JP4138151B2 - Aluminum alloy with excellent machinability and fire cracking resistance - Google Patents
Aluminum alloy with excellent machinability and fire cracking resistance Download PDFInfo
- Publication number
- JP4138151B2 JP4138151B2 JP14122699A JP14122699A JP4138151B2 JP 4138151 B2 JP4138151 B2 JP 4138151B2 JP 14122699 A JP14122699 A JP 14122699A JP 14122699 A JP14122699 A JP 14122699A JP 4138151 B2 JP4138151 B2 JP 4138151B2
- Authority
- JP
- Japan
- Prior art keywords
- machinability
- aluminum alloy
- cracking resistance
- fire cracking
- extrudability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
- Extrusion Of Metal (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、切削性および耐焼割れ性に優れたアルミニウム合金、詳しくは、公害問題を生じるおそれのあるPbを含有せず、とくに押出材および引抜き材として使用するのに適した切削性および耐焼割れ性に優れたアルミニウム合金に関する。
【0002】
【従来の技術】
切削用アルミニウム合金としては、従来、Al−Cu系の2011合金が知られているが、この合金においては、切削性を向上させるために、低融点元素の鉛(Pb)やビスマス(Bi)が添加されている。近年、Pbによる公害問題が採り上げられており、地球環境の観点から、有害物質のPbを含有しない切削用アルミニウム合金の開発が要請されるようになってきている。
【0003】
このような要請から、Pbの代わりにSnを使用し、SnとBiとを組合わせて添加したアルミニウム合金が提案されている(アメリカ特許第5803994号)。しかしながら、このアルミニウム合金は、従来の2011合金より若干切削性が劣り、自動切削機による無人運転での切削を実施した際、切り屑が排出されず、自動切削機の停止に至ることがある。さらに、このアルミニウム合金は、製造工程中の焼入れの際、焼き割れが発生し易く、生産性の面でも2011合金より劣っている。
【0004】
【発明が解決しようとする課題】
本発明は、上述の切削用Al−Cu系アルミニウム合金における従来の問題点を解消するためになされたものであり、その目的は、Pbを含有することなく、従来の2011合金と同等以上の切削性および押出性を有し、同時に耐焼割れ性を向上させた切削性および耐焼割れ性に優れたアルミニウム合金を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1記載の切削性および耐焼割れ性に優れたアルミニウム合金は、Cu:4.0〜6.0%を含有し、条件式:3.0%>Sn%+Bi%>1.0%、且つ2.35≧Sn%/Bi%≧1.5を満足するSn量およびBi量を含有し、残部がAlおよび不純物からなり、不純物としてのPbを0.05%以下に規制したことを特徴とする。
【0006】
本発明の請求項2記載の切削性および耐焼割れ性に優れたアルミニウム合金は、請求項1記載のアルミニウム合金に、さらにIn:0.01〜0.5%を含有することを特徴とし、請求項3記載の切削性および耐焼割れ性に優れたアルミニウム合金は、請求項1又は2記載のアルミニウム合金に、さらにMg:0.1〜2.0%、Si:0.1〜1.2%のうちの1種または2種を含有することを特徴とする。
【0007】
また、本発明の請求項4記載の切削性および耐焼割れ性に優れたアルミニウム合金は、請求項1〜3記載のアルミニウム合金に、さらにMn:0.1〜2.0%、Cr:0.1〜0.3%、Fe:0.1〜0.8%、Ti:0.01〜0.2%、Zr:0.1〜0.3%、Ni:0.05〜2.3%、V:0.001〜0.2%のうちの1種又は2種以上を含有することを特徴とする。
【0008】
【発明の実施の形態】
本発明の切削性および耐焼割れ性に優れたアルミニウム合金における合金成分の意義およびその限定理由について説明すると、アルミニウム合金中のCuは、合金マトリックス中に固溶あるいは析出することによって強度を向上させ、切削性を向上させるように機能する。Cuの好ましい含有量は4.0〜6.0%の範囲であり、4.0%未満でその効果が小さく、6.0%を越えると押出性が低下する。Cuのさらに好ましい含有範囲は4.5〜5.7%である。
