JPH07197152A - Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production - Google Patents
Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its productionInfo
- Publication number
- JPH07197152A JPH07197152A JP35255793A JP35255793A JPH07197152A JP H07197152 A JPH07197152 A JP H07197152A JP 35255793 A JP35255793 A JP 35255793A JP 35255793 A JP35255793 A JP 35255793A JP H07197152 A JPH07197152 A JP H07197152A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- hot
- copper
- phase
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、銅基合金素材(鋳塊,
押出材,抽伸材)を熱間押出又は熱間鍛造してなる耐蝕
性に優れた銅基合金製熱間押出・鍛造材造材及びこれを
製造するための方法に関するものである。The present invention relates to a copper-based alloy material (ingot,
TECHNICAL FIELD The present invention relates to a hot extrusion / forging material made of a copper-based alloy having excellent corrosion resistance, which is obtained by hot extrusion or hot forging of an extruded material and a drawn material, and a method for producing the same.
【0002】[0002]
【発明の背景】鍛造用銅基合金としては、一般に、JI
S C3771が用いられているが、近時、銅基合金製
品を耐蝕性を必要とする分野にも使用させたいといった
要請から、耐蝕性を高めるために錫,鉛を添加した鉛入
りネーバル黄銅(CDA C48200,CDA C4
8500)等も多用される傾向にある。しかし、これら
は、熱間鍛造性等の熱間加工性には優れるものの、充分
な耐蝕性を有するものではなく、例えば温水,汚染水,
海水等に接した場合、脱亜鉛腐食が発生し易く、これら
の流体を扱う機器の構成材としては使用できず、その用
途が大幅に制限されているのが実情である。BACKGROUND OF THE INVENTION Copper-based alloys for forging are generally JI
S C3771 is used, but recently, due to the demand for copper-based alloy products to be used in fields that require corrosion resistance, lead-containing naval brass with tin and lead added to enhance corrosion resistance ( CDA C48200, CDA C4
8500) and the like are also frequently used. However, although these are excellent in hot workability such as hot forgeability, they do not have sufficient corrosion resistance and, for example, hot water, contaminated water,
When contacted with seawater or the like, dezincification corrosion is likely to occur, it cannot be used as a constituent material of equipments handling these fluids, and its use is severely limited.
【0003】すなわち、優れた熱間加工性(特に、熱間
鍛造性)を得るためには、鍛造温度領域における如き高
温でβ相を多量に有することが必要であり、一方、優れ
た耐蝕性を得るためには、常温でα相単相組織をなす
か、β相が少量存在していても、β相が微細に分散して
いることが必要であるが、上記した銅基合金を素材とす
る熱間鍛造材では、これらの条件を共に満たすことがで
きない。That is, in order to obtain excellent hot workability (in particular, hot forgeability), it is necessary to have a large amount of β phase at a high temperature such as in the forging temperature region, while excellent corrosion resistance is obtained. In order to obtain the above, it is necessary that the α phase has a single phase structure at room temperature, or that the β phase is finely dispersed even if a small amount of the β phase exists. These conditions cannot be satisfied by the hot forging material.
【0004】特に、熱間鍛造においては、変形度,加工
度が大きく異なる部分が生じることが多いため、部分的
に耐蝕性が著しく低下する虞れあり、全体として安定し
た良質の熱間鍛造材を得ることができない。このこと
も、銅基合金製品の用途が制限されている大きな理由で
ある。In particular, in hot forging, there are often portions where the degree of deformation and the degree of working differ greatly, so there is a risk that the corrosion resistance will be significantly reduced partially, and a hot forging material of good quality that is stable as a whole. Can't get This is also a major reason why copper-based alloy products have limited applications.
【0005】例えば、鉛を含有する耐蝕性銅基合金から
なる弁箱を製造する場合、図1に示す如く、押出材であ
る棒状の鍛造素材1(同図(A))を熱間鍛造して、中
空部2a,2b,2cを有する鍛造品2を得るが(同図
(B))、かかる鍛造品2においては、耐蝕性が著しく
低下する部分が発生する。なお、鍛造品2は、最終的
に、切削加工により流入口2´a、流出口2´b及びス
テム保持部2´c等を有する弁箱2´に仕上げられる
(同図(C))。For example, in the case of manufacturing a valve box made of a corrosion-resistant copper-based alloy containing lead, as shown in FIG. 1, a rod-shaped forging material 1 (the same figure (A)) which is an extruded material is hot forged. As a result, a forged product 2 having hollow portions 2a, 2b, 2c is obtained ((B) of the same figure), but in the forged product 2, there is a portion where the corrosion resistance is significantly reduced. The forged product 2 is finally finished by cutting into a valve box 2'having an inflow port 2'a, an outflow port 2'b, a stem holding portion 2'c, etc. (Fig. (C)).
【0006】すなわち、図1(B)に示す如き複雑な形
状の鍛造品2を得るには、前記した如く、熱間鍛造時に
多量のβ相が存在している必要がある。しかし、このよ
うな鍛造品2については、鍛造後、空冷又は冷却速度の
早い徐冷が行われるのが普通であることから、多くのβ
相が残留することになり、優れた耐蝕性を確保すること
は前述したように極めて困難である。そして、図1
(B)に示す強加工部分Yのように相当量の変形,加工
が加えられている部分(以下「強加工部分等」という)
においては、鍛造後の冷却(空冷又はやや遅い速度での
徐冷)によって、かなりの量のβ相がα相に相変態する
ため、比較的良好な耐蝕性を確保することができる。し
かし、図1(B)に示す弱加工部分Xのように、加工度
が低い部分や鍛造素材1に対して殆ど変形が加わってい
ない部分(以下「弱加工部分等」という)については、
冷却速度が上記した如く大きいため、非平衡状態の組織
であるβ相が多量に残留し易く、且つ棒状素材1の方向
性も残ることになり、耐蝕性が頗る悪くなる。したがっ
て、特に、X部分のように、流体と直接に接触する流入
口2´aや流出口2´bに仕上げられる部分について
は、耐蝕性が低下することの影響は極めて大きく、かか
る部分の存在する最終製品たる弁箱2´を使用した弁
は、前記した如き温水,汚染水,海水等を扱う分野には
到底採用することができない。That is, in order to obtain a forged product 2 having a complicated shape as shown in FIG. 1 (B), a large amount of β phase must be present during hot forging as described above. However, since such a forged product 2 is usually air-cooled or gradually cooled at a high cooling rate after forging, many β
As the phase remains, it is extremely difficult to secure excellent corrosion resistance as described above. And FIG.
A portion that has undergone a considerable amount of deformation and processing, such as the strongly-machined portion Y shown in (B) (hereinafter referred to as the "strongly-machined portion etc.")
