JPS6210290B2 - - Google Patents

Info

Publication number
JPS6210290B2
JPS6210290B2 JP13154083A JP13154083A JPS6210290B2 JP S6210290 B2 JPS6210290 B2 JP S6210290B2 JP 13154083 A JP13154083 A JP 13154083A JP 13154083 A JP13154083 A JP 13154083A JP S6210290 B2 JPS6210290 B2 JP S6210290B2
Authority
JP
Japan
Prior art keywords
machinability
content
less
free
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13154083A
Other languages
Japanese (ja)
Other versions
JPS6024340A (en
Inventor
Yoshio Doi
Yoshihiro Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13154083A priority Critical patent/JPS6024340A/en
Publication of JPS6024340A publication Critical patent/JPS6024340A/en
Publication of JPS6210290B2 publication Critical patent/JPS6210290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は非熱処理型アルミニウム合金に関し、
さらに詳しくは、切削性が著しく良好な非熱処理
型アルミニウム合金に関する。 従来、切削性の優れたアルミニウム合金として
は、Cuを主要含有元素とし、さらに少量のPb、
Biを含有させた2011合金や、Mg2Siを主成分と
し、さらに少量のPb、Biを含有させた6262合金
等が良く知られている。 そして、これらの合金は何れも析出硬化型合金
であり、焼入れ焼戻しによる硬化状態で優れた切
削性を有するアルミニウム合金である。また、何
れの合金も基本的にはPb、Biの低融点金属を含
有させることにより快削性を付与している。しか
し、焼鈍軟質状態での切削性は極めて悪い。 このような熱処理型アルミニウム合金は焼入れ
焼戻しの熱処理を伴なうため、管、棒等の製品に
した場合寸法精度が劣り、焼入れ時の残留応力に
より素材から部品を切削加工する場合に部品の真
円度が出ない等所謂切削歪が出易い欠点があつ
た。そのため最近、寸法精度の問題が少ない非熱
処理型の快削アルミニウム合金が実用化されてき
ており、即ち、非熱処理型快削アルミニウム合金
としてAl―Mg系合金に少量のPb、Snを含有させ
たものがあるが、快削性の機構上からはPb―Sn
―Mg―Si等の低融点化合物により快削性を付与
している。しかして、このAl―Mg系非熱処理型
アルミニウム合金は高速域の切削性に難点があ
り、かつ、焼鈍軟質状態における切削性も芳しい
ものではなかつた。 本発明は上記に説明した従来における快削性ア
ルミニウム合金の種々の欠点や問題点に鑑みなさ
れたものであり、非熱処理型アルミニウム合金と
してPb―Sn低融点金属およびMnAl6、(MnFe)
Al6を主体とする晶出物の何れか1種または2種
の共在とさらにこれらが近接して存在することに
より優れた快削性を保持させることができ、か
つ、従来のAl―Mg系快削合金の場合とは異なり
高速域における快削性が極めて優れた非熱処理型
アルミニウム合金を提供するものである。 本発明に係る非熱処理型快削アルミニウム合金
の特徴とするところは、 Mn0.3〜1.7wt%、Fe0.2〜1.5wt%、Pb0.2〜
1.5wt%、Sn0.1〜2.0wt%、Mg0.7wt%以下、
Si0.3〜3.0wt%(0.3wt%を含まず) を含有し、かつ、 Cu6.0wt%以下、Zn3.0wt%以下の1種または
2種 を含有し、および、 Ni3.0wt%以下、Cr0.3wt%以下、Zr0.3wt%以
下 のうち選んだ1種以上、 を含有し、さらに、Ti0.005〜0.3wt%、B0.0001
〜0.1wt%の1種または2種 を含有し、残部実質的にAlからなることにあ
る。 本発明に係る非熱処理型アルミニウム合金につ
いて以下詳細に説明する。 先ず、本発明に係る非熱処理型アルミニウム合
金の含有成分および成分割合について説明する。 Mnは強度および快削性を向上する元素であ
り、そしてMnは快削性を付与するAl―Mn系晶出
物、具体的にはMnAl6或いは(MnFe)Al6等の晶
出物を生成させるために必須の元素であり、か
つ、強度向上の効果があり、含有量が0.3wt%未
満ではこの効果が乏しく、また、1.7wt%を越え
る含有量ではAl―Mn系の巨大化合物が初晶とし
て晶出し、工具寿命を短かくし、表面仕上り性、
アルマイト性を害する。よつて、Mn含有量は0.3
〜1.7wt%とする。 Feは快削性を付与する必須元素で、(MnFe)
Al6晶出物およびAl―Fe系晶出物を生成して快削
性を向上させ、かつ、結晶粒を微細化し強度を向
上させる効果があり、Fe含有量は多い程よい
が、含有量が0.2wt%未満ではこの効果はなく、
また、1.5wt%を越えて含有されると巨大化合物
が生成し易くなり、工具寿命、表面仕上り性、ア
ルマイト性を害する。よつて、Fe含有量は0.2〜
1.5wt%とする。 Pb、Snは切削性の向上に大きな効果を有する
元素であり、含有量がPb0.2wt%未満、Sn0.1wt
%未満では切削性改善の効果はなく、また、
Pb1.5wt%およびSn2.0wt%を夫々越える含有量
では耐蝕性、アルマイト性を害する。よつて、
Pb含有量は0.2〜1.5wt%、Sn含有量は0.1〜2.0wt
%とする。なお、このPb、Snに加えてBiを1.5wt
%までの含有は許容される。 Mgは快削アルミニウム合金の優れた切削性を
発揮させるためにはMg含有量を規制する必要が
あり、含有量が0.7wt%を越える含有量ではMgが
切削性の向上に大きな効果を有するPb、Snと結
びついてMg2Pb、Mg2Sn等の化合物を生成して切
削性を著しく害する。よつて、Mg含有量は切削
性の点から0.7wt%以下に規制する。 Siは切削性の向上に寄与する元素であるが、含
有量が3.0wt%を越えると耐蝕性を害するように
なり、0.3wt%(0.3wt%は含まない)未満では切
削性向上効果が小さいとともに通常不純物として
も0.2〜0.3wt%は含有されるので特に規制する必
要はない。よつて、Si含有量は0.3〜3.0wt%
(0.3wt%は含まず)とする。 Cuは強度の向上に著しい効果を付与する元素
であるが耐蝕性を害するので、Cu含有量は強度
と耐蝕性との兼合いにより、6.0wt%以下とする
のがよく、6.0wt%を越えて含有されると押出性
を著しく害する。よつて、Cu含有量は6.0wt%以
下とする。 Znは高速域における切削性を改善し強度向上
に寄与する元素であり、また、Cuとの共存によ
り耐蝕性を改善するが、含有量が3.0wt%を越え
ると耐蝕性を著しく害するようになる。よつて、
Zn含有量は3.0wt%以下とする。 NiはAl―Ni系、Al―Cu―Ni系、Al―Fe―Ni系
等の金属間化合物を作つて切削性をよくするが、
含有量が3.0wt%を越える含有量では巨大な金属
問化合物を晶出し、工具寿命、表面仕上り性、ア
ルマイト性、耐蝕性を著しく害する。よつて、
Ni含有量は3.0wt%以下とする。 Cr、Zrは夫々Al―Cr系、Al―Zr系等の晶出物
を作つて切削性を向上させ、さらに、強度向上、
再結晶粒粗大化防止に効果があり、Cr、Zrの含
有量が夫々0.3wt%を越えると巨大な金属間化合
物を晶出して工具寿命、表面仕上り性、アルマイ
ト性、耐蝕性を害するようになる。よつて、Cr
含有量は0.3wt%以下、およびZr含有量は0.3wt%
以下とする。 Ti、Bは鋳塊の結晶粒を微細化して晶出物或
いは低融点金属を均一分散し、かつ、表面仕上り
性を改善する効果があり、Ti含有量が0.005wt%
未満およびB含有量が0.0001wt%未満ではこの効
果がなく、また、Ti含有量が0.3wt%およびB含
有量が0.1wt%を夫々越えて含有されるとAlとの
間に巨大な金属間化合物を晶出して工具寿命を短