【0009】
Snは、Biと共存することによってSnとBiとの低融点化合物を形成し、切削性を向上させるように機能する。BiもSnと同様に、SnとBiとの低融点化合物を形成し、切削性を向上させるように機能する。SnおよびBiの好ましい含有範囲は、3.0%>Sn%+Bi%>1.0%の条件式を満足するSn量及びBi量である。Sn%+Bi%≦1.0%ではその効果が少なく、Sn%+Bi%≧3.0%では押出材に欠陥が生じ易くなる。
【0010】
さらに、SnとBiとの好ましい含有比率は、2.35≧Sn%/Bi%≧1.5である。含有比率がSn%/Bi%<1.5では、製造工程の焼入れ時に割れが生じ易くなる。含有比率がSn%/Bi%>2.35では、Snが単体で晶出し易くなり、焼入れ時に割れが生じ易くなることがある。Snの好ましい含有範囲は0.5〜2.2%であり、Biの好ましい含有範囲は0.3〜1.2%である。また、SnとBiとのさらに好ましい含有比率は2.2≧Sn%/Bi%≧1.5である。
【0011】
Inは、SnおよびBiと共存することによって、Sn−Bi−Inの低融点化合物を形成し、切削性を向上させるよう機能する。Inの好ましい含有範囲は0.01〜0.5%であり、0.01%未満ではその効果が十分でなく、0.5%を越えると製造工程の焼入れ時に割れが生じ易く、また、押出材に欠陥が生じ易くなる。Inのさらに好ましい含有範囲は0.01〜0.3%である。
【0012】
Mgは、Siおよび/またはCuと共存することによって、強度及び切削性を向上させるよう機能する。Mgの好ましい含有量は0.1〜2.0%の範囲であり、0.1%未満ではその効果が小さく、2.0%を越えると押出性が低下する。Mgのさらに好ましい含有範囲は0.1〜1.5%である。
【0013】
Siは、強度および切削性の向上に寄与し、特にMgと共存することにより、Mg2 Siを生成して強度を高め、さらに共晶Siを分散させることにより、切削性を向上させるよう機能する。Siの好ましい含有範囲は0.1〜1.2%であり、0.1%未満ではその効果が十分でなく、1.2%を越えると押出性や切削工具寿命が低下する。Siのさらに好ましい含有範囲は0.1〜0.9%である。
【0014】
Mnは、Al−Mn系およびAl−Mn−Fe−Si系の化合物粒子を析出して、再結晶粒を微細化し、切削性および耐焼割れ性を向上させるよう機能する。Mnの好ましい含有範囲は0.1〜2.0%であり、0.1%未満ではその効果が十分でなく、2.0%を越えると押出性が低下する。Mnのさらに好ましい含有範囲は0.1〜0.3%である。
【0015】
Crは、再結晶粒の微細化に寄与し、切削性および耐焼割れ性を向上させるよう機能する。Crの好ましい含有範囲は0.1〜0.3%であり、0.1%未満ではその効果が小さく、0.3%を越えると粗大晶出物の晶出により押出材に欠陥が生じ易くなる。Crのさらに好ましい含有範囲は0.1〜0.2%である。
【0016】
Feは切削性を高める。とくにMnと共存した場合、Al−Mn−Fe−Si系の化合物粒子を析出し、再結晶粒を微細化し、切削性を向上させるよう機能する。Feの好ましい含有範囲は0.1〜0.8%であり、0.1%未満ではその効果が小さく、0.8%を越えると粗大化合物の晶出により、押出材に欠陥が生じ易くなる。Feのさらに好ましい含有範囲は0.1〜0.5%である。
【0017】
Tiは、鋳造組織を微細化し、微細な晶出物を形成して切削性を向上させるよう機能する。Tiの好ましい含有範囲は0.01〜0.2%であり、0.01%未満ではその効果が小さく、0.2%を越えると粗大化合物の晶出により、押出材に欠陥が生じ易くなる。Tiのさらに好ましい含有範囲は0.01〜0.1%である。
【0018】
Zrは、Crと同様、再結晶粒の微細化に寄与し、切削性を向上させるよう機能する。Zrの好ましい含有範囲は0.1〜0.3%であり、0.1%未満ではその効果が小さく、0.3%を越えると粗大化合物の晶出により、押出材に欠陥が生じ易くなる。Zrのさらに好ましい含有範囲は、0.1〜0.2%である。
【0019】
Niは、Ni系の析出物を析出させ、強度および切削性を向上させるよう機能する。Niの好ましい含有範囲は0.05〜2.3%であり、0.05%未満ではその効果が小さく、2.3%を越えると切削性を低下させる。Niのさらに好ましい含有範囲は0.5〜1.2%である。
【0020】
Vは、再結晶組織を微細化し、切削性および耐焼割れ性を向上させるよう機能する。Vの好ましい含有範囲は0.001〜0.2%であり、0.001%未満ではその効果が少なく、0.2%を越えると押出材に表面欠陥を生じ易い。
【0021】
本発明のアルミニウム合金は、例えば、連続鋳造により上記の組成を有するアルミニウム合金ビレットを造塊し、均質化処理した後、押出加工を行い、得られた押出材を、溶体化処理後、水焼入れし、その後、引き抜き加工してT3処理材として使用する。その後更に人工時効処理してT8処理材として使用することもできる。
【0022】
