JPS61119643A - Free-cutting aluminum alloy and its production - Google Patents

Free-cutting aluminum alloy and its production

Info

Publication number
JPS61119643A
JPS61119643A JP23866784A JP23866784A JPS61119643A JP S61119643 A JPS61119643 A JP S61119643A JP 23866784 A JP23866784 A JP 23866784A JP 23866784 A JP23866784 A JP 23866784A JP S61119643 A JPS61119643 A JP S61119643A
Authority
JP
Japan
Prior art keywords
alloy
cutting
aluminum alloy
free
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23866784A
Other languages
Japanese (ja)
Other versions
JPS6233301B2 (en
Inventor
Teruo Uno
宇野 照生
Hideo Yoshida
英雄 吉田
Masao Ito
正夫 伊藤
Shinji Yamamoto
信二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP23866784A priority Critical patent/JPS61119643A/en
Publication of JPS61119643A publication Critical patent/JPS61119643A/en
Publication of JPS6233301B2 publication Critical patent/JPS6233301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the free-cutting aluminum alloy causing little strain after cutting as well as having superior machinability, by providing an aluminum alloy containing specific amounts of Mn, Mg, Cu, Fe, Si, Pb, and Sn. CONSTITUTION:The aluminum alloy ingot consisting of, by weight, 0.5-1.5% Mn, 0.2-0.9% Mg, 0.15-0.9% Cu, 0.1-0.5% Fe, 0.05-0.2% Si, 0.15-1% Pb, 0.6-1.5% Sn, and the balance Al with inevitable impurities. This alloy ingot is homogenized at 520-600 deg.C and hot-worked, which is subjected to cold working at 15-70% draft and to annealing at 200-300 deg.C.

Description

【発明の詳細な説明】 星1」31殼月」1し この発明は、切削性にすぐれ、切削後の歪発生が小さく
、しかも低コストの快削アルミニウム合金とその製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a free-cutting aluminum alloy that has excellent machinability, generates little distortion after cutting, and is low-cost, and a method for producing the same.

従来の技術 従来、光学機器や精密機器等に使用されている切削用ア
ルミニウム合金としては、Al−Cu系の2011合金
、AI−M(l系の5056合金、AI −M!J−8
i系の6262合金等が代表的な合金として知られてい
る。
Conventional technology Conventionally, aluminum alloys for cutting used in optical instruments, precision instruments, etc. include Al-Cu-based 2011 alloy, AI-M (I-based 5056 alloy, AI-M!J-8).
I-based 6262 alloy is known as a typical alloy.

これらの各合金は光学機器等を始め各分野で広範囲に使
用されているが、以下のような特徴や問題があった。
These alloys are widely used in various fields including optical equipment, but they have the following characteristics and problems.

2011合金は高強度の快削合金として極めてすぐれた
切屑処理性を有しているが、Cutが多く耐食性に劣る
のが欠点である。
Although the 2011 alloy has extremely excellent chip disposal properties as a high-strength free-cutting alloy, its disadvantage is that it has many cuts and poor corrosion resistance.

これに対して、6262合金はAI −Ma −3i系
をベースとする合金であるために、2011合金より耐
食性にすぐれている快削アルミニウム合金である。
On the other hand, since the 6262 alloy is based on the AI-Ma-3i system, it is a free-cutting aluminum alloy that has better corrosion resistance than the 2011 alloy.

しかし、2011合金や6262合金は熱処理型の合金
であるために、すぐれた切屑処理性や所定の強度を得る
には前処I!!(焼入れ、焼戻し)が必要とされる。そ
して焼入れ時には素材が高温から急冷されるために大き
な焼入れ残留応力や焼入れ歪が発生し、一度発生した応
力や歪を完全に除去することは極めて難しい。
However, since 2011 alloy and 6262 alloy are heat-treatable alloys, pretreatment I is required to obtain excellent chip control properties and a specified strength. ! (quenching, tempering) is required. During quenching, the material is rapidly cooled from a high temperature, resulting in large quenching residual stress and quenching distortion, and it is extremely difficult to completely remove stress and distortion once generated.

したがって、2011合金や6262合金のような熱処
理型合金は、最終製品にかなり高い応力が残ることは避
けられない。
Therefore, heat treatable alloys such as 2011 alloy and 6262 alloy inevitably result in significantly higher stresses remaining in the final product.