In the above, since a considerable amount of β phase is transformed into α phase by cooling after cooling (air cooling or slow cooling at a slightly slower speed), relatively good corrosion resistance can be secured. However, as for the weakly worked portion X shown in FIG. 1B, a portion having a low degree of working or a portion that is hardly deformed with respect to the forging material 1 (hereinafter referred to as "weakly worked portion or the like") is
Since the cooling rate is high as described above, a large amount of β-phase, which is a non-equilibrium state structure, tends to remain, and the directionality of the rod-shaped material 1 also remains, resulting in poor corrosion resistance. Therefore, particularly in a portion such as the X portion, which is finished as the inlet 2'a or the outlet 2'b which is in direct contact with the fluid, the influence of the deterioration of the corrosion resistance is extremely large, and the existence of such a portion. The valve using the valve box 2'which is the final product cannot be used at all in the fields handling hot water, contaminated water, seawater, etc. as described above.
【0007】このように、銅基合金においては、熱間加
工性を向上させることと耐蝕性を向上させることとは相
反する要請であり、従来においては、高度の耐蝕性が要
求される分野にも使用することができる実用的な熱間押
出材,鍛造材を得ることができないでいるのが実情であ
る。As described above, in a copper-based alloy, improving hot workability and improving corrosion resistance are contradictory requirements, and conventionally, in a field requiring a high degree of corrosion resistance. In reality, it has not been possible to obtain a practical hot extruded material or forged material that can be used.
【0008】[0008]
【発明が解決しようとする課題】本発明は、このような
実情に鑑みて、上記した相反する要請を満足させること
ができ、高度の耐蝕性が要求される分野においても実用
することができる銅基合金製熱間押出・鍛造材を提供す
ると共に、これを好適に製造しうる方法を提供すること
を目的とするものである。In view of such circumstances, the present invention can satisfy the contradictory requirements described above, and can be put to practical use in a field requiring a high degree of corrosion resistance. It is an object of the present invention to provide a hot-extrusion / forging material made of a base alloy and a method capable of manufacturing the same.
【0009】[0009]
【課題を解決するための手段】この課題を解決した本発
明の銅基合金製熱間押出・鍛造材は、銅59.0〜6
3.0重量%、鉛1.0〜2.5重量%、錫0.4〜
1.2重量%、ニッケル0.3〜1.2重量%及びアン
チモン0.03〜0.10重量%を含有すると共に、ア
ルミニウム0.05〜0.4重量%若しくは燐0.03
〜0.15重量%を含有し又はアルミニウム及び燐を
0.4Al+P=0.03〜0.15重量%含有し、且
つ残部が亜鉛及び不可避同伴不純物からなる金属組成を
なし、熱間押出又は熱間鍛造後に熱処理を施してなるも
のである。The hot extrusion / forging material made of a copper-based alloy of the present invention which solves this problem is made of copper 59.0-6.
3.0% by weight, lead 1.0 to 2.5% by weight, tin 0.4 to
1.2 wt%, nickel 0.3-1.2 wt% and antimony 0.03-0.10 wt%, and aluminum 0.05-0.4 wt% or phosphorus 0.03
To 0.15% by weight or 0.4Al + P = 0.03 to 0.15% by weight of aluminum and phosphorus, and the balance being zinc and inevitable entrained impurities. It is formed by heat treatment after forging.
【0010】また、本発明の製造方法にあっては、上記
した金属組成をなす銅基合金素材を、所定形状に熱間押
出又は熱間鍛造し、その押出材又は鍛造材を、次のよう
な条件で熱処理することを提案する。In the manufacturing method of the present invention, the copper-based alloy material having the above-mentioned metal composition is hot extruded or hot forged into a predetermined shape, and the extruded material or forged material is as follows. It is proposed to heat treat under various conditions.
【0011】第1には、熱間加工直後、鍛造材等が高温
状態にある段階で、500〜600℃に10分〜1時間
加熱保持させた上、少なくとも470℃に降温するまで
は3℃/分以下の冷却速度で冷却させる(以下、かかる
条件で行う熱処理を「第1熱処理」という)。かかる熱
処理は、例えば、連続熱処理炉により簡易に行うことが
できる。鍛造直後においては、鍛造材は450〜650
℃の高温を維持しているので、通常の焼鈍炉のような積
極的な加熱は必要とせず、10分以上500〜600℃
に保持できればよい。多くの場合、10〜30分程度保
持できれば充分である。また、かかる温度に保持後は、
3℃/分以下の冷却速度で通常470℃以下にまで徐冷
するが、より好ましくは、420℃以下にまで徐冷する
ようにするのがよい。かかる遅速徐冷の後は、通常通
り、空冷により常温まで冷却させるようにすればよい。First, immediately after hot working, at a stage where the forged material or the like is in a high temperature state, the material is heated and held at 500 to 600 ° C. for 10 minutes to 1 hour and then kept at 3 ° C. until the temperature is lowered to at least 470 ° C. It is cooled at a cooling rate of not more than / minute (hereinafter, the heat treatment performed under such conditions is referred to as "first heat treatment"). Such heat treatment can be easily performed by, for example, a continuous heat treatment furnace. Immediately after forging, the forging material is 450 to 650.
Since it maintains a high temperature of ℃, it does not require active heating like a normal annealing furnace, and it is 500-600 ℃ for 10 minutes or longer.
Can be held at. In many cases, it is sufficient to hold for about 10 to 30 minutes. Also, after holding at such temperature,
The cooling rate is usually 3 ° C./minute or less and is gradually cooled to 470 ° C. or less, and more preferably 420 ° C. or less. After such slow slow cooling, air cooling may be performed to room temperature as usual.
【0012】第2には、熱間加工後、空冷により常温と
された鍛造材等を、500〜600℃に30分〜2時間
加熱保持させた上、少なくとも470℃に降温するまで
は3℃/分以下の冷却速度で冷却させる(以下、かかる
条件で行う熱処理を「第2熱処理」という)。かかる熱
処理はバッチ式で行い、上記した冷却速度で、可能であ
れば、450℃程度にまで徐冷する。かかる遅速徐冷の
後は、空冷により冷却させる。Secondly, after the hot working, the forged material and the like which has been brought to room temperature by air cooling is heated and held at 500 to 600 ° C. for 30 minutes to 2 hours and then cooled to at least 470 ° C. at 3 ° C. It is cooled at a cooling rate of not more than / minute (hereinafter, the heat treatment performed under such conditions is referred to as "second heat treatment"). Such heat treatment is carried out in a batch system, and is gradually cooled to about 450 ° C. at the above cooling rate if possible. After such slow slow cooling, cooling is performed by air cooling.