【実施例】
以下、本発明の実施例を比較例と対比して説明すると共に、それに基づいてその効果を実証する。なお、これらの実施例は、本発明の好ましい一実施態様を説明するためのものであって、これにより本発明が制限されることはない。
【0023】
実施例1
連続鋳造により、表1に示す成分組成(No.1〜13に示す組成)を有するアルミニウム合金ビレット(直径90mm)を造塊し、均質化処理を施した後、押出加工を行って、直径27mmの押出棒および厚さ7mm、幅35mmの押出形材をそれぞれ作製する。得られた厚さ7mm、幅35mmの押出形材の表面観察により押出性を評価した。
【0024】
また、直径27mmの各押出棒を520℃の温度で1.5時間溶体化処理した後、水焼入れを行った。この水焼入れの結果から耐焼割れ性の評価を行った。さらに、直径25mmまで引き抜き加工してT3処理材を作製した。その後、さらに170℃で4時間の人工時効処理を行ってT8処理材を作製し、得られた各T3処理材及び各T8処理材について切削性を評価した。耐焼割れ性、切削性および押出性の評価は以下のようにして行った。
【0025】
(1)耐焼割れ性
各押出材を520℃の温度で1.5時間保持後、水冷し各押出材の割れの有無を観察することで、耐焼割れ性を評価する。
(評価基準)
○:割れ無し
×:割れ有り
【0026】
(2)切削性
各T3処理材および各T8処理材から採取した試験片について、下記条件で旋盤による外削を行い、外削する過程で排出された切削屑100個あたりの重量(g/100個)を測定することにより切削性を評価する。
切削工具:超硬バイト(片刃、バイト角5度)
回転数 :1000rpm
送り速度:54mm/分
(評価基準)
○:2.0g未満
△:2.0g以上3.0g未満
×:3.0g以上
【0027】
(3)押出性
押出温度:400℃、押出速度:1m/分で、上記の厚さ7mm、幅35mmの形状に押出した場合における押出形材の表面欠陥の発生を観察し、押出性を評価する。
○:表面欠陥無し
×:表面欠陥有り
以上の評価結果を表1に示す。
【0028】
【表1】
《表注》※1: Mn0.2 %、Cr0.15% ※2: Fe0.5 % ※3: Ti0.1 %※4: Zr0.15% ※5: Ni1.1 % ※6: V0.05%
【0029】
表1にみられるように、本発明の条件を満たす実施例1の試験材(No.1〜13)は、いずれも、耐焼割れ性、切削性および押出性の評価が全て○であり、従来の合金以上の耐焼割れ性が得られ、2011合金と同等若しくはそれ以上の切削性および押出性をそなえている。
【0030】
比較例1
連続鋳造により、表2に示す成分組成(No.14〜30に示す組成)を有するアルミニウム合金ビレット(直径90mm)を造塊し、実施例1と同一工程で、各押出形材、各T3処理材及び各T8処理材を作製し、これらを試験材として、実施例1と同様に耐焼割れ性、切削性および押出性を評価した。評価結果を表2に示す。なお、表2において、本発明の条件を外れたものには下線を付した。
【0031】
【表2】
《表注》※7: Mn2.2 % ※8: Fe0.9 % ※9: Ti0.3 %
※10: Zr0.4 % ※11: Cr0.4 % ※12: Ni2.4 % ※13: V0.4 %
【0032】
表2に示すように、本発明の条件を満たさない比較例1の試験材No.14〜30は、耐焼割れ性、切削性、押出性のいずれかが劣っている。試験材No.14はCu量が少ないため強度が低く、そのために切削性が劣る。試験材No.15は逆にCu量が多いため押出性が劣る。試験材No.16はSn量+Bi量が少ないことにより切削性が劣る。試験材No.17は逆にSn量+Bi量が多いため押出性が悪い。試験材No.18、19はSn量とBi量の含有比率の条件式を満たさないため耐焼割れ性が劣る。
【0033】
試験材No.20はIn量が多いため耐焼割れ性、押出性が劣る。試験材No.21はMg量が多いため、試験材No.22はSi量が多いため、いずれも押出性が劣っている。また、試験材No.23はMn量が多く、試験材No.24はFe量が多く、試験材No.25はTi量が多く、試験材No.26はZr量が多いため、押出性が劣る。
【0034】
試験材No.27はCr量が多いため押出性が劣り、試験材No.28はNi量が多いため切削性が低下している。また、試験材No.29はV量が多いため、押出に問題がある。また、試験材No.30は耐焼割れ性、切削性、押出性ともに良好であるが、有害物質のPbを含有するため、公害発生源となる恐れがあり、実用上問題がある。
【0035】
【発明の効果】