そのために、光学機器部品等に精密加工する際に残留応
力に起因して高精度の寸法公差が(りられないという問
題がある。
For this reason, there is a problem in that highly accurate dimensional tolerances cannot be achieved due to residual stress when precision machining optical equipment parts and the like.

ざらに、これらの合金は熱処理を必要とするため、50
56合金のような非熱処理型合金に比較してコスト高に
なる問題がある。
Generally speaking, these alloys require heat treatment, so 50
There is a problem in that the cost is higher than that of non-heat treated alloys such as 56 alloy.

これに対して、5056合金は軟質あるいは半硬質状態
で使用される非熱処理型合金であるので熱処理型合金に
みられるような残留応力に起因する切削量の問題はない
。しかし、この合金は耐食性や切削面の仕上り性は良好
であるが、切屑処理性が極めて悪く、自動旋削機で切削
する場合には問題がある。
On the other hand, since the 5056 alloy is a non-heat treatable alloy that is used in a soft or semi-hard state, there is no problem with the amount of cutting due to residual stress that occurs with heat treatable alloys. However, although this alloy has good corrosion resistance and good finish on the cut surface, it has extremely poor chip disposal properties, which poses a problem when cutting with an automatic turning machine.

が ゛すべき問題。The problem that should be solved.

この発明は、切屑処理性や切削後の寸法精度にすぐれ、
しかも低コストの快削アルミニウム合金とその製造法を
提供しようとするものである。
This invention has excellent chip disposal properties and dimensional accuracy after cutting,
Furthermore, the present invention aims to provide a low-cost free-cutting aluminum alloy and a method for producing the same.

、を解決するための 上記快削アルミニウム合金とその製造法を提供するため
のこの発明の構成は下記のとおりのものである。
The structure of the present invention to provide the above-mentioned free-cutting aluminum alloy and its manufacturing method to solve the problem is as follows.

(1)  M n  O05〜1.5%、Ma  0.
2〜0.9%、Cu 0.15〜0.9%、Fe 0.
10〜0.5%、3i0.05〜0.2%、pb 0.
15〜1.0%、Sn  0.6〜1.5%を含み、残
りがアルミニウムと不純ト 物よりなる、切削性にすぐれ、しかも切削後の歪発生の
少ない快削アルミニウム合金。
(1) MnO05-1.5%, Ma 0.
2-0.9%, Cu 0.15-0.9%, Fe 0.
10-0.5%, 3i0.05-0.2%, pb 0.
A free-cutting aluminum alloy containing 15% to 1.0% Sn, 0.6% to 1.5% Sn, and the remainder consisting of aluminum and impurities, and has excellent machinability and less distortion after cutting.

■ 上記組成の合金を520〜600℃で均質化処理後
に熱間加工し、15〜10%の冷間加工後に200〜3
00℃で焼鈍する切削性にすぐれ、切削後の歪発生の小
さい快削アルミニウム合金の製造法。
■ The alloy with the above composition was homogenized at 520-600°C and then hot worked, and after 15-10% cold working, it was heated to 200-300°C.
A method for producing a free-cutting aluminum alloy that has excellent machinability and generates little distortion after cutting by annealing at 00°C.

上記アルミニウム合金の組成を限定した理由を、各成分
の作用に基づいて説明すると、Pb、Sn:PbとSn
がアルミニウム中に共存すると、切削性を著しく向上さ
せる 効果がある。これはPb−8n系の低 融点化合物が切削時の加工熱により溶 融するために切屑が微細に破断マるか らである。添加量が下限未満の場合に は切削性が十分でなく、上限を越える と熱間加工時に脆化する問題がある。
The reason why the composition of the aluminum alloy is limited is explained based on the effect of each component: Pb, Sn: Pb and Sn
Coexistence in aluminum has the effect of significantly improving machinability. This is because the Pb-8n-based low melting point compound melts due to processing heat during cutting, resulting in fine fractures of chips. If the amount added is less than the lower limit, machinability will not be sufficient, and if it exceeds the upper limit, there will be a problem of embrittlement during hot working.

Mn:Mnは合金の強度を向上させると共に、pb 、
Snよりも効果は小さいが切削性の向上に寄与する作用
がある。
Mn: Mn improves the strength of the alloy, as well as pb,
Although the effect is smaller than that of Sn, it has an effect that contributes to improving machinability.