かくする。よつて、Ti含有量は0.005〜0.3wt%、
B含有量は0.0001〜0.1wt%とする。 次に本発明に係る非熱処理型アルミニウム合金
の実施例を比較例と共に説明する。 実施例 第1表に示す含有成分および成分割合のアルミ
ニウム合金を常法に従つて溶解して155mmφのビ
レツトに鋳造した後、第1表の均熱処理条件にて
均熱処理した後、第1表の押出温度で押出し加工
を行なつて直径50mmφの丸棒とし、引続いて冷間
抽伸加工により直径41mmφの丸棒とした。 また、中間焼鈍の効果をみるためNo.1試料につ
いては1部直径60mmφの丸棒に押出し冷間抽伸加
工により直径50mmφとし、450℃×2Hrの中間焼
鈍後、さらに冷間抽伸加工により直径41mmφ丸棒
とする工程のものを作成した。 切削試験および硬度試験については、冷間抽伸
加工(H16)および450℃×2Hrの軟質焼鈍材につ
いて実施した。 第2表に切削性、硬度(ヴイツカース硬度計に
より測定)、切削面の表面状況を比較した結果を
示す。 切削性については自動旋盤にてすくい角10゜の
超硬工具を用いて、周速度150m/分および400
m/分、送り0.05〜0.20mm/revの各組合せにて
切込量2.0mmで切削し、その時に得られた切屑の
形状で判断した。第1図は切屑形状の等級を示す
基準であり、第1図aは切屑が細かく分断されて
切削性が最も優れている場合を示し、第1図eに
近ずくにつれて切屑が分断されずに連続するよう
になり、第1図dおよび第1図eは切屑が相当距
離連続していて実用上自動切削が困難な状態を示
している。 そして、この第2表より明らかであるが、本発
明に係る快削性の非熱処理型アルミニウム合金は
何れも切削性が極めて優れ、特に高速切削性と軟
質化焼鈍材の切削性が極めて優れており、5052相
当合金と同程度の硬度を有していることがわか
る。 この実施例からもわかるように、本発明に係る
非熱処理型アルミニウム合金は高速切削性に優
れ、特に軟質化焼鈍材の切削性が極めて優れてお
り、H34或いは軟質化焼鈍後に切削加工を行なう
光学部品、複写機ローラー、冷間鍛造―切削加工
等に広く使用することができる。
The present invention relates to a non-heat treatable aluminum alloy,
More specifically, the present invention relates to a non-heat-treated aluminum alloy that has extremely good machinability. Conventionally, aluminum alloys with excellent machinability contained Cu as the main element, with small amounts of Pb and
The 2011 alloy containing Bi and the 6262 alloy containing Mg 2 Si as a main component and small amounts of Pb and Bi are well known. All of these alloys are precipitation hardening alloys, and are aluminum alloys that have excellent machinability in the hardened state by quenching and tempering. In addition, free machinability is basically imparted to each alloy by containing low melting point metals such as Pb and Bi. However, the machinability in the annealed soft state is extremely poor. Since such heat-treated aluminum alloys undergo heat treatment of quenching and tempering, dimensional accuracy is poor when they are made into products such as tubes and rods, and residual stress during quenching causes parts to be cut from the material. There was a drawback that so-called cutting distortion was likely to occur, such as the lack of roundness. Therefore, recently, non-heat-treated free-cutting aluminum alloys with fewer dimensional accuracy problems have been put into practical use.In other words, non-heat-treated free-cutting aluminum alloys are made by adding small amounts of Pb and Sn to Al-Mg alloys. However, from the viewpoint of free-cutting mechanism, Pb-Sn
- Free machinability is provided by low melting point compounds such as Mg-Si. However, this Al--Mg-based non-heat-treatable aluminum alloy has difficulty in machinability at high speeds, and also has poor machinability in the annealed soft state. The present invention was made in view of the various drawbacks and problems of the conventional free-machining aluminum alloys explained above, and uses Pb-Sn low melting point metal, MnAl 6 , (MnFe) as a non-heat treatment type aluminum alloy.
The coexistence of one or two types of crystallized substances mainly composed of Al 6 and the presence of these in close proximity can maintain excellent free machinability, and compared to conventional Al-Mg The purpose of the present invention is to provide a non-heat-treatable aluminum alloy that has extremely excellent free-cutting properties in the high-speed range, unlike other free-cutting alloys. The features of the non-heat-treated free-cutting aluminum alloy according to the present invention are as follows: Mn0.3-1.7wt%, Fe0.2-1.5wt%, Pb0.2-1.
1.5wt%, Sn0.1~2.0wt%, Mg0.7wt% or less,
Contains 0.3 to 3.0wt% Si (excluding 0.3wt%), and contains one or two of Cu6.0wt% or less, Zn3.0wt% or less, and Ni3.0wt% or less, Contains one or more selected from Cr0.3wt% or less, Zr0.3wt% or less, and furthermore, Ti0.005 to 0.3wt%, B0.0001