本発明によれば、公害源となるPbを含有せず、従って、Pbによる環境汚染を生じる恐れがなく、且つ優れた切削性、耐焼割れ性を備えたアルミニウム合金が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy excellent in machinability and fire cracking resistance, and in particular, does not contain Pb which may cause pollution problems, and is particularly suitable for use as an extruded material and a drawing material. The present invention relates to an aluminum alloy having excellent properties.
[0002]
[Prior art]
As an aluminum alloy for cutting, Al-Cu-based 2011 alloy is conventionally known. In this alloy, low melting point elements such as lead (Pb) and bismuth (Bi) are used in order to improve machinability. It has been added. In recent years, pollution problems due to Pb have been raised, and from the viewpoint of the global environment, the development of cutting aluminum alloys that do not contain the harmful substance Pb has been demanded.
[0003]
From such a demand, an aluminum alloy in which Sn is used instead of Pb and Sn and Bi are added in combination has been proposed (US Pat. No. 5,803,994). However, this aluminum alloy is slightly inferior to the conventional 2011 alloy, and when an unattended operation is performed by an automatic cutting machine, chips are not discharged and the automatic cutting machine may be stopped. Further, this aluminum alloy is easily cracked during quenching during the manufacturing process, and is inferior to the 2011 alloy in terms of productivity.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the conventional problems in the above-described Al-Cu-based aluminum alloy for cutting, and its purpose is to cut at least as much as the conventional 2011 alloy without containing Pb. It is an object of the present invention to provide an aluminum alloy excellent in machinability and fire cracking resistance, which has excellent properties and extrudability, and at the same time has improved fire crack resistance.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the aluminum alloy excellent in machinability and fire cracking resistance according to claim 1 of the present invention contains Cu: 4.0 to 6.0%, and conditional expression: 3.0% > Sn% + Bi%> 1.0%, and Sn amount and Bi amount satisfying 2.35 ≧ Sn% / Bi% ≧ 1.5 are contained, the balance is made of Al and impurities, and Pb as impurities is It is characterized by being restricted to 0.05% or less.