これは、MnがAl−Mn系やAl− Mn−1”e系の金属間化合物として晶出し、マトリッ
クス中に化合物が多量 存在する場合には切屑の破断を容易に するためである。添加量が下限未満の 場合には強度や切削性の改良効・果が少く、上限を越え
ると巨大な金属間化合 物を晶出する問題がある。
This is because Mn crystallizes as an Al-Mn-based or Al-Mn-1"e-based intermetallic compound, and when a large amount of the compound is present in the matrix, it facilitates the breakage of chips.Additional amount If it is less than the lower limit, the effect of improving strength and machinability will be small, and if it exceeds the upper limit, there will be a problem that large intermetallic compounds will crystallize.

Mill:Ml)は合金の強度を向上させる作用があり
、光学機器等に必要な所定の強 度を得るために必須の添加元素である。
Mill: Ml) has the effect of improving the strength of the alloy, and is an essential additive element in order to obtain a predetermined strength required for optical devices and the like.

添加量が下限未満の場合には強度の向 上効果が小ざく、上限を越えると切削 性が低下する。これはM(Jと5nが M(] z Sn金属園化合物を形成して切削性向上に
有効な5nfttが減少するためである。
If the amount added is less than the lower limit, the effect of improving strength will be small, and if it exceeds the upper limit, machinability will decrease. This is because M(J and 5n form a M(] z Sn metal compound, and 5nftt, which is effective for improving machinability, decreases).

Cu:Cuは強度を向上させ切削性を向上させる効果が
あり、下限未満ではこの 効果が小さく、上限を越えてもその効 果は向上せず、耐食性が低下する。
Cu: Cu has the effect of improving strength and machinability, and below the lower limit this effect is small, and beyond the upper limit the effect does not improve and corrosion resistance decreases.

Fe:Feは結晶粒を微細化させると共に合金の強度を
向上させる作用がある。
Fe: Fe has the effect of making crystal grains finer and improving the strength of the alloy.

添加量が下限未満の場合にはこの効果 が十分でなく、上限を越えると結晶粒 微細化効果が飽和するばかりでなく、 耐食性、切削面の仕上り性、表面処理 性等が低下する。This effect occurs when the amount added is below the lower limit. is not sufficient and exceeds the upper limit, crystal grains Not only does the miniaturization effect become saturated, Corrosion resistance, cut surface finish, surface treatment Sexuality, etc. decreases.

3i  :3iは合金の強度を向上させ、かつ切削性を
向上させる効果がある。下限 未満ではこの効果が十分でなく、上限 を越えるとMO2Si系の粗大化合物 を形成するためM9添加による強度向 上効果を低下させ、強度や切削性が低 下する。
3i: 3i has the effect of improving the strength of the alloy and improving the machinability. If it is less than the lower limit, this effect will not be sufficient, and if it exceeds the upper limit, a MO2Si-based coarse compound will be formed, which will reduce the strength-improving effect of M9 addition, resulting in a decrease in strength and machinability.

製造法における各工程について説明すると、良好な性能
を得るには発明合金を以下の製造条件で処理する必要が
ある。
To explain each step in the manufacturing method, in order to obtain good performance, it is necessary to process the invention alloy under the following manufacturing conditions.

均質化処理:発明合金の鋳塊を520〜600℃で均質
化処理し、鋳造時に固溶されたMllを析出させ、熱間
加工材や最終製品の 結晶粒を微細化させる。均質化処理温 度が下限未満の場合には結晶粒が粗大 化し、上限を越えると共晶融解を起す。
Homogenization treatment: The ingot of the invention alloy is homogenized at 520 to 600°C to precipitate Mll dissolved in solid solution during casting and to refine the crystal grains of hot-worked materials and final products. If the homogenization temperature is below the lower limit, crystal grains will become coarse, and if it exceeds the upper limit, eutectic melting will occur.

なお、均質化処理時間としては2時間 以上が望ましい。In addition, the homogenization treatment time is 2 hours. The above is desirable.

熱間加工:通常の熱間押出加工でよい。Hot processing: Normal hot extrusion processing is sufficient.

