JP2000111281A - Planar heat pipe and manufacture thereof - Google Patents

Planar heat pipe and manufacture thereof

Info

Publication number
JP2000111281A
JP2000111281A JP10286706A JP28670698A JP2000111281A JP 2000111281 A JP2000111281 A JP 2000111281A JP 10286706 A JP10286706 A JP 10286706A JP 28670698 A JP28670698 A JP 28670698A JP 2000111281 A JP2000111281 A JP 2000111281A
Authority
JP
Japan
Prior art keywords
working fluid
heat pipe
metal
flat
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10286706A
Other languages
Japanese (ja)
Other versions
JP3552553B2 (en
Inventor
Aritaka Tatsumi
有孝 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP28670698A priority Critical patent/JP3552553B2/en
Publication of JP2000111281A publication Critical patent/JP2000111281A/en
Application granted granted Critical
Publication of JP3552553B2 publication Critical patent/JP3552553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin planar heat pipe with a large area at a low cost. SOLUTION: In a planer heat pipe 10 in which closed operating liquid passages 6 are filled with operating liquid L and the steam S of the operating liquid, grooves 5 of deformed section composed of shallow groove parts 3 and deep groove parts 4 are formed on a metallic flat plate 1. The groove forming surface of the metallic flat plate 1 is connected to a metallic flat plate 2 for a cover and the grooves 5 of deformed section are filled with the operating liquid L and the steam S of the operating liquid to form the operating liquid passages 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面状ヒートパイ
プ及びその製造方法に係り、特に、パソコン用CPU等
の半導体素子用ヒートシンクなどに用いられ、薄型・大
面積の平面状ヒートパイプ及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar heat pipe and a method of manufacturing the same, and more particularly to a thin, large-area planar heat pipe used for a heat sink for a semiconductor device such as a CPU for a personal computer and the like, and a method of manufacturing the same. It is about the method.

【0002】[0002]

【従来の技術】従来の平面状ヒートパイプとして、以下
のようなものが挙げられる。
2. Description of the Related Art Conventional planar heat pipes include the following.

【0003】 図14(a),(b)に示すように、
金属管の一端に封止部72、他端に作動液封入ノズル7
3を有する円筒状のヒートパイプを作製した後、プレス
等の手段によってパイプの外壁面の一部が平行面となる
ように成形加工を施して偏平ヒートパイプ71とし、そ
の偏平ヒートパイプ71を複数本(図14中では6本)
並べて集熱板74と接合してなる平面状ヒートパイプ。
As shown in FIGS. 14A and 14B,
A sealing portion 72 is provided at one end of the metal tube, and a working fluid filling nozzle 7 is provided at the other end.
After forming a cylindrical heat pipe having a flat heat pipe 71, a flat heat pipe 71 is formed by pressing or the like so that a part of the outer wall surface of the pipe becomes a parallel plane. Books (6 in FIG. 14)
A planar heat pipe formed by joining the heat collecting plates 74 side by side.

【0004】 図15(a),(b)に示すように、
加工が容易なアルミ(又はアルミ合金)を用いて偏平多
孔管81を押出加工し、その偏平多孔管81の一端に封
止材82、他端にヘッダ部材83を介して作動液封入ノ
ズル84を取り付けてなる平面状ヒートパイプ。
As shown in FIGS. 15A and 15B,
The flat porous tube 81 is extruded using aluminum (or an aluminum alloy) which is easy to process, and a sealing material 82 is provided at one end of the flat porous tube 81 and a working fluid sealing nozzle 84 is provided at the other end via a header member 83. A flat heat pipe attached.