[0006]
The aluminum alloy excellent in machinability and fire cracking resistance according to claim 2 of the present invention is characterized in that the aluminum alloy according to claim 1 further contains In: 0.01 to 0.5%. The aluminum alloy excellent in machinability and fire cracking resistance according to Item 3 is further added to the aluminum alloy according to Claim 1 or 2, Mg: 0.1 to 2.0%, Si: 0.1 to 1.2% It contains 1 type or 2 types of these, It is characterized by the above-mentioned.
[0007]
In addition, the aluminum alloy having excellent machinability and fire cracking resistance according to claim 4 of the present invention is the same as the aluminum alloy according to claims 1 to 3, further Mn: 0.1 to 2.0%, Cr: 0.00. 1 to 0.3%, Fe: 0.1 to 0.8%, Ti: 0.01 to 0.2%, Zr: 0.1 to 0.3%, Ni: 0.05 to 2.3% V: One or two or more of 0.001 to 0.2% are contained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Explaining the significance of the alloy component in the aluminum alloy excellent in machinability and fire cracking resistance of the present invention and the reason for its limitation, Cu in the aluminum alloy improves the strength by solid solution or precipitation in the alloy matrix, It functions to improve machinability. The preferable content of Cu is in the range of 4.0 to 6.0%. When the content is less than 4.0%, the effect is small. When the content exceeds 6.0%, the extrudability is lowered. The more preferable content range of Cu is 4.5 to 5.7%.
[0009]
Sn functions together with Bi to form a low melting point compound of Sn and Bi and improve machinability. Bi, similarly to Sn, functions to form a low melting point compound of Sn and Bi and improve machinability. A preferable content range of Sn and Bi is an Sn amount and a Bi amount satisfying a conditional expression of 3.0%> Sn% + Bi%> 1.0%. If Sn% + Bi% ≦ 1.0%, the effect is small, and if Sn% + Bi% ≧ 3.0%, a defect tends to occur in the extruded material.
[0010]
Furthermore, the preferable content ratio of Sn and Bi is 2.35 ≧ Sn% / Bi% ≧ 1.5. When the content ratio is Sn% / Bi% <1.5, cracks are likely to occur during quenching in the manufacturing process. When the content ratio is Sn% / Bi%> 2.35, Sn is easily crystallized as a single substance, and cracks are likely to occur during quenching. The preferable content range of Sn is 0.5 to 2.2%, and the preferable content range of Bi is 0.3 to 1.2%. A more preferable content ratio of Sn and Bi is 2.2 ≧ Sn% / Bi% ≧ 1.5.
[0011]
In functions together with Sn and Bi to form a low melting point compound of Sn—Bi—In and improve machinability. The preferable content range of In is 0.01 to 0.5%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.5%, cracks are likely to occur during quenching in the production process. Defects are likely to occur in the material. A more preferable content range of In is 0.01 to 0.3%.
[0012]
Mg functions to improve strength and machinability by coexisting with Si and / or Cu. The preferable content of Mg is in the range of 0.1 to 2.0%. If the content is less than 0.1%, the effect is small, and if it exceeds 2.0%, the extrudability decreases. A more preferable content range of Mg is 0.1 to 1.5%.
[0013]
Si contributes to the improvement of strength and machinability, and in particular, coexists with Mg, thereby generating Mg 2 Si to increase the strength and further functioning to improve the machinability by dispersing eutectic Si. . The preferable content range of Si is 0.1 to 1.2%. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 1.2%, the extrudability and the cutting tool life are lowered. A more preferable content range of Si is 0.1 to 0.9%.
[0014]
Mn functions to precipitate Al—Mn-based and Al—Mn—Fe—Si-based compound particles, refine the recrystallized grains, and improve machinability and fire cracking resistance. The preferable content range of Mn is 0.1 to 2.0%. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 2.0%, the extrudability is lowered. A more preferable content range of Mn is 0.1 to 0.3%.