冷間加工:均質化処理後の鋳塊を熱間加工後に冷間加工
するが加工度は15%以上が望ましい。下限未満の場合
にはその後の 焼鈍によっても加工歪が十分に回復せ ず残留応力が高くなる問題がある。上 限を越えた加工を行っても残留応力の 低下の程度は変らない。
Cold working: The ingot after homogenization treatment is hot worked and then cold worked, and the degree of working is preferably 15% or more. If it is less than the lower limit, there is a problem that the machining strain is not sufficiently recovered even by subsequent annealing and residual stress becomes high. Even if the processing exceeds the upper limit, the degree of reduction in residual stress does not change.

焼鈍:冷間加工材を焼鈍するが、焼Ill温度が下限未
満の場合には、強度は高くて 切削性は、良好であるが、残留応力の除去が不十分なた
め、精密切削加工時に 歪を発生する。
Annealing: Cold-worked materials are annealed, but if the annealing temperature is below the lower limit, the strength is high and the machinability is good, but the removal of residual stress is insufficient, resulting in distortion during precision cutting. occurs.

焼鈍温度が上限を越えると残留応力 は著しく低下し、精密切削加工後にも 切削量は発生しないが、強度や切削性 が著しく低下する。Residual stress occurs when the annealing temperature exceeds the upper limit. is significantly reduced, even after precision cutting. No amount of cutting occurs, but strength and machinability decreases significantly.

!1U1 以下実施例によって、この発明を具体的に説明する。! 1U1 The present invention will be specifically explained below with reference to Examples.

試料としては、下記第1表に示した組成のアルミニウム
合金を用いた。
As samples, aluminum alloys having the compositions shown in Table 1 below were used.

ただし、No、1〜9がこの発明の合金、No、10〜
21は比較例、そのうちN o、20は5056合金−
〇材、N 0.21は2011合金−丁8材である。
However, No. 1 to 9 are alloys of this invention, and No. 10 to 9 are alloys of this invention.
21 is a comparative example, of which No. 20 is a 5056 alloy.
〇 material, N 0.21 is 2011 alloy-C8 material.

第1表  合金の化学成分(%) 上記組成の合金を直径250au+の押出用鋳塊とし、
以下に説明する実施例に記載の条件で加工、処理し、そ
の性質を試験した。
Table 1 Chemical composition of alloy (%) The alloy with the above composition was made into an ingot for extrusion with a diameter of 250 au+,
It was processed and treated under the conditions described in the Examples described below, and its properties were tested.

実施例1 上記鋳塊を580℃で10時間均質化処理した後、44
0℃に加熱し、押出し成形によって55φX65φx 
5.Otの管にした。この管を41%冷闇抽伸して50
φ×56φx 3.Otとした後に250℃で1時間焼
鈍した。
Example 1 After homogenizing the above ingot at 580°C for 10 hours,
Heat to 0℃ and extrude into 55φx65φx
5. I made it into an Ot tube. This tube was cold drawn by 41% to 50%
φ×56φx 3. After the temperature was set to Ot, it was annealed at 250°C for 1 hour.

こうした材料の性質は下記第2表に示すとおりであった
The properties of these materials were as shown in Table 2 below.

回転数2000rpm  すくい角5°  送り0.1
am/rev  切り込み1閣l12 切開法により測
定した平均残留応力(kQ/mm2 )巖1 素管を5
1.5φx54.5φx 1.Stの形状に切削した後
に測定した真円度の変化量(閣) 上記結果から各合金について、下記のような特性あるい
は問題点が認められる。
Rotation speed 2000 rpm Rake angle 5° Feed 0.1
am/rev Incision 1 cm 12 Average residual stress measured by incision method (kQ/mm2) 1 base pipe 5
1.5φx54.5φx 1. Amount of change in roundness measured after cutting into the shape of St (Kaku) From the above results, the following characteristics or problems are recognized for each alloy.

N011〜9の発明合金は結晶粒が微細で強度と切削性
にすぐれ、しかも切削後の寸法精度が良好であり、すぐ
れた特性を有している。
The invention alloys Nos. 011 to 9 have fine crystal grains, excellent strength and machinability, and also have good dimensional accuracy after cutting, and have excellent properties.

No、10〜11合金は切削性が悪い。No. 10-11 alloys have poor machinability.

N o、12合金とN 0.13合金は強度が低い。The N0,12 alloy and the N0.13 alloy have low strength.

No、14合金は結晶粒が粗大なため切削面の仕上りが
悪い。
Alloy No. 14 had coarse grains and had a poor finish on the cut surface.