-0.1 wt% of one or two types, and the remainder consists essentially of Al. The non-heat treatable aluminum alloy according to the present invention will be explained in detail below. First, the components and component ratios of the non-heat-treatable aluminum alloy according to the present invention will be explained. Mn is an element that improves strength and free machinability, and Mn produces Al-Mn system crystallized substances that impart free machinability, specifically crystallized substances such as MnAl 6 or (MnFe)Al 6 . It is an essential element for improving strength, and has the effect of improving strength, but if the content is less than 0.3wt%, this effect will be poor, and if the content exceeds 1.7wt%, Al-Mn-based giant compounds will be It crystallizes out as crystals, shortens tool life, improves surface finish,
Damages the alumite properties. Therefore, the Mn content is 0.3
~1.7wt%. Fe is an essential element that imparts free machinability, and (MnFe)
It has the effect of improving free machinability by producing Al6 crystallized products and Al-Fe crystallized products, and improves strength by making crystal grains finer.The higher the Fe content, the better. This effect is absent at less than 0.2wt%,
Furthermore, if the content exceeds 1.5wt%, giant compounds tend to form, which impairs tool life, surface finish, and alumite properties. Therefore, the Fe content is 0.2~
The content shall be 1.5wt%. Pb and Sn are elements that have a great effect on improving machinability, and the content is less than 0.2wt% Pb, 0.1wt% Sn
If it is less than %, there is no effect of improving machinability, and
If the Pb content exceeds 1.5 wt% and Sn content exceeds 2.0 wt%, corrosion resistance and alumite properties will be impaired. Afterwards,
Pb content is 0.2~1.5wt%, Sn content is 0.1~2.0wt
%. In addition to this Pb and Sn, 1.5wt of Bi
% is permissible. It is necessary to control the Mg content in order to exhibit the excellent machinability of free-cutting aluminum alloys, and when the content exceeds 0.7wt%, Mg has a large effect on improving machinability.Pb , combines with Sn to form compounds such as Mg 2 Pb and Mg 2 Sn, which significantly impairs machinability. Therefore, from the viewpoint of machinability, the Mg content is regulated to 0.7wt% or less. Si is an element that contributes to improving machinability, but if the content exceeds 3.0wt%, it will impair corrosion resistance, and if it is less than 0.3wt% (excluding 0.3wt%), the effect of improving machinability will be small. Since it is also normally contained as an impurity in an amount of 0.2 to 0.3 wt%, there is no need to particularly regulate it. Therefore, the Si content is 0.3 to 3.0wt%
(0.3wt% is not included). Cu is an element that has a remarkable effect on improving strength, but it impairs corrosion resistance. Therefore, depending on the balance between strength and corrosion resistance, the Cu content should be kept at 6.0wt% or less, and if it exceeds 6.0wt%. If it is contained, extrudability will be significantly impaired. Therefore, the Cu content should be 6.0wt% or less. Zn is an element that improves machinability at high speeds and contributes to increased strength, and also improves corrosion resistance when coexisting with Cu, but if the content exceeds 3.0wt%, corrosion resistance will be significantly impaired. . Then,
The Zn content shall be 3.0wt% or less. Ni improves machinability by forming intermetallic compounds such as Al-Ni, Al-Cu-Ni, and Al-Fe-Ni.
If the content exceeds 3.0 wt%, huge intermetallic compounds will crystallize, significantly impairing tool life, surface finish, alumite properties, and corrosion resistance. Then,