[0015]
Cr contributes to refinement of recrystallized grains and functions to improve machinability and fire cracking resistance. The preferable Cr content range is 0.1 to 0.3%. If the content is less than 0.1%, the effect is small, and if it exceeds 0.3%, defects are likely to occur in the extruded material due to crystallization of coarse crystals. Become. The more preferable content range of Cr is 0.1 to 0.2%.
[0016]
Fe increases machinability. In particular, when coexisting with Mn, it functions to precipitate Al—Mn—Fe—Si based compound particles, refine recrystallized grains, and improve machinability. Fe is preferably contained in a range of 0.1 to 0.8%. If the content is less than 0.1%, the effect is small, and if it exceeds 0.8%, defects are likely to occur in the extruded material due to crystallization of the coarse compound. . The more preferable content range of Fe is 0.1 to 0.5%.
[0017]
Ti functions to refine the cast structure and form fine crystals to improve the machinability. The preferable content range of Ti is 0.01 to 0.2%. If the content is less than 0.01%, the effect is small. If the content exceeds 0.2%, defects in the extruded material easily occur due to crystallization of the coarse compound. . A more preferable content range of Ti is 0.01 to 0.1%.
[0018]
Zr, like Cr, contributes to refinement of recrystallized grains and functions to improve machinability. The preferable content range of Zr is 0.1 to 0.3%, and if it is less than 0.1%, the effect is small, and if it exceeds 0.3%, the extrusion material is likely to be defective due to crystallization of the coarse compound. . A more preferable content range of Zr is 0.1 to 0.2%.
[0019]
Ni functions to precipitate Ni-based precipitates and improve strength and machinability. The preferable content range of Ni is 0.05 to 2.3%, and if it is less than 0.05%, the effect is small, and if it exceeds 2.3%, the machinability is lowered. A more preferable content range of Ni is 0.5 to 1.2%.
[0020]
V functions to refine the recrystallized structure and improve machinability and fire cracking resistance. The preferable content range of V is 0.001 to 0.2%. If it is less than 0.001%, the effect is small, and if it exceeds 0.2%, surface defects are likely to occur in the extruded material.
[0021]
The aluminum alloy of the present invention is formed by, for example, agglomerating an aluminum alloy billet having the above composition by continuous casting, homogenizing, then extruding, and subjecting the obtained extruded material to solution quenching and water quenching. Then, it is drawn and used as a T3 treatment material. Thereafter, it can be further used as a T8 treated material by artificial aging treatment.
[0022]
【Example】
Examples of the present invention will be described below in comparison with comparative examples, and the effects will be demonstrated based on the examples. These examples are for explaining a preferred embodiment of the present invention, and the present invention is not limited thereby.
[0023]
Example 1
By continuous casting, an aluminum alloy billet (diameter 90 mm) having the component composition shown in Table 1 (compositions shown in Nos. 1 to 13) is ingoted, homogenized, and then subjected to extrusion to obtain a diameter of 27 mm. Extruded rods and extruded sections having a thickness of 7 mm and a width of 35 mm are prepared. Extrudability was evaluated by observing the surface of the obtained extruded profile having a thickness of 7 mm and a width of 35 mm.
[0024]
In addition, each extruded rod having a diameter of 27 mm was subjected to a solution treatment at a temperature of 520 ° C. for 1.5 hours, followed by water quenching. The quench crack resistance was evaluated from the result of this water quenching. Further, a T3 treated material was produced by drawing to a diameter of 25 mm. Thereafter, an artificial aging treatment was further performed at 170 ° C. for 4 hours to produce a T8 treated material, and the machinability of each obtained T3 treated material and each T8 treated material was evaluated. Evaluation of fire cracking resistance, machinability and extrudability was performed as follows.
[0025]
(1) Fire cracking resistance Each extruded material is held at a temperature of 520 ° C. for 1.5 hours, then cooled with water, and the presence or absence of cracks in each extruded material is observed to evaluate the fire cracking resistance.