N 0.15合金は強度が低い。N0.15 alloy has low strength.

N 0.16合金は切削性が悪い。N0.16 alloy has poor machinability.

N0.17合金は強度が低い。N0.17 alloy has low strength.

N0.18合金は切削性が悪く強度も低い。N0.18 alloy has poor machinability and low strength.

No、19合金は切削性が悪い。No. 19 alloy has poor machinability.

p4 o、20の5056合金は切削性が悪い。The 5056 alloy with p4 o, 20 has poor machinability.

1’J 0.21の2011合金は切削後の寸法精度が
悪い。
The 2011 alloy with 1'J of 0.21 has poor dimensional accuracy after cutting.

実施例2 上記第1表に示した組成の合金(250mmφ鋳塊)の
うちいくつかを下記第3表に示した各製造条件のもとに
加工して管にした。
Example 2 Some of the alloys (250 mm diameter ingots) having the compositions shown in Table 1 above were processed into pipes under the manufacturing conditions shown in Table 3 below.

第3表  管の製造条件 N011〜9は実施例、 No、 10以降は比較例上
記第3表に示した各条件で製造した管の性質を下記第4
表に示す。
Table 3 Pipe manufacturing conditions Nos. 11 to 9 are examples, Nos. 10 onwards are comparative examples. The properties of the pipes manufactured under the conditions shown in Table 3 above are as follows
Shown in the table.

第4表  製造された管の性質 1〜藁3の評価法は実施例1に同じ 上記第4表の結果から8管について下記の特性が認めら
れる。
Table 4 Characteristics of manufactured tubes The evaluation methods for 1 to 3 are the same as in Example 1. From the results in Table 4 above, the following characteristics are recognized for 8 tubes.

No、1〜9の本発明の製造条件によれば、結晶粒が微
細で強度、切削性、切削面の仕上り性等にすぐれ、しか
も残留応力が低くて切削後の寸法精度の良好な快削アル
ミニウム合金を得ることが可能となる。
According to the manufacturing conditions of Nos. 1 to 9 of the present invention, the crystal grains are fine, the strength, machinability, finish of the cut surface, etc. are excellent, and the residual stress is low, resulting in free machining with good dimensional accuracy after cutting. It becomes possible to obtain an aluminum alloy.

No、10は結晶粒が粗大で表面の仕上り性が悪い。No. 10 had coarse crystal grains and poor surface finish.

N 0.12、N 0.13は残留応力が大きく、切削
後の寸法精度が悪い。
N 0.12 and N 0.13 have large residual stress and poor dimensional accuracy after cutting.

No、14とNo、15は切削性が悪い。No. 14 and No. 15 have poor machinability.

N0916は結晶粒が粗大で表面の仕上り性が悪く、し
かも残留応力が高いため切削後の寸法精度が悪い。
N0916 has coarse grains, poor surface finish, and high residual stress, resulting in poor dimensional accuracy after cutting.

1貝!81[ 以上の説明から明らかなように、この発明によると切削
性にすぐれ、切削量が小さく、しかも低コストの快削ア
ルミニウム合金が得られる。
1 shellfish! 81 [As is clear from the above description, according to the present invention, a free-cutting aluminum alloy with excellent machinability, a small amount of cutting, and a low cost can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)Mn0.5〜1.5%、Mg0.2〜0.9%、
Cu0.15〜0.9%、Fe0.10〜0.5%、S
i0.05〜0.2%、Pb0.15〜1.0%、Sn
0.6〜1.5%を含み、残りがアルミニウムと不純物
よりなる、切削性にすぐれ、しかも切削後の歪発生の小
さいことを特徴とする快削アルミニウム合金。
(1) Mn0.5-1.5%, Mg0.2-0.9%,
Cu0.15-0.9%, Fe0.10-0.5%, S
i0.05-0.2%, Pb0.15-1.0%, Sn
A free-cutting aluminum alloy containing 0.6 to 1.5% and the remainder consisting of aluminum and impurities, which is characterized by excellent machinability and low distortion after cutting.
(2)Mn0.5〜1.5%、Mg0.2〜0.9%、
Cu0.15〜0.9%、Fe0.10〜0.5%、S
i0.05〜0.2%、Pb0.15〜1.0%、Sn
0.6〜1.5%を含み、残りがアルミニウムと不純物
よりなる合金鋳塊を、520〜600℃で均質化処理後
に熱間加工し、15〜70%の冷間加工後に200〜3
00℃で焼鈍することを特徴とする切削性にすぐれ、し
かも切削後の歪発生の小さい快削アルミニウム合金の製
造法。
(2) Mn0.5-1.5%, Mg0.2-0.9%,
Cu0.15-0.9%, Fe0.10-0.5%, S
i0.05-0.2%, Pb0.15-1.0%, Sn
An alloy ingot containing 0.6 to 1.5% and the remainder consisting of aluminum and impurities is hot worked at 520 to 600°C after homogenization, and after cold working to 15 to 70%, the alloy ingot is made of aluminum and impurities.
A method for producing a free-cutting aluminum alloy which has excellent machinability and generates little distortion after cutting, characterized by annealing at 00°C.
JP23866784A 1984-11-14 1984-11-14 Free-cutting aluminum alloy and its production Granted JPS61119643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23866784A JPS61119643A (en) 1984-11-14 1984-11-14 Free-cutting aluminum alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23866784A JPS61119643A (en) 1984-11-14 1984-11-14 Free-cutting aluminum alloy and its production

Publications (2)

Publication Number Publication Date
JPS61119643A true JPS61119643A (en) 1986-06-06
JPS6233301B2 JPS6233301B2 (en) 1987-07-20

Family

ID=17033528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23866784A Granted JPS61119643A (en) 1984-11-14 1984-11-14 Free-cutting aluminum alloy and its production

Country Status (1)

Country Link
JP (1) JPS61119643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803994A (en) * 1993-11-15 1998-09-08 Kaiser Aluminum & Chemical Corporation Aluminum-copper alloy
JP2006509107A (en) * 2002-12-06 2006-03-16 ペシネイ レナリュ Edge-on stress relaxation of aluminum thick plate
US7789178B2 (en) 2004-05-25 2010-09-07 Toyota Jidosha Kabushiki Kaisha Wheel support device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443041Y2 (en) * 1986-11-21 1992-10-12
JPH06141901A (en) * 1992-11-09 1994-05-24 Takasago Sangyo:Kk Artic boot and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803994A (en) * 1993-11-15 1998-09-08 Kaiser Aluminum & Chemical Corporation Aluminum-copper alloy
JP2006509107A (en) * 2002-12-06 2006-03-16 ペシネイ レナリュ Edge-on stress relaxation of aluminum thick plate
US7776167B2 (en) 2002-12-06 2010-08-17 Alcan Rhenalu, Inc. Edge-on stress-relief of aluminum plates
JP4783019B2 (en) * 2002-12-06 2011-09-28 コンステリウム フランス Edge-on stress relaxation of aluminum thick plate
US7789178B2 (en) 2004-05-25 2010-09-07 Toyota Jidosha Kabushiki Kaisha Wheel support device

Also Published As

Publication number Publication date
JPS6233301B2 (en) 1987-07-20

Similar Documents

Publication Publication Date Title
US6059902A (en) Aluminum alloy of excellent machinability and manufacturing method thereof
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP3886270B2 (en) High corrosion resistance aluminum alloy with excellent machinability
JPH0557348B2 (en)
JPS61119643A (en) Free-cutting aluminum alloy and its production
JPS6283445A (en) High strength aluminum alloy for casting
JPS6318041A (en) Manufacture of aluminum foil
JP2006077298A (en) Aluminum alloy material superior in machinability, and manufacturing method therefor
JPS6227147B2 (en)
JPS6210290B2 (en)
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JPH01283338A (en) Free-cutting aluminum alloy for hot forging
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPS59190346A (en) Thin aluminum fin material for heat exchanger
JPH01283337A (en) Al-mg-si alloy for extrusion casting
JP3453607B2 (en) High-strength aluminum alloy extruded material with excellent chip breaking performance
JPH04120236A (en) Aluminum free cutting alloy excellent in plastic workability and its manufacture
JP2001294956A (en) Free cutting brass excellent in dezincification resistance and its producing method
JPS63157830A (en) High-strength aluminum alloy for cold forging
JP3481064B2 (en) Slow acting aluminum alloy extruded material for bending
JPS6022055B2 (en) Non-heat treated aluminum alloy for cutting and its manufacturing method
JPS6055584B2 (en) Non-heat-treated free-cutting aluminum alloy and its manufacturing method