【0005】 図16(a),(b)に示すように、
アルミ又は銅を素材としてロールボンド法などを用いて
作製した蛇行流路91を有する容器材料94を使用し、
蛇行流路91の一端を封止材92で封止すると共に、他
端に作動液封入ノズル93を取付けてなる平面状ヒート
パイプ。
As shown in FIGS. 16A and 16B,
Using a container material 94 having a meandering channel 91 made of a material such as aluminum or copper using a roll bonding method,
A planar heat pipe in which one end of a meandering flow path 91 is sealed with a sealing material 92 and a working liquid sealing nozzle 93 is attached to the other end.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た〜の平面状ヒートパイプには以下に示すような問
題があった。
However, the above-mentioned flat heat pipes have the following problems.

【0007】 の平面状ヒートパイプは、作動液の
蒸気圧と偏平ヒートパイプ71の平面壁の強度の関係か
ら、偏平ヒートパイプ71のアスペクト比(幅/厚さ)
を大きく取ることができないため、幅の狭い偏平ヒート
パイプ71しか作製することができず、大面積の平面状
ヒートパイプを作製しようとする場合、多数本の偏平ヒ
ートパイプ71を使用しなければならない。また、殆ど
の工業的用途においては、平面状ヒートパイプの少なく
とも一面は平滑面である必要があるが、偏平ヒートパイ
プ71を多数本並べても平滑面は得られないため、別の
金属平板(集熱板74)と接合しなければならず、平面
状ヒートパイプの製造コストの高騰を招くという問題が
あった。
The flat heat pipe 71 has an aspect ratio (width / thickness) of the flat heat pipe 71 from the relationship between the vapor pressure of the working fluid and the strength of the flat wall of the flat heat pipe 71.
Therefore, only a narrow flat heat pipe 71 can be manufactured, and when a large-area planar heat pipe is to be manufactured, a large number of flat heat pipes 71 must be used. . In most industrial applications, at least one surface of the flat heat pipe needs to be smooth. However, even if many flat heat pipes 71 are arranged, a smooth surface cannot be obtained. It has to be joined to the heat plate 74), which causes a problem that the production cost of the flat heat pipe is increased.

【0008】 の平面状ヒートパイプは、押出加工
装置の制約から、作製可能な集合ヒートパイプ81の最
小厚さと最大幅に制限があり、また、集合ヒートパイプ
81の端末の加工に手間が掛かるため、製造コストの高
騰を招くという問題があった。
The flat heat pipe has a limitation on the minimum thickness and the maximum width of the collectible heat pipe 81 that can be produced due to the restriction of the extrusion processing apparatus, and also requires time and effort to process the end of the collective heat pipe 81. However, there has been a problem that the production cost rises.

【0009】 の平面状ヒートパイプは、アルミを
素材とする冷蔵庫用の均熱材等に実用化されているが、
蛇行流路91として細い作動液流路の形成が困難である
ため容器材料94の厚さが厚くなり、半導体素子のよう
な小さな部材の冷却には適さない。また、蛇行流路91
の内面が平滑であるためウィック力が小さく、水平状態
〜トップヒート状態での作動が期待できないという欠点
があった。ここで、銅を素材とする同様なヒートパイプ
も作製されているが、こちらも寸法および重量が大きい
ため、半導体素子の冷却には適していない。
[0009] The flat heat pipe has been put to practical use as a soaking material for refrigerators using aluminum as a material.
Since it is difficult to form a thin working liquid flow path as the meandering flow path 91, the thickness of the container material 94 is increased, which is not suitable for cooling a small member such as a semiconductor element. In addition, the meandering channel 91
Has a disadvantage that the wicking force is small due to the smooth inner surface, and operation in the horizontal state to the top heat state cannot be expected. Here, a similar heat pipe made of copper is also manufactured, but is also not suitable for cooling a semiconductor element because of its large size and weight.