(Evaluation criteria)
○: No crack ×: There is a crack [0026]
(2) Machinability The test piece collected from each T3 treated material and each T8 treated material was subjected to external cutting with a lathe under the following conditions, and the weight per 100 chips (g / 100) discharged during the external cutting process. The machinability is evaluated by measuring
Cutting tool: Carbide tool (single edge, tool angle 5 degrees)
Rotation speed: 1000rpm
Feed rate: 54 mm / min (evaluation criteria)
○: Less than 2.0 g Δ: 2.0 g or more and less than 3.0 g x: 3.0 g or more
(3) Extrudability Extrusion temperature: 400 ° C., extrusion speed: 1 m / min, observed for occurrence of surface defects in extruded shape when extruded into 7 mm thickness and 35 mm width, and evaluate extrudability To do.
○: No surface defect x: Table 1 shows the evaluation results of surface defects.
[0028]
[Table 1]
<Table Note> * 1: Mn 0.2%, Cr 0.15% * 2: Fe 0.5% * 3: Ti 0.1% * 4: Zr0.15% * 5: Ni1.1% * 6: V0.05 %
[0029]
As can be seen from Table 1, all of the test materials (Nos. 1 to 13) of Example 1 that satisfy the conditions of the present invention are all evaluated as being good in cracking resistance, machinability and extrudability. It has a crack resistance higher than that of the above alloy, and has machinability and extrudability equivalent to or higher than those of the 2011 alloy.
[0030]
Comparative Example 1
By continuous casting, aluminum alloy billets (90 mm in diameter) having the component compositions shown in Table 2 (compositions shown in Nos. 14 to 30) are ingoted, and in the same process as in Example 1, each extruded shape and each T3 treatment Materials and T8 treated materials were prepared, and these were used as test materials to evaluate the fire cracking resistance, machinability and extrudability in the same manner as in Example 1. The evaluation results are shown in Table 2. In Table 2, those outside the conditions of the present invention are underlined.
[0031]
[Table 2]
<Table Note> * 7: Mn 2.2% * 8: Fe 0.9% * 9: Ti 0.3%
* 10: Zr0.4% * 11: Cr0.4% * 12: Ni2.4% * 13: V0.4%
[0032]
As shown in Table 2, test material No. 1 of Comparative Example 1 that does not satisfy the conditions of the present invention. 14-30 are inferior in any of fire cracking resistance, machinability, and extrudability. Test material No. No. 14 has a low strength because the amount of Cu is small, and therefore the machinability is inferior. Test material No. On the other hand, since the amount of Cu is large, the extrudability is inferior. Test material No. No. 16 has inferior machinability due to the small amount of Sn + Bi. Test material No. On the contrary, No. 17 has a high Sn amount + Bi amount, and therefore has poor extrudability. Test material No. Since 18 and 19 do not satisfy the conditional expression of the content ratio of Sn content and Bi content, the fire cracking resistance is inferior.
[0033]
Test material No. 20 is inferior in fire cracking resistance and extrudability due to the large amount of In. Test material No. No. 21 has a large amount of Mg. Since No. 22 has a large amount of Si, both have poor extrudability. In addition, test material No. No. 23 has a large amount of Mn. No. 24 has a large amount of Fe. No. 25 has a large amount of Ti. Since No. 26 has a large amount of Zr, the extrudability is inferior.
[0034]
Test material No. Since No. 27 has a large amount of Cr, its extrudability is inferior. Since No. 28 has a large amount of Ni, the machinability is lowered. In addition, test material No. No. 29 has a problem in extrusion because of the large amount of V. In addition, test material No. No. 30 has good fire cracking resistance, machinability and extrudability, but contains Pb which is a harmful substance, which may be a source of pollution and has practical problems.