The Ni content shall be 3.0wt% or less. Cr and Zr create crystallized substances such as Al-Cr system and Al-Zr system, respectively, to improve machinability, and further improve strength and
It is effective in preventing coarsening of recrystallized grains, but if the content of Cr and Zr exceeds 0.3wt% each, huge intermetallic compounds will crystallize, impairing tool life, surface finish, alumite properties, and corrosion resistance. Become. By the way, Cr
The content is 0.3wt% or less, and the Zr content is 0.3wt%
The following shall apply. Ti and B have the effect of refining the crystal grains of the ingot, uniformly dispersing crystallized substances or low melting point metals, and improving the surface finish, and the Ti content is 0.005wt%.
If the Ti content is less than 0.0001wt% and the B content is less than 0.0001wt%, this effect will not be present, and if the Ti content exceeds 0.3wt% and the B content exceeds 0.1wt%, a huge intermetallic bond will form between the Al and Al. Crystallizes compounds and shortens tool life. Therefore, the Ti content is 0.005~0.3wt%,
The B content is 0.0001 to 0.1 wt%. Next, examples of non-heat treated aluminum alloys according to the present invention will be described together with comparative examples. Example An aluminum alloy having the components and proportions shown in Table 1 was melted in accordance with a conventional method and cast into a billet of 155 mmφ, and then soaked under the soaking conditions shown in Table 1. Extrusion processing was carried out at the extrusion temperature to obtain a round bar with a diameter of 50 mmφ, followed by cold drawing processing to produce a round bar with a diameter of 41 mmφ. In addition, in order to examine the effect of intermediate annealing, one part of the No. 1 sample was extruded into a round bar with a diameter of 60 mmφ, and then cold drawn to a diameter of 50 mmφ. After intermediate annealing at 450°C for 2 hours, it was further cold drawn to a diameter of 51 mmφ. I created a process to make it into a round bar. Cutting tests and hardness tests were conducted on cold drawn (H16) and soft annealed materials at 450°C for 2 hours. Table 2 shows the results of a comparison of machinability, hardness (measured using a Witzkers hardness meter), and surface condition of the cut surface. Regarding machinability, using a carbide tool with a rake angle of 10° on an automatic lathe, the peripheral speed was 150 m/min and 400 m/min.
Cutting was performed at a depth of cut of 2.0 mm using each combination of m/min and feed rate of 0.05 to 0.20 mm/rev, and judgment was made based on the shape of the chips obtained at that time. Figure 1 is a standard that shows the grade of chip shape. Figure 1a shows the case where the chip is finely divided and has the best machinability, and as it approaches Figure 1e, the chip is not divided and Figures 1 d and 1 e show a state in which the chips are continuous for a considerable distance, making automatic cutting difficult in practice. As is clear from Table 2, all of the free-machining, non-heat-treated aluminum alloys of the present invention have extremely excellent machinability, especially high-speed machinability and machinability of softened annealed materials. It can be seen that it has a hardness comparable to that of 5052 equivalent alloy. As can be seen from this example, the non-heat-treatable aluminum alloy according to the present invention has excellent high-speed machinability, particularly in machining softened annealed materials, and is suitable for H34 or optical cutting after softening annealing. Can be widely used for parts, copy machine rollers, cold forging - cutting, etc.

【表】【table】

【表】【table】

【表】 以上説明したように、本発明に係る非熱処理型
アルミニウム合金は上記の構成を有しているもの
であるから、MnAl6、(MnFe)Al6を主体とした
晶出物およびPb、Snの低融点金属の両者により
著しく良好な快削性を保持させることができ、高
速域における切削性に優れ、調質上からは加工硬
化状態だけでなく、特に焼鈍軟質状態での切削性
が極めて優れ、管、棒等の押出材或いは押出後抽
伸、鍛造等の塑性加工を行なつて使用する場合、
中間焼鈍後塑性加工を行なつて使用する場合、さ
らに、塑性加工後焼鈍軟質処理して使用する場合
の夫々の場合に、切削性が極めて優れているとい
う効果を奏するものである。
[Table] As explained above, since the non-heat-treatable aluminum alloy according to the present invention has the above-mentioned structure, it contains crystallized substances mainly composed of MnAl 6 and (MnFe)Al 6 and Pb, It is possible to maintain extremely good free machinability due to both the low melting point metal of Sn, and it has excellent machinability in the high speed range, and from the viewpoint of heat treatment, it has excellent machinability not only in the work hardened state but also in the annealed soft state. Extremely excellent, when used for extruded materials such as pipes and rods, or for plastic processing such as drawing and forging after extrusion.
When used after intermediate annealing and then subjected to plastic working, and when used after plastic working and then subjected to soft annealing treatment, the effect of extremely excellent machinability is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は切屑形状の等級を示す基準の概略図で
ある。
FIG. 1 is a schematic diagram of a standard indicating the grade of chip shape.