【0013】銅の配合量は、主として、熱間鍛造性を配
慮して決定されている。すなわち、優れた熱間鍛造性が
確保されるためには、鍛造温度域で多量のβ相が含まれ
ていることが必要である。つまり、鍛造素材(押出材
等)を鍛造が行われる温度(650〜800℃)に加熱
した場合、素材の合金組織が「高温で延性の高いβ相」
を一定量以上含む二相組織(α+β相組織)に変態する
ことが必要である。「高温で延性の高いβ相」がどの程
度含まれるかは、Cuと他の添加元素との配合比率によ
って決まり、一概に、Cu配合量のみによって決まるも
のではないが、少なくともCu配合量が63.0重量%
を超える場合には、優れた熱間鍛造性を発揮するβ相を
得ることが極めて困難である。翻れば、銅配合量を6
3.0重量%以下としておくことによって、高温条件下
で上記した二相組織に容易に変態することができ、その
結果、複雑な形状の鍛造をも可能となる優れた熱間鍛造
性に発揮することになるのである。また、銅の含有量が
59重量%未満の場合は、熱間加工後にどのような条件
で熱処理しても、熱間加工品の耐蝕性を改善できない。
このような理由から、銅の含有量は59.0〜63.0
重量%とした。The amount of copper blended is determined mainly in consideration of hot forgeability. That is, in order to ensure excellent hot forgeability, it is necessary that a large amount of β phase be contained in the forging temperature range. That is, when a forged material (extruded material, etc.) is heated to a temperature at which forging is performed (650 to 800 ° C.), the alloy structure of the material is “β phase with high temperature and high ductility”.
It is necessary to transform into a two-phase structure (α + β-phase structure) containing a certain amount or more of. The extent to which the "β-phase having high ductility at high temperature" is contained is determined by the compounding ratio of Cu and other additive elements, and is not generally determined only by the Cu compounding amount, but at least the Cu compounding amount is 63 0.0% by weight
If it exceeds, it is extremely difficult to obtain a β phase exhibiting excellent hot forgeability. In other words, the copper content is 6
By setting the content to 3.0% by weight or less, it is possible to easily transform into the above-described two-phase structure under high temperature conditions, and as a result, it is possible to forge a complicated shape and exhibit excellent hot forgeability. Will be done. Further, if the copper content is less than 59% by weight, the corrosion resistance of the hot-worked product cannot be improved by heat treatment under any condition after hot-working.
For this reason, the copper content is 59.0 to 63.0.
It was set to% by weight.
【0014】錫は、耐蝕性を向上させるために添加され
るが、同時に、熱間加工後に行う熱処理プロセスにおけ
る徐冷時に、残留したβ相をα相と微細なγ相とに分解
させ(β相の大部分はα相に変態される)、β相を減
少,(微細に)分断させる機能を発揮するもので、熱間
鍛造後においても高度な耐蝕性が得られるようにするた
めに添加される。このような効果を発揮させるために
は、0.4重量%以上の添加が必要である。しかし、錫
の添加量が1.2重量%を超えると、鍛造性が悪くな
る。しかも、γ相の析出量も多くなるので、却って耐蝕
性が悪くなり、γ相は硬いため被削性も悪くなる。この
ような理由から、錫の含有量は、0.4〜1.2重量%
とした。Tin is added to improve the corrosion resistance, but at the same time, the residual β phase is decomposed into an α phase and a fine γ phase during the slow cooling in the heat treatment process performed after hot working (β Most of the phases are transformed into α phase), β phase is reduced and (finely) divided, it is added in order to obtain high corrosion resistance even after hot forging. To be done. In order to exert such effects, it is necessary to add 0.4% by weight or more. However, if the amount of tin added exceeds 1.2% by weight, the forgeability deteriorates. Moreover, since the amount of γ-phase deposited is large, the corrosion resistance is rather deteriorated, and the γ-phase is hard, so that the machinability is also deteriorated. For this reason, the tin content is 0.4 to 1.2% by weight.
And
【0015】鉛は被削性を向上させるために添加される
が、添加量が1.0重量%未満であると、充分な被削性
を得ることができない。また、添加量が2.5重量%を
超えると、鍛造性が悪くなる。このような理由から、鉛
の含有量は1.0〜2.5重量%とした。Lead is added to improve the machinability, but if the amount added is less than 1.0% by weight, sufficient machinability cannot be obtained. Further, if the addition amount exceeds 2.5% by weight, the forgeability deteriorates. For this reason, the lead content is set to 1.0 to 2.5% by weight.
【0016】ニッケルは、錫との相乗効果によって耐蝕
性を向上させ、機械的性質を改善させ且つα相組織を増
加させる機能を有する。また、熱間鍛造時においても、
結晶粒を微細化し、鍛造性を向上させると共に、微細化
効果によっても耐蝕性を向上させる。さらに、鍛造後の
熱処理プロセスにおける徐冷時に、γ相の析出に関し、
γ相を微細に分散,析出させる効果がある。これらの効
果を発揮させるためには、0.3重量%以上添加させる
必要があるが、かかる効果は、1.2重量%を超えて添
加しても、顕著になる訳ではなく、経済的な面からは却
って問題である。このような理由から、ニッケルの含有
量は、0.3〜1.2重量%とした。Nickel has the functions of improving the corrosion resistance, improving the mechanical properties and increasing the α phase structure by the synergistic effect with tin. Also, during hot forging,
It refines the crystal grains to improve the forgeability and also improves the corrosion resistance by the refinement effect. Furthermore, regarding the precipitation of the γ phase during slow cooling in the heat treatment process after forging,
It has the effect of finely dispersing and precipitating the γ phase. In order to exert these effects, it is necessary to add 0.3% by weight or more. However, such an effect is not remarkable even if it is added in an amount exceeding 1.2% by weight, and it is economical. From the aspect, it is a problem. For this reason, the nickel content is 0.3 to 1.2% by weight.
【0017】アンチモンは、耐蝕性を得るのに不可欠な
元素であり、特に、錫,ニッケルの添加と相俟って、更
にその効果を発揮するためには0.03重量%以上必要
である。しかし、0.10重量%を超えて添加すると、
熱間鍛造性を阻害することになる。このような理由か
ら、アンチモンの含有量は、0.03〜0.10重量%
とした。Antimony is an indispensable element for obtaining corrosion resistance, and in particular, in combination with the addition of tin and nickel, 0.03% by weight or more is necessary to exert its effect. However, if added over 0.10% by weight,
It will hinder hot forgeability. For this reason, the content of antimony is 0.03 to 0.10% by weight.
And
【0018】アルミニウム及び燐は、何れも、熱間加工
性を向上させるために添加する。燐は、ニッケル又は不
可避同伴不純物中の鉄と化合し、熱間鍛造をするための
加熱中での結晶粒粗大化を防止するために添加し、特
に、低温側での熱間鍛造性を高める。また、耐蝕性にも
有効に作用する。しかし、0.03重量%未満ではさほ
ど効果がなく、逆に、0.15重量%を超えて添加する
と、析出物が多くなり、被削性が悪くなる。一方、アル
ミニウムは、少量(0.05重量%以上)で、当該合金
系の高温側低温側での熱間加工性を飛躍的に向上させ
る。また、ニッケルと同様、熱処理の徐冷時にγ相を微
細に析出させる効果がある。しかし、0.4重量%を超
えて添加すると、アルミニウムは被削性に悪影響を及ぼ
し、且つ高温側での熱間加工性を悪くする傾向となす。
このような理由から、アルミニウムを添加させる場合
は、その添加量を0.05〜0.4重量%とし、アルミ
ニウムに代えて燐を添加させる場合には、その添加量を
0.03〜0.15重量%とした。Both aluminum and phosphorus are added to improve hot workability. Phosphorus is combined with nickel or iron in unavoidable impurities and added to prevent grain coarsening during heating for hot forging, and particularly enhances hot forgeability at low temperatures. . It also effectively acts on the corrosion resistance. However, if it is less than 0.03% by weight, it is not so effective, and conversely, if it is added in an amount of more than 0.15% by weight, the amount of precipitates increases and the machinability deteriorates. On the other hand, a small amount of aluminum (0.05 wt% or more) dramatically improves the hot workability of the alloy system on the high temperature side and the low temperature side. Further, like nickel, it has the effect of finely precipitating the γ phase during slow cooling of the heat treatment. However, if it is added in an amount exceeding 0.4% by weight, aluminum tends to adversely affect machinability and deteriorate hot workability on the high temperature side.