[0035]
【The invention's effect】
According to the present invention, there is provided an aluminum alloy that does not contain Pb as a pollution source, and therefore has no fear of causing environmental pollution due to Pb, and has excellent machinability and fire cracking resistance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14122699A JP4138151B2 (en) | 1999-05-21 | 1999-05-21 | Aluminum alloy with excellent machinability and fire cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14122699A JP4138151B2 (en) | 1999-05-21 | 1999-05-21 | Aluminum alloy with excellent machinability and fire cracking resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000328168A JP2000328168A (en) | 2000-11-28 |
JP4138151B2 true JP4138151B2 (en) | 2008-08-20 |
Family
ID=15287061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14122699A Expired - Fee Related JP4138151B2 (en) | 1999-05-21 | 1999-05-21 | Aluminum alloy with excellent machinability and fire cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4138151B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4707075B2 (en) * | 1999-12-21 | 2011-06-22 | 株式会社神戸製鋼所 | Aluminum alloy with excellent machinability |
DE60310298T2 (en) | 2002-04-25 | 2007-03-29 | Furukawa-Sky Aluminum Corp. | Aluminum alloy with good cuttability, a method of making a forged article, and the forged article |
JP4693028B2 (en) * | 2004-09-10 | 2011-06-01 | 株式会社住軽テクノ | Manufacturing method of aluminum alloy material with excellent machinability |
BR112014000743B1 (en) | 2011-07-14 | 2020-06-02 | Nippon Steel Corporation | GALVANIZED STEEL SHEET WITH ALUMINUM WITH RESISTANCE TO CORROSION WITH REGARD TO ALCOHOL OR MIXED GASOLINE OF THE SAME, METHOD OF PRODUCTION OF THE SAME, AND FUEL TANK |
CN103667828A (en) * | 2013-11-14 | 2014-03-26 | 殷定江 | Aluminum alloy using waste aluminum as raw material |
CN110358954B (en) * | 2019-06-24 | 2021-06-08 | 广东省材料与加工研究所 | Green and environment-friendly free-cutting aluminum-copper alloy and preparation method thereof |
CN113528889B (en) * | 2021-07-15 | 2022-01-18 | 安徽工业大学 | Bismuth-titanium-manganese-selenium alloy for environment-friendly bismuth-containing free-cutting steel and preparation method thereof |
-
1999
- 1999-05-21 JP JP14122699A patent/JP4138151B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000328168A (en) | 2000-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3335732B2 (en) | Hypoeutectic Al-Si alloy and casting method thereof | |
JPH07109536A (en) | Aluminum alloy for forging and heat treatment therefor | |
JP2007100137A (en) | Free-cutting aluminum alloy superior in high-temperature embrittlement resistance | |
JP4138151B2 (en) | Aluminum alloy with excellent machinability and fire cracking resistance | |
JP3909543B2 (en) | Aluminum alloy extruded material with excellent axial crushing properties | |
JPS61163233A (en) | Non-heat treatment type free-cutting aluminum alloy | |
JP4693028B2 (en) | Manufacturing method of aluminum alloy material with excellent machinability | |
KR101499096B1 (en) | Aluminum alloy and manufacturing method thereof | |
JPH07145440A (en) | Aluminum alloy forging stock | |
EP0846781B1 (en) | Process of forming an aluminium sheet with excellent high speed superplastic formability | |
JPH055146A (en) | Aluminum alloy excellent in wear resistance and thermal conductivity | |
JPH04323343A (en) | Aluminum alloy excellent in wear resistance | |
JP2000234135A (en) | High strength aluminum alloy excellent in machinability | |
JP4017105B2 (en) | Aluminum alloy cast bar with excellent machinability and hot workability | |
JP3379901B2 (en) | Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same | |
JPS59193236A (en) | Free cutting aluminum alloy and preparation thereof | |
JP2008266719A (en) | Extruded material of free-cutting aluminum alloy | |
JP5007708B2 (en) | Free-cutting aluminum alloy | |
JPH11140575A (en) | Aluminum alloy excellent in machinability and corrosion resistance | |
JPS6210290B2 (en) | ||
JPS6158546B2 (en) | ||
JPH07197163A (en) | Aluminum alloy for cold forging | |
JP3876499B2 (en) | Aluminum alloy photoconductor substrate tube | |
JPH0270037A (en) | Wear-resistant aluminum alloy material | |
JP4799877B2 (en) | Aluminum alloy excellent in strength and machinability and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080605 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |