粒界に応力が集中しなく、γ相粒子が15μm
を超えると、γ相粒子自体に刃物が接触したときの抵抗
値が増し、刃物寿命および表面精度が低下する。
It is desirable that the γ phase is dispersed in the crystal structure, and the particle size is 0.3 to 15 μm or less. When the γ-phase particles are less than 0.3 μm, the particles are too small so that stress is not concentrated on the grain boundaries during cutting, and the γ-phase particles are 15 μm
If it exceeds, the resistance value when the blade comes into contact with the γ-phase particles itself increases, and the life of the blade and the surface accuracy decrease.

【0026】前記組成にS、Ti、Zrなど粒界に濃縮
されるような金属やそれらの化合物を添加し、粒界にそ
れらの粒子から構成される脆弱な相を形成するようにす
ることで、切削加工において歪みを受けたとき、この脆
弱な相に応力が集中し、破壊およびボイドが発生しやす
くなり、切削抵抗を低減できる。なお、前記金属は、単
独の金属として、存在しても、TiSのような化合物の
形態で存在してもよいものである。また、前記金属の添
加量は、0.01〜0.2wt%とする。0.2より多
く添加しても効果は変わらない。
By adding a metal such as S, Ti, Zr or the like, which is concentrated at the grain boundaries, to the above-mentioned composition, and forming a fragile phase composed of those grains at the grain boundaries. When a strain is applied in the cutting process, stress concentrates on this fragile phase, and breakage and voids are easily generated, so that cutting resistance can be reduced. The metal may exist as a single metal or may exist in the form of a compound such as TiS. Further, the addition amount of the metal is 0.01 to 0.2 wt%. The effect does not change even if more than 0.2 is added.

【0027】以下、更に具体的な実施例に基づき詳細に
説明する。表1に示す成分を用いて、相比率、γ相の結
晶粒径に調整するように実施例1、3、及び比較例は、
図1に示す工程を経て製造される。実施例1と3は、ま
た、実施例2は、図2に示す工程を経て製造され、β相
をγ相の周囲に析出させている。実施例2の工程は、前
記結晶組織構成とするために、熱間押出し後空冷した
後、400〜500℃の焼鈍工程と480〜550℃へ
1℃/sec以上で昇温するという急加熱工程と水冷の
工程を追加している。
Hereinafter, a more specific embodiment will be described in detail. Using the components shown in Table 1, the phase ratio, Examples 1, 3 and Comparative Example to adjust the crystal grain size of the γ phase,
It is manufactured through the steps shown in FIG. Examples 1 and 3 and Example 2 are manufactured through the steps shown in FIG. 2, in which the β phase is precipitated around the γ phase. In the process of Example 2, in order to obtain the above-mentioned crystal structure, the material is hot-extruded, air-cooled, then annealed at 400 to 500 ° C. and rapidly heated to 480 to 550 ° C. at 1 ° C./sec or more. And a water cooling process has been added.

【0028】[0028]

【表1】 [Table 1]

【0029】切削性の評価は、動力計を用いて、切削抵
抗を測定し、抵抗値の高低を3段階で評価した。β相を
γ相の周囲に薄く囲むように析出させるものが最も切削
性に優れており、粒界のボイドの発生が最も起こり易い
ものと推測される。一方、比較例のものは、α相が多い
ことからα相の高い延性のため、粒界に応力が集中しに
くく粒界にボイドが発生しにくく切削抵抗が高くなった
と推測される。
The cutting performance was evaluated by measuring the cutting resistance using a dynamometer and evaluating the level of the resistance in three stages. The one that precipitates the β phase so as to surround it thinly around the γ phase is most excellent in machinability, and it is presumed that voids at grain boundaries are most likely to occur. On the other hand, in the case of the comparative example, it is presumed that stress is hardly concentrated on the grain boundaries and voids are hardly generated on the grain boundaries and cutting resistance is increased due to the high ductility of the α phase due to the large number of α phases.