For this reason, when aluminum is added, the addition amount is 0.05 to 0.4% by weight, and when phosphorus is added instead of aluminum, the addition amount is 0.03 to 0. It was set to 15% by weight.
【0019】アルミニウム及び燐は、何れか一方のみを
添加することで充分効果があるが、これらを共に添加さ
せる場合にも、勿論、上記した効果を発揮する。しか
し、本発明者の実験,研究によれば、共添させる場合、
両者間には一定の関係があり、0.4Al+P=0.0
3重量%未満では効果が余りなく、逆に0.15重量%
を超えると、被削性が問題となる。このような理由か
ら、アルミニウムと燐とを共添させる場合には、0.4
Al+P=0.03〜0.15重量%となるようにし
た。Aluminum and phosphorus are sufficiently effective when only one of them is added. However, when both are added together, the above-mentioned effects are naturally exhibited. However, according to the experiments and researches by the present inventor, when co-adding,
There is a certain relationship between the two, 0.4Al + P = 0.0
If it is less than 3% by weight, there is little effect, and conversely 0.15% by weight
If it exceeds, machinability becomes a problem. For this reason, when aluminum and phosphorus are added together, 0.4
Al + P was set to 0.03 to 0.15% by weight.
【0020】[0020]
【作用】上記した金属組成をなす銅基合金を素材として
熱間鍛造品(又は押出成形品)を製造するに当たって、
熱間鍛造後に前述した適切な熱処理を行うことによっ
て、耐蝕性を飛躍的に向上させることができる。[Operation] In producing a hot forged product (or an extrusion molded product) using the copper-based alloy having the above metal composition as a raw material,
Corrosion resistance can be dramatically improved by performing the above-mentioned appropriate heat treatment after hot forging.
【0021】例えば、図1(B)に示す如き鍛造品にお
いては、鍛造素材である元の棒材に比べ、弱加工部分等
の金属組織は、変形度,加工度が低いため、非平衡状態
の組織であるβ相が多量に残り、且つ棒状素材の方向性
が残るので耐蝕性が悪いが、平衡状態でα単相になる鍛
造品を、500〜600℃のα単相領域で加熱,保持す
ると、鍛造品中のβ相はα相に相変態する。鍛造直後で
高温状態にある鍛造品について行う第1熱処理では、上
記温度に10分以上保持しておけば、かかる効果を充分
に発揮させることができる。但し、加熱保持時間が60
分を超えると、β相が除々に消滅していくが、消費エネ
ルギに見合うだけの効果は得られない。また、第2熱処
理では、常温状態にある鍛造品について行うため、第1
熱処理に比し加熱時間は長くなる(少なくとも30分)
が、この場合にも、2時間を超えると、消費エネルギに
見合うだけの効果は得られない。なお、状態図におい
て、例えば、銅濃度が62.5%の銅基合金素材を75
0℃で熱間鍛造した場合、平衡状態ではβ相(750
℃)の占める割合は44%であり、平衡状態図上、61
0℃以下でα単相となる。For example, in the forged product as shown in FIG. 1 (B), the metal structure of the weakly worked portion has a low degree of deformation and workability as compared with the original bar material which is a forging material, so that it is in a non-equilibrium state. The corrosion resistance is poor because the β phase, which is the structure of, remains in a large amount and the orientation of the rod-shaped material remains, but the forged product that becomes the α single phase in the equilibrium state is heated in the α single phase region of 500 to 600 ° C. When kept, the β phase in the forged product is transformed into the α phase. In the first heat treatment performed on the forged product that is in a high temperature state immediately after forging, if the temperature is kept at the above temperature for 10 minutes or more, such an effect can be sufficiently exhibited. However, the heating and holding time is 60
Beyond the minute, the β phase gradually disappears, but the effect commensurate with the consumed energy cannot be obtained. In addition, since the second heat treatment is performed on the forged product at room temperature,
Long heating time compared to heat treatment (at least 30 minutes)
However, also in this case, if it exceeds 2 hours, an effect commensurate with the consumed energy cannot be obtained. In the state diagram, for example, a copper-based alloy material with a copper concentration of 62.5% is
When hot forged at 0 ° C, β phase (750
℃) is 44%, which is 61% on the equilibrium diagram.
It becomes an α single phase at 0 ° C or lower.
【0022】しかし、上記した如く、鍛造品を500〜
600℃で一定時間加熱,保持すると、鍛造品中のβ相
はα相に相変態するものの、その変態量は70%程度に
すぎず、β相がなお残留することになる。しかも、この
β相がα相の粒界に沿って連続した形態で残留すること
になる。そのため、鍛造後の加熱は、耐蝕性を或る程度
改善させる効果はあるものの、耐蝕性の飛躍的向上とい
った面からは甚だ不充分である。However, as described above, the forged product is
When heated and held at 600 ° C. for a certain period of time, the β phase in the forged product undergoes phase transformation into the α phase, but the transformation amount is only about 70%, and the β phase still remains. Moreover, this β phase remains in a continuous form along the grain boundary of the α phase. Therefore, although heating after forging has an effect of improving the corrosion resistance to some extent, it is extremely insufficient from the viewpoint of drastically improving the corrosion resistance.
【0023】加熱保持後の遅速徐冷は、錫を0.4重量
%以上含有させたことと相俟って、かかる問題を完全に
解消するものであり、γ相の析出を極めて効果的に利用
することによって、耐蝕性の飛躍的な向上を実現するも
のである。The slow gradual cooling after heating and holding, together with the inclusion of 0.4% by weight or more of tin, completely eliminates this problem, and the precipitation of the γ phase is extremely effective. By utilizing it, the corrosion resistance is dramatically improved.
【0024】すなわち、一般の黄銅からなる鍛造品にお
いても、500〜600℃に加熱,保持した後、3℃/
分以下で遅速徐冷させると、β相からα相への相変態が
生じるが、錫を0.4重量%以上含有する黄銅(銅濃度
は61%前後)からなる鍛造品については、徐冷によ
り、520℃から400℃への降温領域において、α相
やβ相に比して錫及び亜鉛濃度の高いγ相が析出する。
かかる現象は、500℃から450℃への降温領域にお
いて、特に顕著に現れる。このようなγ相の析出は、β
相からα相(大部分)とγ相とに分解する共析反応によ
るもので、β相からα相に変態する単純な相変態よりも
遙に速い。なお、本発明者の研究によれば、錫の含有量
が0.4〜0.6重量%である場合においても、非平衡
状態でγ相が析出することが判明している。That is, even in the case of a general brass forged product, after being heated and held at 500 to 600 ° C., the temperature is 3 ° C. /
If it is slowly cooled slowly for less than a minute, a phase transformation from β phase to α phase occurs, but for the forged product made of brass containing 0.4 wt% or more of tin (copper concentration is around 61%), slow cooling As a result, in the temperature decreasing region from 520 ° C. to 400 ° C., the γ phase having a higher tin and zinc concentration than the α phase and the β phase is precipitated.
Such a phenomenon is particularly remarkable in the temperature decreasing region from 500 ° C to 450 ° C. Such precipitation of the γ phase results in β
This is due to the eutectoid reaction that decomposes the phase into the α phase (mostly) and the γ phase, which is much faster than the simple phase transformation in which the β phase transforms into the α phase. According to the research conducted by the present inventor, it was found that the γ phase is precipitated in a non-equilibrium state even when the tin content is 0.4 to 0.6% by weight.
【0025】而して、前記した金属組成をなし、特に
0.4重量%以上の錫を含有する黄銅材では、上記した
如く、徐冷によりβ相からα相と微細なγ相とに変化す
るが、このγ相は、その一部が更にα相に相変態して、
耐蝕性に悪影響を及ぼすβ相を著しく減少させる。ま
た、仮に、β相がα相とγ相とに完全に置き変わらず残
留するような場合にも、α相の結晶粒界に連続して存在
していたβ相は、微細なγ相の析出により完全に分離細
分化されることになり、残留β相が耐蝕性に与える悪影
響は極めて小さくなる。なお、発明者が実験,研究によ
り究明したところによれば、γ相は錫濃度の高いCu−
Zn−Sn系の金属間化合物であるため、γ相が析出し
ても、それが微細であれば(換言すれば、γ相が連なっ
て分布していなければ)、耐蝕性には全く影響を及ぼさ
ない。Therefore, in the brass material having the above-mentioned metal composition, and particularly containing 0.4% by weight or more of tin, as described above, the β phase is changed to the α phase and the fine γ phase by slow cooling. However, a part of this γ phase is further transformed into the α phase,
Significantly reduces β-phase, which adversely affects corrosion resistance. Further, even if the β phase is not completely replaced with the α phase and the γ phase and remains, the β phase continuously existing in the crystal grain boundary of the α phase is a fine γ phase. The precipitation will cause complete separation and fragmentation, and the adverse effect of the residual β phase on the corrosion resistance will be extremely small. According to the results of experiments and research conducted by the inventor, the γ phase is Cu-containing a high tin concentration.
Since it is a Zn-Sn-based intermetallic compound, even if the γ phase is deposited, if it is fine (in other words, if the γ phase is not continuously distributed), the corrosion resistance is not affected at all. Does not reach.
【0026】したがって、鍛造後に第1熱処理又は第2
熱処理を行うことによって、その耐蝕性を飛躍的に向上
させることができる。特に、前記X部のような直接流体
に接触することとなる弱加工部分等が存在するような鍛
造品についても、全体としての耐蝕性を向上させ、温
水,汚染水,海水等の流体を扱う機器の構成材として好
適に使用することができる。Therefore, after the forging, the first heat treatment or the second heat treatment is performed.
By performing the heat treatment, the corrosion resistance can be dramatically improved. In particular, for a forged product such as the above-mentioned part X where there is a weakly worked part that comes into direct contact with a fluid, the corrosion resistance as a whole is improved and a fluid such as hot water, contaminated water, seawater, etc. is handled. It can be suitably used as a component of a device.
【0027】[0027]
【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0028】実施例として、表1に示す組成の銅基合金
No.1,No.2を熱間押出することにより径26m
mの棒材となし、各棒材を所定寸法に切断後、750℃
に加熱して、図1(B)に示す如き形状の中空鍛造品を
得た。なお、表1における鉄は不可避同伴不純物であ
る。As an example, copper-based alloy No. 1 having the composition shown in Table 1 was used. 1, No. 26m diameter by hot extruding 2
750 ° C after cutting each bar to the specified size
After heating, a hollow forged product having a shape as shown in FIG. 1 (B) was obtained. In addition, iron in Table 1 is an unavoidable accompanying impurity.
【0029】また、比較例として、表1に示す組成の銅
基合金No.3〜No.5を、上記と同一条件で熱間押
出,熱間鍛造して、同一形状の中空鍛造品を得た。な
お、No.5は、冒頭で述べたJIS C3771の鍛
造用黄銅である。As a comparative example, copper-based alloy No. 1 having the composition shown in Table 1 was used. 3 to No. 5 was hot extruded and hot forged under the same conditions as above to obtain a hollow forged product having the same shape. In addition, No. 5 is the brass for forging of JIS C3771 mentioned at the beginning.
【0030】[0030]
【表1】 [Table 1]
【0031】そして、各中空鍛造品No.1〜No.5
(鍛造品No.xは、銅基合金No.xからなるもので
ある)を、以下に述べるA〜Hの条件で夫々熱処理し
た。Each hollow forged product No. 1-No. 5
(Forged product No. x is made of copper-based alloy No. x) was heat-treated under the conditions A to H described below.
【0032】条件A:各鍛造品を、一般的な鍛造工程に
おける鍛造後の処理と同様に、鍛造後、常温まで空冷し
た。 条件B:各鍛造品を、鍛造直後、550℃で20分間保
持した上、平均冷却速度2℃/分で430℃まで炉冷
し、その後空冷した。 条件C:各鍛造品を、鍛造直後、550℃で20分間保
持した上、平均冷却速度4℃/分で430℃まで冷却
し、その後空冷した。 条件D:鍛造後空冷した各鍛造品を、550℃で1時間
加熱した後、空冷した。 条件E:鍛造後空冷した各鍛造品を、550℃で1時間
加熱した後、1℃/分の冷却速度で490℃まで炉冷
し、その後空冷した。 条件F:鍛造後空冷した各鍛造品を、550℃で1時間
加熱した後、1℃/分の冷却速度で450℃まで炉冷
し、その後空冷した。 条件G:鍛造後空冷した各鍛造品を、550℃で1時間
加熱した後、1℃/分の冷却速度で400℃まで炉冷
し、その後空冷した。 条件H:鍛造後空冷した各鍛造品を、470℃で1時間
焼鈍し、その後空冷した。Condition A: Each forged product was air-cooled to room temperature after forging in the same manner as the post-forging treatment in a general forging process. Condition B: Each forged product was held at 550 ° C. for 20 minutes immediately after forging, then furnace-cooled to 430 ° C. at an average cooling rate of 2 ° C./minute, and then air-cooled. Condition C: Each forged product was held at 550 ° C. for 20 minutes immediately after forging, cooled to 430 ° C. at an average cooling rate of 4 ° C./minute, and then air-cooled. Condition D: Each forged product that was air-cooled after forging was heated at 550 ° C. for 1 hour and then air-cooled. Condition E: Each forged product that was air-cooled after forging was heated at 550 ° C. for 1 hour, then furnace-cooled to 490 ° C. at a cooling rate of 1 ° C./min, and then air-cooled. Condition F: Each forged product that was air-cooled after forging was heated at 550 ° C. for 1 hour, then furnace-cooled to 450 ° C. at a cooling rate of 1 ° C./min, and then air-cooled. Condition G: Each forged product air-cooled after forging was heated at 550 ° C. for 1 hour, then furnace-cooled to 400 ° C. at a cooling rate of 1 ° C./min, and then air-cooled. Condition H: Each forged product that was air-cooled after forging was annealed at 470 ° C. for 1 hour and then air-cooled.
【0033】なお、条件Bの熱処理は第1熱処理であ
り、条件F,Gの熱処理は第2熱処理である。また、条
件D〜Hの熱処理はバッチ式で行った。The heat treatment under the condition B is the first heat treatment, and the heat treatment under the conditions F and G is the second heat treatment. Further, the heat treatment under the conditions D to H was performed in a batch system.
【0034】これらの条件A〜Hで熱処理した各鍛造品
No.1〜No.5から、図1(B)に示す弱加工部分
X及び強加工部分Yを夫々切出し、各切出片について
「ISO 6509」に定める方法により脱亜鉛腐蝕試
験を行った。すなわち、各切出片をフェノール樹脂材に
埋込み、切出片表面をエメリー紙により1200番まで
研磨した後、これを純水中で超音波洗浄して乾燥した。
かくして得られた被腐蝕試験試料を、1.0%の塩化第
2銅2水和塩(CuCl2 ・2H2O)の水溶液(1
2.7g/l)中に浸漬し、75℃の温度条件下で24
時間保持した後、水溶液中から取出して、その脱亜鉛腐
蝕深さの最大値を測定した。Each forged product No. which was heat-treated under these conditions A to H was used. 1-No. From FIG. 5, the weakly worked portion X and the strongly worked portion Y shown in FIG. 1 (B) were cut out, and the cut zinc pieces were subjected to a dezincification corrosion test by the method defined in “ISO 6509”. That is, each cut piece was embedded in a phenol resin material, the surface of the cut piece was polished to No. 1200 with emery paper, and then ultrasonically washed in pure water and dried.
The corrosion test sample thus obtained was treated with a 1.0% aqueous solution of cupric chloride dihydrate (CuCl 2 .2H 2 O) (1
2.7 g / l) and 24 at a temperature of 75 ° C.
After holding for a period of time, it was taken out from the aqueous solution and the maximum value of its dezincification corrosion depth was measured.
【0035】その結果は、弱加工部分X(暴露面が押出
方向に垂直)については表2に示す通りであり、強加工
部分Yについては表3に示す通りであった。The results are as shown in Table 2 for the weakly processed portion X (the exposed surface is perpendicular to the extrusion direction) and as shown in Table 3 for the strongly processed portion Y.
【0036】表2から分かるように、弱加工部分Xにお
いては、錫を多く含む銅基合金鍛造品を3℃/分以下の
速度で470℃以下まで炉冷することにより、耐蝕性が
著しく改善される。しかし、錫が0.4重量%未満のN
o.4では、熱処理をしない状態においても(鍛造品の
ままでも)No.1〜No.3に比して耐蝕性が若干悪
く、熱処理を施すことによって、どのような条件でも最
大脱亜鉛深さで2〜3割程度減少させることが可能であ
るが、徐冷の効果は僅かしか認められない。JIS C
3771であるNo.5についても、1〜2割の腐食深
さの軽減が認められるが、徐冷の効果は僅かしかない。
また、条件Hの熱処理(焼鈍)は、β相がα相とγ相と
に分解する温度範囲の略中心温度で行ったものである
が、このように単に相分解温度で熱処理しただけでは、
最大腐食深さを約3割程度減少させるに止まり、その耐
蝕性向上効果は、本発明における条件B,F,Gの熱処
理による場合に比し、遙に小さいことが理解される。As can be seen from Table 2, in the weakly worked portion X, the copper-based alloy forged product containing a large amount of tin is furnace-cooled at a rate of 3 ° C./min or less to 470 ° C. or less, and thereby the corrosion resistance is remarkably improved. To be done. However, tin containing less than 0.4 wt% N
o. In No. 4, even in the state where heat treatment is not performed (even if it is a forged product) 1-No. Corrosion resistance is slightly poorer than that of No. 3, and it is possible to reduce the maximum dezincing depth by about 20 to 30% under any conditions by applying heat treatment, but the effect of slow cooling is only slightly recognized. I can't. JIS C
No. 3771. Regarding No. 5, although the corrosion depth is reduced by 10 to 20%, the effect of gradual cooling is small.
Further, the heat treatment (annealing) under the condition H is performed at a substantially central temperature in the temperature range in which the β phase decomposes into the α phase and the γ phase. However, if the heat treatment is simply performed at the phase decomposition temperature as described above,
It is understood that the maximum corrosion depth is only reduced by about 30%, and the effect of improving the corrosion resistance is much smaller than that in the case of the heat treatment of the conditions B, F and G in the present invention.
【0037】[0037]
【表2】 [Table 2]
【0038】また、表3から理解されるように、強加工
部分Yについては、No.1〜No.3は、元々鍛造の
ままでも(熱処理をしない場合にも)、腐食深さが浅い
が、徐冷による耐蝕性向上は著しい。しかし、錫の含有
量が低いNo.4及びJISC3771であるNo.5
については、耐蝕性の向上の点から、徐冷の効果は多少
はあるものの、極めて少ない。Further, as can be understood from Table 3, No. 1-No. No. 3 has a shallow corrosion depth even if it is originally forged (when it is not heat treated), but the corrosion resistance is remarkably improved by slow cooling. However, in No. 3 having a low tin content. 4 and JIS C3771 No. 5
Regarding the above, although there is some effect of slow cooling from the viewpoint of improving the corrosion resistance, it is extremely small.
【0039】[0039]
【表3】 [Table 3]
【0040】また、前記した如くして得られた各押出材
(26mm径の丸棒材)を切削して、径15mm,高さ
25mmの丸棒状試験片を各所要本数得た。そして、各
試験片No.1〜No.5を(試験片No.xは、銅基
合金No.xからなるものである)を、夫々、660
℃,700℃,740℃,780℃,820℃に加熱し
て30分間保持した上、軸線方向に70%の圧縮率で圧
縮(試験片の高さが25mmから7.5mmまで圧縮)
して、圧縮後の表面形態を目視判定した。その結果は、
表4に示す通りであった。なお、判定は、試験片側面に
おけるクラックの状態から目視により行い、クラックが
全く生じなかったものを○、小さなクラックが生じたも
のを△、大きなクラックが生じたものを×とした。Each extruded material (round bar with a diameter of 26 mm) obtained as described above was cut to obtain a required number of round bar-shaped test pieces with a diameter of 15 mm and a height of 25 mm. And each test piece No. 1-No. 5 (test piece No. x is made of copper-based alloy No. x), and 660
℃, 700 ℃, 740 ℃, 780 ℃, 820 ℃, and hold for 30 minutes, then compressed at a compression rate of 70% in the axial direction (the height of the test piece is compressed from 25 mm to 7.5 mm)
Then, the surface morphology after compression was visually determined. The result is
The results are shown in Table 4. The judgment was visually conducted from the state of cracks on the side surface of the test piece, and those in which no cracks were generated were evaluated as ◯, those in which small cracks were generated as Δ, and those in which large cracks were generated as x.
【0041】[0041]
【表4】 [Table 4]
【0042】表4から理解されるように、No.5(J
IS C3771)は、820℃に加熱した場合以外は
クラックが生じず、アルミニウムを少量含有するNo.
1は660℃に加熱した場合に若干のクラックが生じる
ものの、700〜820℃では全くクラックが生じなか
った。また、燐を少量含有するNo.2,No.4は、
燐,アルミニウムを含有しないNo.3より鍛造性に優
れることが理解される。As can be seen from Table 4, No. 5 (J
IS C3771) does not cause cracks except when heated to 820 ° C. and has a small amount of aluminum.
No. 1 had some cracks when heated to 660 ° C., but no cracks at 700 to 820 ° C. In addition, No. 5 containing a small amount of phosphorus. 2, No. 4 is
No. containing no phosphorus or aluminum It is understood that the forgeability is superior to that of No. 3.
【0043】ところで、鍛造品においても、形状がより
複雑になると、瞬間ではあるが、鍛造時、鍛造金型に接
する部分(変形度の高い部分)で局部的に温度低下を生
じる。したがって、鍛造時の加熱温度より低い場合(例
えば、100℃程度低い場合)においても、より良好な
鍛造性(熱間加工性)が要求される。しかし、本発明の
ものは、金属組成上、熱間加工性に優れるものであり、
かかる局部的な温度低下を生じる場合にも、良好な熱間
加工を行い得る。By the way, also in the forged product, when the shape becomes more complicated, at a moment, at the time of forging, a temperature drop locally occurs at a portion in contact with the forging die (a portion having a high degree of deformation). Therefore, even when the temperature is lower than the heating temperature at the time of forging (for example, about 100 ° C. lower), better forgeability (hot workability) is required. However, the one of the present invention is excellent in hot workability due to the metal composition,
Good hot working can be performed even when such a local temperature drop occurs.
【0044】[0044]
【発明の効果】以上の説明から容易に理解されるよう
に、本発明の銅基合金製押出・鍛造材は、耐蝕性に必要
な金属組成をなし、特に、錫を0.4重量%以上含有さ
せたことにより、熱間加工後の熱処理によってβ相を消
滅或いは微細分離させることができるものであり、如何
なる条件で熱間加工されたときにも、その加工品のすべ
ての部位において極めて優れた耐蝕性を有するものであ
る。また、金属組成上、当然に、被削性,強度面に優れ
るものでもある。したがって、従来の黄銅系合金材では
使用できなかった(或いは、使用させた場合に、耐蝕性
の点で大きな問題を生じていた)温水,汚染水,海水等
を扱う機器(温水給湯栓,弁,機械部品,船舶用部品
等)の構成材としても使用でき、その用途は極めて広範
なものである。As can be easily understood from the above description, the copper-based alloy extruded and forged material of the present invention has a metal composition necessary for corrosion resistance, and particularly contains 0.4% by weight or more of tin. By including it, the β phase can be eliminated or finely separated by heat treatment after hot working, and it is extremely excellent in all parts of the processed product even when hot working under any conditions. It has corrosion resistance. Further, the metal composition is naturally excellent in machinability and strength. Therefore, equipment that handles hot water, contaminated water, seawater, etc. that could not be used with conventional brass-based alloy materials (or had a major problem in terms of corrosion resistance when used) (hot water taps, valves , Mechanical parts, parts for ships, etc.) and its applications are extremely wide.
【0045】また、本発明の製造方法によれば、耐蝕性
及び熱間加工性の何れにも優れた銅基合金製押出・鍛造
材を安価に且つ効率よく製造することができる。特に、
実用上、鍛造温度にばらつきがあって鍛造品における各
部の加工度に大きな差があり、ばらついた金属組織の鍛
造品しか得られない条件下においても、極めて安定した
金属組織の良質品を製造することができる。Further, according to the manufacturing method of the present invention, a copper-based alloy extruded / forged material excellent in both corrosion resistance and hot workability can be manufactured inexpensively and efficiently. In particular,
Practically, there is a large difference in the forging temperature, and there is a large difference in the workability of each part in the forged product, and even under conditions where only a forged product with a dissimilar metal structure can be obtained, a high quality product with an extremely stable metal structure is manufactured be able to.
【図1】弁箱の製造工程を示す断面図である。FIG. 1 is a cross-sectional view showing a manufacturing process of a valve box.
1…鍛造素材、2…鍛造品(銅基合金製押出・鍛造
材)。1 ... Forged material, 2 ... Forged product (extrusion / forging material made of copper-based alloy).
Claims (3)
〜2.5重量%、錫0.4〜1.2重量%、ニッケル
0.3〜1.2重量%及びアンチモン0.03〜0.1
0重量%を含有すると共に、アルミニウム0.05〜
0.4重量%若しくは燐0.03〜0.15重量%を含
有し又はアルミニウム及び燐を0.4Al+P=0.0
3〜0.15重量%含有し、且つ残部が亜鉛及び不可避
同伴不純物からなる金属組成をなし、熱間押出又は熱間
鍛造後に熱処理を施してなる、耐蝕性に優れた銅基合金
製熱間押出・鍛造材。1. Copper 59.0 to 63.0% by weight and lead 1.0
~ 2.5 wt%, tin 0.4-1.2 wt%, nickel 0.3-1.2 wt% and antimony 0.03-0.1
It contains 0% by weight of aluminum and 0.05-
0.4% by weight or 0.03 to 0.15% by weight of phosphorus or 0.4Al + P = 0.0 of aluminum and phosphorus
A hot work made of a copper-based alloy having a corrosion resistance of 3 to 0.15% by weight and the balance being zinc and unavoidable impurities, and being subjected to heat treatment after hot extrusion or hot forging. Extruded / forged material.
〜2.5重量%、錫0.4〜1.2重量%、ニッケル
0.3〜1.2重量%及びアンチモン0.03〜0.1
0重量%を含有すると共に、アルミニウム0.05〜
0.4重量%若しくは燐0.03〜0.15重量%を含
有し又はアルミニウム及び燐を0.4Al+P=0.0
3〜0.15重量%含有し、且つ残部が亜鉛及び不可避
同伴不純物からなる金属組成をなす銅基合金素材を、所
定形状に熱間押出又は熱間鍛造し、その押出材又は鍛造
材を、熱間加工直後、500〜600℃に10分〜1時
間加熱保持させた上、少なくとも470℃に降温するま
では3℃/分以下の冷却速度で冷却させることを条件と
して、熱処理するようにした、耐蝕性に優れた銅基合金
製熱間押出・鍛造材の製造方法。2. Copper 59.0-63.0% by weight and lead 1.0
~ 2.5 wt%, tin 0.4-1.2 wt%, nickel 0.3-1.2 wt% and antimony 0.03-0.1
It contains 0% by weight of aluminum and 0.05-
0.4% by weight or 0.03 to 0.15% by weight of phosphorus or 0.4Al + P = 0.0 of aluminum and phosphorus
A copper-based alloy material containing 3 to 0.15% by weight and the balance being zinc and inevitable accompanying impurities is hot extruded or hot forged into a predetermined shape, and the extruded material or forged material is Immediately after hot working, heat treatment was performed at 500 to 600 ° C. for 10 minutes to 1 hour, and then cooled at a cooling rate of 3 ° C./minute or less until the temperature was lowered to at least 470 ° C. , A method for manufacturing hot-extruded and forged materials made of copper-based alloy with excellent corrosion resistance.
〜2.5重量%、錫0.4〜1.2重量%、ニッケル
0.3〜1.2重量%及びアンチモン0.03〜0.1
0重量%を含有すると共に、アルミニウム0.05〜
0.4重量%若しくは燐0.03〜0.15重量%を含
有し又はアルミニウム及び燐を0.4Al+P=0.0
3〜0.15重量%含有し、且つ残部が亜鉛及び不可避
同伴不純物からなる金属組成をなす銅基合金素材を、所
定形状に熱間押出又は熱間鍛造し、その押出材又は鍛造
材を、一旦空冷した後、500〜600℃に30分〜2
時間加熱保持させた上、少なくとも470℃に降温する
までは3℃/分以下の冷却速度で冷却させることを条件
として、熱処理するようにした、耐蝕性に優れた銅基合
金製熱間押出・鍛造材の製造方法。3. 59.0 to 63.0% by weight of copper and 1.0 of lead
~ 2.5 wt%, tin 0.4-1.2 wt%, nickel 0.3-1.2 wt% and antimony 0.03-0.1
It contains 0% by weight of aluminum and 0.05-
0.4% by weight or 0.03 to 0.15% by weight of phosphorus or 0.4Al + P = 0.0 of aluminum and phosphorus
A copper-based alloy material containing 3 to 0.15% by weight and the balance being zinc and inevitable accompanying impurities is hot extruded or hot forged into a predetermined shape, and the extruded material or forged material is Once air-cooled, it is heated to 500-600 ℃ for 30 minutes-2
Hot-extrusion made of copper-based alloy excellent in corrosion resistance, which is heat-treated under the condition that the material is kept heated for a time and cooled at a cooling rate of 3 ° C./minute or less until the temperature is lowered to at least 470 ° C. Manufacturing method of forged material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35255793A JPH07197152A (en) | 1993-12-30 | 1993-12-30 | Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35255793A JPH07197152A (en) | 1993-12-30 | 1993-12-30 | Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07197152A true JPH07197152A (en) | 1995-08-01 |
Family
ID=18424880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35255793A Pending JPH07197152A (en) | 1993-12-30 | 1993-12-30 | Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07197152A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5961749A (en) * | 1997-05-30 | 1999-10-05 | Diehl Stiftung & Co. | Use of a brass alloy for sanitary pipes |
US6395110B2 (en) * | 1997-04-08 | 2002-05-28 | Kitz Corporation | Copper-based alloy excelling in corrosion resistance, method for production thereof, and products made of the copper-based alloy |
JP2003277855A (en) * | 2002-03-22 | 2003-10-02 | San-Etsu Metals Co Ltd | Lead-free, free-cutting brass alloy material and production method thereof |
JP3951604B2 (en) * | 1997-11-11 | 2007-08-01 | Toto株式会社 | Metal material, brass and manufacturing method thereof |
-
1993
- 1993-12-30 JP JP35255793A patent/JPH07197152A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6395110B2 (en) * | 1997-04-08 | 2002-05-28 | Kitz Corporation | Copper-based alloy excelling in corrosion resistance, method for production thereof, and products made of the copper-based alloy |
US5961749A (en) * | 1997-05-30 | 1999-10-05 | Diehl Stiftung & Co. | Use of a brass alloy for sanitary pipes |
JP3951604B2 (en) * | 1997-11-11 | 2007-08-01 | Toto株式会社 | Metal material, brass and manufacturing method thereof |
JP2003277855A (en) * | 2002-03-22 | 2003-10-02 | San-Etsu Metals Co Ltd | Lead-free, free-cutting brass alloy material and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3803981B2 (en) | Method for producing copper alloy having high strength and high conductivity | |
JP5028657B2 (en) | High-strength copper alloy sheet with little anisotropy and method for producing the same | |
CN1040891C (en) | Copper alloy having high strength and conductivity | |
JP2002180159A (en) | Copper alloy containing silver | |
JPH08325681A (en) | Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance | |
CN101932741A (en) | High strength and high conductivity copper rod and wire | |
US4142918A (en) | Method for making fine-grained Cu-Ni-Sn alloys | |
US3046166A (en) | Treatment of brass | |
JPS60114558A (en) | Production of elongated material consisting of age hardenable titanium-copper alloy | |
JP2008038231A (en) | High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof | |
JP3824944B2 (en) | Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof | |
JPH07197152A (en) | Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production | |
US6059905A (en) | Process for treating a copper-beryllium alloy | |
JPS6132386B2 (en) | ||
CN100415911C (en) | Copper alloy excellent in corrosion resistance and dezincification resistance and manufacturing method thereof | |
JP5062829B2 (en) | Brass material and method for producing brass material | |
JP2002003967A (en) | Lead-free free cutting brass excellent in dezincification corrosion resistance and its production method | |
US3640781A (en) | Two-phase nickel-zinc alloy | |
JPH0617209A (en) | Manufacture of copper alloy for electrical and electronic apparatus | |
JPH06145930A (en) | Production of precipitation type copper alloy | |
JPH05132745A (en) | Production of aluminum alloy excellent in formability | |
KR910003882B1 (en) | Cu-alloy for electric parts and the process for making | |
CN113943876B (en) | Titanium alloy capable of realizing large deformation at room temperature and aging strengthening and application thereof | |
JPH07197150A (en) | Corrosion resistant copper group alloy material | |
JP4653239B2 (en) | Copper alloy materials and electrical / electronic parts for electrical / electronic equipment |