Claims (1)

【特許請求の範囲】 1 Mn0.3〜1.7wt%、Fe0.2〜1.5wt%、 Pb0.2〜1.5wt%、Sn0.1〜2.0wt%、 Mg0.7wt%以下、Si0.3〜3.0wt%(0.3wt%を
含まず) を含有し、かつ、 Cu6.0wt%以下、Zn3.0wt%以下 の1種または2種 を含有し、および、 Ni3.0wt%以下、Cr0.3wt%以下、 Zr0.3wt%以下 のうちから選んだ1種以上 を含有し、さらに、 Ti0.005〜0.3wt%、B0.0001〜0.1wt% の1種または2種 を含有し、残部実質的にA1からなることを特徴
とする非熱処理型快削アルミニウム合金。
[Claims] 1 Mn0.3-1.7wt%, Fe0.2-1.5wt%, Pb0.2-1.5wt%, Sn0.1-2.0wt%, Mg0.7wt% or less, Si0.3-3.0 wt% (excluding 0.3wt%), and contains one or both of Cu6.0wt% or less, Zn3.0wt% or less, and Ni3.0wt% or less, Cr0.3wt% or less , Zr0.3wt% or less, and further contains one or two of Ti0.005~0.3wt%, B0.0001~0.1wt%, and the remainder is substantially A1. A non-heat-treated free-cutting aluminum alloy characterized by comprising:
JP13154083A 1983-07-19 1983-07-19 Free-cutting aluminum alloy requiring no heat treatment Granted JPS6024340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13154083A JPS6024340A (en) 1983-07-19 1983-07-19 Free-cutting aluminum alloy requiring no heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13154083A JPS6024340A (en) 1983-07-19 1983-07-19 Free-cutting aluminum alloy requiring no heat treatment

Publications (2)

Publication Number Publication Date
JPS6024340A JPS6024340A (en) 1985-02-07
JPS6210290B2 true JPS6210290B2 (en) 1987-03-05

Family

ID=15060462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13154083A Granted JPS6024340A (en) 1983-07-19 1983-07-19 Free-cutting aluminum alloy requiring no heat treatment

Country Status (1)

Country Link
JP (1) JPS6024340A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166253A (en) * 1988-12-21 1990-06-26 Nippon Light Metal Co Ltd Al-mg2si free-cutting alloy excellent in tool life
KR20020076092A (en) * 2001-03-27 2002-10-09 보원경금속(주) Welding method of high content silicon aluminum alloy material using flywheel friction welding method
KR101158081B1 (en) * 2009-09-15 2012-06-22 캐스텍 주식회사 A Fan blade for Desulfurizing System
CN106756339A (en) * 2016-12-19 2017-05-31 苏州金威特工具有限公司 A kind of aluminium alloy

Also Published As

Publication number Publication date
JPS6024340A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
JP3544669B2 (en) Lead-free 6XXX aluminum alloy and manufacturing method
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP3886270B2 (en) High corrosion resistance aluminum alloy with excellent machinability
JP3982849B2 (en) Aluminum alloy for forging
JPH0557348B2 (en)
JPS6210290B2 (en)
JPH07145440A (en) Aluminum alloy forging stock
JP4138151B2 (en) Aluminum alloy with excellent machinability and fire cracking resistance
JPS6227147B2 (en)
JPS6123751A (en) Manufacture of al-li alloy having superior ductility and toughness
JPS60138038A (en) Aluminum alloy having superior wear resistance and machinability
US2076571A (en) Free cutting alloys
JPS61119643A (en) Free-cutting aluminum alloy and its production
JPS649388B2 (en)
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JPH08199276A (en) Aluminum alloy for cold forging
JP3453607B2 (en) High-strength aluminum alloy extruded material with excellent chip breaking performance
JPS6055584B2 (en) Non-heat-treated free-cutting aluminum alloy and its manufacturing method
JPH07197163A (en) Aluminum alloy for cold forging
JPS63312945A (en) Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production
JPH04120236A (en) Aluminum free cutting alloy excellent in plastic workability and its manufacture
JPH02285042A (en) Forging aluminum alloy
JPH0347938A (en) Non-heat treated type high strength aluminum alloy for machining
JPH07138688A (en) Aluminum alloy forged member