【0030】[0030]

【発明の効果】以上に説明した如く本発明によれば、リ
サイクル性や安定供給など工業的に満足でき、Pbの溶
出を改善した切削性に優れた黄銅を提供できるものであ
る。
As described above, according to the present invention, it is possible to provide brass which is industrially satisfactory in terms of recyclability and stable supply, and which has improved dissolution of Pb and has excellent cutting properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例の製造工程を説明す
る図である。
FIG. 1 is a diagram for explaining a manufacturing process of an example of the present invention and a comparative example.

【図2】本発明の実施例の他の製造工程を説明する図で
ある。
FIG. 2 is a diagram illustrating another manufacturing process of the embodiment of the present invention.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 結晶組織は、軟質な相と硬質な相とを有
し、前記相界面に脆弱相を介在させたことを特徴とする
黄銅。
1. A brass having a crystal structure having a soft phase and a hard phase, and a brittle phase interposed at the phase interface.
【請求項2】 前記黄銅は、見掛け上のZn含有量が、
37〜50wt%、Snの含有量が、0.5〜7wt%
からなることを特徴とする請求項1記載の黄銅。
2. The brass has an apparent Zn content of:
37-50 wt%, Sn content is 0.5-7 wt%
The brass according to claim 1, comprising:
【請求項3】 前記結晶組織は、α+γからなり、α相
の面積比率が、60%〜95%、γ相の面積比率が、5
〜40%であることを特徴とする請求項2記載の黄銅。
3. The crystal structure is composed of α + γ, the area ratio of the α phase is 60% to 95%, and the area ratio of the γ phase is 5%.
The brass according to claim 2, wherein the content is from about 40% to about 40%.
【請求項4】 前記結晶組織は、α+β+γからなり、
α相の面積比率が、40%〜95%、β相の面積比率が
1〜30%、γ相の面積比率が、5〜30%であること
を特徴とする請求項2記載の黄銅。
4. The crystal structure comprises α + β + γ,
The brass according to claim 2, wherein the α phase has an area ratio of 40% to 95%, the β phase has an area ratio of 1 to 30%, and the γ phase has an area ratio of 5 to 30%.
【請求項5】 前記γ相は、結晶組織内に分散存在し、
γ相の粒径は、0.3〜15μmであることを特徴とす
る請求項1乃至4記載の黄銅。
5. The γ phase is dispersed in a crystal structure,
The brass according to any one of claims 1 to 4, wherein the particle size of the γ phase is 0.3 to 15 µm.
【請求項6】 前記脆弱相は、α相とγ相の界面に設け
たことを特徴とする請求項3、4記載の黄銅。
6. The brass according to claim 3, wherein the fragile phase is provided at an interface between an α phase and a γ phase.
【請求項7】 前記脆弱相は、0.01〜0.2wt%
のS、Ti、Zrの少なくとも1つ又はそれらの化合物
からなることを特徴とする請求項1記載の黄銅。
7. The fragile phase is 0.01 to 0.2 wt%.
The brass according to claim 1, comprising at least one of S, Ti, and Zr or a compound thereof.
【請求項8】 結晶組織は、軟質な相と硬質な相を有
し、前記相界面に両者の相の中間の強度を有する相を介
在させたことを特徴とする黄銅。
8. A brass having a crystal structure having a soft phase and a hard phase, and a phase having an intermediate strength between the two phases is interposed at the phase interface.
【請求項9】 前記黄銅は、見掛け上のZn含有量が、
37〜50wt%、Snの含有量が、0.5〜7wt%
からなることを特徴とする請求項8記載の黄銅。
9. The brass has an apparent Zn content of:
37-50 wt%, Sn content is 0.5-7 wt%
The brass according to claim 8, comprising:
【請求項10】 前記結晶組織は、α+β+γからな
り、α相の面積比率が、40%〜95%、β相の面積比
率が1〜30%、γ相の面積比率が、5〜30%である
ことを特徴とする請求項9記載の黄銅。
10. The crystal structure is composed of α + β + γ, the area ratio of the α phase is 40% to 95%, the area ratio of the β phase is 1 to 30%, and the area ratio of the γ phase is 5 to 30%. The brass according to claim 9, wherein:
【請求項11】 前記γ相は、結晶組織内に分散存在
し、γ相の粒径は、0.3〜15μmであることを特徴
とする請求項10記載の黄銅。
11. The brass according to claim 10, wherein the γ phase is dispersed in a crystal structure, and the γ phase has a particle size of 0.3 to 15 μm.
【請求項12】 前記中間の強度を有する相は、β相で
あり、α相とγ相の界面に設けたことを特徴とする請求
項10記載の黄銅。
12. The brass according to claim 10, wherein the phase having the intermediate strength is a β phase and is provided at an interface between the α phase and the γ phase.
【請求項13】 前記β相は、γ相を取り囲むようにα
相との間に介在していることを特徴とする請求項12記
載の黄銅。
13. The method according to claim 1, wherein the β phase is α
The brass according to claim 12, wherein the brass is interposed between the brass and the phase.
【請求項14】 前記中間の強度を有する相は、短径1
0μm以下の結晶相であることを特徴とする請求項8乃
至13の何れかに記載の黄銅。
14. The phase having the intermediate strength has a minor axis of 1 mm.
The brass according to any one of claims 8 to 13, wherein the brass has a crystal phase of 0 µm or less.
JP2001087461A 2001-03-26 2001-03-26 Brass Pending JP2002285263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087461A JP2002285263A (en) 2001-03-26 2001-03-26 Brass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087461A JP2002285263A (en) 2001-03-26 2001-03-26 Brass

Publications (1)

Publication Number Publication Date
JP2002285263A true JP2002285263A (en) 2002-10-03

Family

ID=18942704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087461A Pending JP2002285263A (en) 2001-03-26 2001-03-26 Brass

Country Status (1)

Country Link
JP (1) JP2002285263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351372B2 (en) * 2003-01-22 2008-04-01 Dowa Mining Co., Ltd. Copper base alloy and method for producing same
DE102009038657A1 (en) * 2009-08-18 2011-02-24 Aurubis Stolberg Gmbh & Co. Kg brass alloy
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351372B2 (en) * 2003-01-22 2008-04-01 Dowa Mining Co., Ltd. Copper base alloy and method for producing same
DE102009038657A1 (en) * 2009-08-18 2011-02-24 Aurubis Stolberg Gmbh & Co. Kg brass alloy
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Similar Documents

Publication Publication Date Title
JP3803981B2 (en) Method for producing copper alloy having high strength and high conductivity
WO2002012583A1 (en) Silver containing copper alloy
JP2006009137A (en) Copper alloy
JP2007039735A (en) Method for producing copper alloy sheet with deformed cross section
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2000156452A (en) Lead frame, manufacture thereof, and semiconductor package provided with it
JP2002285263A (en) Brass
JPH10152737A (en) Copper alloy material and its production
JP2002030364A (en) High strength free cutting brass
JPH06145930A (en) Production of precipitation type copper alloy
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP3325639B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JP2003201530A (en) High-strength titanium alloy with excellent hot workability
JPH08246118A (en) Production of aluminum alloy casting
JP2004269962A (en) High strength copper alloy
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
US4338130A (en) Precipitation hardening copper alloys
JPH11335800A (en) Production of copper base alloy with excellent stress relaxation resistance
JPH10183274A (en) Copper alloy for electronic equipment
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2003055725A (en) Titanium alloy with excellent cold workability and fatigue strength after brazing
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2568063B2 (en) Copper alloy for electrical and electronic parts
JPH09143597A (en) Copper alloy for lead frame and its production