【0010】そこで本発明は、上記課題を解決し、薄型
で、かつ、大面積な平面状ヒートパイプを低コストで製
造する方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a thin, large-area planar heat pipe at low cost.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、密閉された作動液流路内に、作動
液と作動液の蒸気を満たした平面状ヒートパイプにおい
て、金属平板に浅溝部と深溝部からなる異形断面溝を形
成し、その金属平板の溝形成面とカバー用金属平板を接
合すると共に、上記異形断面溝に上記作動液と上記作動
液の蒸気を封入して上記作動液流路としたものである。
According to a first aspect of the present invention, there is provided a flat heat pipe filled with a working fluid and a working fluid vapor in a closed working fluid flow path. A deformed cross-sectional groove consisting of a shallow groove portion and a deep groove portion is formed on a flat plate, and the groove forming surface of the metal flat plate is joined to the cover metal flat plate, and the above-mentioned deformed cross-sectional groove is filled with the working fluid and the vapor of the working fluid. The working fluid flow path.

【0012】請求項2の発明は、上記異形断面溝は、上
記金属平板の端面に連通せず、かつ、複数個形成されて
いる請求項1記載の平面状ヒートパイプである。
According to a second aspect of the present invention, there is provided the planar heat pipe according to the first aspect, wherein a plurality of the irregular cross-sectional grooves are not formed in communication with an end face of the flat metal plate, and a plurality of the grooves are formed.

【0013】請求項3の発明は、上記異形断面溝の深溝
部が上記作動液の蒸気を流すための蒸気流路であると共
に、上記浅溝部が上記作動液を流すための液流路である
請求項1又は請求項2記載の平面状ヒートパイプであ
る。
According to a third aspect of the present invention, the deep groove portion of the irregularly shaped cross-sectional groove is a vapor flow path for flowing the vapor of the working fluid, and the shallow groove portion is a liquid flow path for flowing the working fluid. A planar heat pipe according to claim 1 or 2.

【0014】以上の構成によれば、大きなウィック力を
有した、すなわち、毛細管作用を有した作動液流路を有
する薄型・大面積な平面状ヒートパイプを得ることがで
きる。また、この平面状ヒートパイプは特定の作動液封
入部を必要としない。
According to the above configuration, it is possible to obtain a thin, large-area planar heat pipe having a large wicking force, that is, having a working fluid flow path having a capillary action. Further, this planar heat pipe does not require a specific working fluid sealing portion.

【0015】請求項4の発明は、上記金属平板に、上記
各異形断面溝を相互に連結するための異形断面連結溝を
形成した請求項2又は請求項3記載の平面状ヒートパイ
プである。
According to a fourth aspect of the present invention, there is provided a flat heat pipe according to the second or third aspect, wherein the metal flat plate is formed with a connection groove for connecting the above-mentioned grooves having different shapes.

【0016】以上の構成によれば、平面状ヒートパイプ
の温度分布が更に小さくなる。
According to the above configuration, the temperature distribution of the planar heat pipe is further reduced.

【0017】請求項5の発明は、密閉された作動液流路
内に、作動液と作動液の蒸気を満たした平面状ヒートパ
イプの製造方法において、浅溝部と深溝部からなる異形
断面溝が形成された金属平板の溝形成面とカバー用金属
平板を、所定の間隔を設けて相対させ、その後、所定密
度の作動液蒸気雰囲気中、両金属平板の温度を作動液蒸
気の飽和温度以上の温度に保った状態で、両金属平板を
接近・接触させると共に、接合面を金属的に接合して作
動液流路の形成と作動液流路内への作動液および作動液
蒸気の封入を同時に行うものである。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a flat heat pipe filled with a working fluid and a vapor of the working fluid in a closed working fluid flow path, wherein the irregularly shaped groove having a shallow groove portion and a deep groove portion is provided. The groove forming surface of the formed flat metal plate and the flat metal plate for the cover are opposed to each other at a predetermined interval, and then, in a working fluid vapor atmosphere of a predetermined density, the temperature of both metal flat plates is equal to or higher than the saturation temperature of the working fluid vapor. While maintaining the temperature, the two metal flat plates are brought close to and in contact with each other, and the joining surfaces are joined together metallically to form the working fluid flow path and simultaneously fill the working fluid flow path with the working fluid and the working fluid vapor. Is what you do.

【0018】請求項6の発明は、上記両金属平板の相対
する面に、予め、接合用金属の層を均一に形成しておく
と共に、少なくともどちらか一方の面に接合用金属製の
突起を形成しておく又は上記層間に接合用金属製の粒を
介在させて上記間隔を設ける請求項5記載の平面状ヒー
トパイプの製造方法である。
According to a sixth aspect of the present invention, a joining metal layer is uniformly formed in advance on opposite surfaces of the two metal flat plates, and a joining metal projection is formed on at least one of the surfaces. 6. The method for manufacturing a planar heat pipe according to claim 5, wherein said gap is formed by forming or by interposing metal particles for bonding between said layers.

【0019】請求項7の発明は、上記間隔を保ちながら
相対させると共に、両金属平板が接近する方向に圧力を
加え、所定密度の作動液蒸気の飽和雰囲気中、両金属平
板を接合用金属の融点以上の温度に加熱し、上記接合用
金属を溶融させて上記接合面を金属的に接合する請求項
5又は請求項6記載の平面状ヒートパイプの製造方法で
ある。
According to a seventh aspect of the present invention, the two metal plates are opposed to each other while maintaining the distance therebetween, and a pressure is applied in a direction in which the two metal plates approach each other, and the two metal plates are joined in a saturated atmosphere of a working liquid vapor having a predetermined density. The method for manufacturing a flat heat pipe according to claim 5 or 6, wherein the joining surface is metallically joined by heating to a temperature not lower than the melting point to melt the joining metal.

【0020】請求項8の発明は、上記間隔を保ちながら
相対させると共に、両金属平板が接近する方向に圧力を
加え、所定密度の作動液蒸気の飽和雰囲気中、両金属平
板に超音波を付与して上記接合面を金属的に接合する請
求項5又は請求項6記載の平面状ヒートパイプの製造方
法である。
According to an eighth aspect of the present invention, the two metal flat plates are opposed to each other while maintaining the distance therebetween, and pressure is applied in a direction in which the two metal flat plates approach to each other, and ultrasonic waves are applied to the two metal flat plates in a saturated atmosphere of a working liquid vapor having a predetermined density. The method according to claim 5 or 6, wherein the joining surface is metallically joined.

【0021】以上の製造方法によれば、毛細管作用を有
した作動液流路を有する薄型・大面積な平面状ヒートパ
イプを、製造容易に、かつ、安価に作製することができ
る。
According to the above-described manufacturing method, a thin, large-area planar heat pipe having a working fluid flow path having a capillary action can be manufactured easily and at low cost.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0023】図13に示すように、横断面が三角形の微
細な作動液流路61を有するヒートパイプは、作動液流
路61の各頂点近傍で毛細管現象が生じ、作動液流路6
1の各頂点近傍は作動液Lが流れる液流路62となると
共に、作動液流路61の中央部は作動液蒸気Sが流れる
蒸気流路63となり、ヒートパイプとして作動可能とな
る。このようなヒートパイプがGroverによって提唱され
ており、一般に、「マイクロヒートパイプ」として知ら
れている。
As shown in FIG. 13, in a heat pipe having a fine working fluid flow path 61 having a triangular cross section, a capillary phenomenon occurs near each apex of the working fluid flow path 61 and the working fluid flow path 6
The vicinity of each vertex of 1 becomes a liquid flow path 62 through which the working liquid L flows, and the central part of the working liquid flow path 61 becomes a steam flow path 63 through which the working liquid vapor S flows, and can be operated as a heat pipe. Such a heat pipe has been proposed by Grover and is generally known as a "micro heat pipe".

【0024】本発明者らは、このマイクロヒートパイプ
の作動原理を利用し、毛細管作用を有し、かつ、液流路
と蒸気流路が明確に区分された平面状ヒートパイプの発
明に至った。
The present inventors have made use of the principle of operation of this micro heat pipe to arrive at the invention of a planar heat pipe having a capillary action and in which a liquid flow path and a vapor flow path are clearly separated. .

【0025】本発明の平面状ヒートパイプの横断面図を
図1に、本発明の平面状ヒートパイプの上面図の一例を
図3乃至図6に示す。ここで、図1(b)は、図1
(a)の要部拡大図である。
FIG. 1 shows a cross-sectional view of the planar heat pipe of the present invention, and FIGS. 3 to 6 show examples of top views of the planar heat pipe of the present invention. Here, FIG.
It is a principal part enlarged view of (a).

【0026】図1(a),(b)に示すように、本発明
の平面状ヒートパイプ10は、表面が平滑な金属平板1
の片面に浅溝部3と深溝部4からなる異形断面溝5を形
成し、その金属平板1の溝形成面に、表面が平滑な蓋板
(カバー用金属平板)2を接合し、異形断面溝5と蓋板
2で形成される密閉空間を作動液Lと作動液蒸気Sを封
入するための作動液流路6としたものである。
As shown in FIGS. 1 (a) and 1 (b), a flat heat pipe 10 of the present invention has a flat metal plate 1 having a smooth surface.
A grooved surface 5 having a shallow groove portion 3 and a deep groove portion 4 is formed on one surface thereof, and a cover plate (metal plate for cover) 2 having a smooth surface is joined to the groove forming surface of the metal plate 1 to form a groove having a deformed cross section. The closed space formed by the cover 5 and the cover plate 2 is a working fluid flow path 6 for filling the working fluid L and the working fluid vapor S.

【0027】金属平板1および蓋板2の構成材として
は、例えば、銅などが挙げられるが、特に限定するもの
ではない。
As a constituent material of the metal flat plate 1 and the cover plate 2, for example, copper and the like can be cited, but there is no particular limitation.

【0028】異形断面溝5は金属平板1の端面に連通し
ないように、すなわち、その異形断面溝5の一部が金属
平板1の端面に臨むことがないように形成されており、
その溝数は任意(図1(a)中では5個)である。異形
断面溝5の深溝部4と蓋板2で形成される空間が作動液
蒸気Sを流すための蒸気流路となると共に、浅溝部3と
蓋板2で囲まれた空間が作動液Lを流すための液流路と
なる。尚、異形断面溝5の形成方法は特に限定するもの
ではない。
The modified cross-sectional groove 5 is formed so as not to communicate with the end face of the metal flat plate 1, that is, so that a part of the modified cross-sectional groove 5 does not face the end face of the metal flat plate 1.
The number of the grooves is arbitrary (five in FIG. 1A). The space formed by the deep groove portion 4 of the modified cross-sectional groove 5 and the cover plate 2 serves as a steam flow path for flowing the working fluid vapor S, and the space surrounded by the shallow groove portion 3 and the cover plate 2 stores the working fluid L. It becomes a liquid flow path for flowing. In addition, the method of forming the irregular cross-sectional groove 5 is not particularly limited.

【0029】また、各異形断面溝5を異形断面連結溝
(図示せず)で連結し、図6に示すように、各作動液流
路6が連結流路7で連結された一体型作動液流路8とし
てもよい。
Further, each of the modified cross-sectional grooves 5 is connected by a modified cross-section connecting groove (not shown), and as shown in FIG. The channel 8 may be used.

【0030】さらに、異形断面溝5の浅溝部3は深溝部
4の長手方向に沿って少なくとも1つあればよく、ま
た、浅溝部3および深溝部4の横断面形状は特に限定す
るものではない。
Further, at least one shallow groove portion 3 of the modified cross-sectional groove 5 may be provided along the longitudinal direction of the deep groove portion 4, and the cross-sectional shapes of the shallow groove portion 3 and the deep groove portion 4 are not particularly limited. .

【0031】また更に、作動液流路6(異形断面溝5)
の形状は、図3乃至図6に示すように、直線状、湾曲直
線状、同心円状、放射状であってもよく、特に限定する
ものではない。
Further, the working fluid flow path 6 (irregular sectional groove 5)
May be linear, curved linear, concentric, or radial as shown in FIGS. 3 to 6, and is not particularly limited.

【0032】すなわち、本発明の平面状ヒートパイプ1
0によれば、金属平板1に形成された異形断面溝5と蓋
板2で形成される密閉空間を作動液流路6としているた
め、ウィック力が大きく、薄型で、大面積な平面状ヒー
トパイプを得ることができる。
That is, the planar heat pipe 1 of the present invention
According to No. 0, the closed space formed by the irregular cross-sectional groove 5 formed in the metal flat plate 1 and the cover plate 2 is used as the working fluid flow path 6, so that the wicking force is large, and the thin and large-area flat heat You can get a pipe.

【0033】また、作動液流路6内に封入する作動液L
および作動液蒸気Sは、作動液流路6の形成時に同時封
入されるため、作動液流路6に特定の作動液封入部を設
ける必要がない。
The hydraulic fluid L sealed in the hydraulic fluid flow path 6
Since the working fluid vapor S is simultaneously sealed when the working fluid flow path 6 is formed, it is not necessary to provide a specific working fluid sealing portion in the working fluid flow path 6.

【0034】さらに、各作動液流路6がそれぞれ独立し
た状態であっても平面状ヒートパイプ10の平面内の温
度分布は小さいが、各作動液流路6を連結流路7で連結
させて一体型作動液流路8とすることで、更に温度分布
を小さくすることが可能となる。
Furthermore, even though the respective working fluid passages 6 are independent of each other, the temperature distribution in the plane of the planar heat pipe 10 is small, but the respective working fluid passages 6 are connected by the connection passages 7. The temperature distribution can be further reduced by forming the integrated hydraulic fluid channel 8.

【0035】また更に、本発明の平面状ヒートパイプ1
0を作製した後、その平面状ヒートパイプ10に対して
曲げ加工や穴開け加工などを施すことが可能である。
Furthermore, the flat heat pipe 1 of the present invention
After the production of No. 0, the flat heat pipe 10 can be subjected to bending or boring.

【0036】次に、本発明の平面状ヒートパイプの製造
に用いる装置を説明する。
Next, an apparatus used for manufacturing the flat heat pipe of the present invention will be described.

【0037】本発明の平面状ヒートパイプの製造装置の
一例を示す模式図を図9に、図9の部分拡大図を図10
に示す。
FIG. 9 is a schematic view showing an example of a flat heat pipe manufacturing apparatus of the present invention, and FIG. 10 is a partially enlarged view of FIG.
Shown in

【0038】図9および図10に示すように、本発明の
平面状ヒートパイプの製造装置は、上側加熱・冷却板2
1と、上側加熱・冷却板21に相対して設けられた下側
加熱・冷却板22と、上側の加熱・冷却板22全体を覆
うと共に、パッキン29を介して下側の加熱・冷却板2
2上に取外し自在に取り付けられた逆深皿状の上部構造
体25と、その上部構造体25と一体に設けられた加圧
装置26で主に構成されている。ここで、上部構造体2
5と下側の加熱・冷却板22とで囲まれた空間がチャン
バー27を形成する。
As shown in FIGS. 9 and 10, the apparatus for manufacturing a flat heat pipe according to the present invention comprises an upper heating / cooling plate 2
1, a lower heating / cooling plate 22 provided opposite to the upper heating / cooling plate 21, and an entire upper heating / cooling plate 22, and a lower heating / cooling plate 2
It mainly comprises an inverted deep dish-shaped upper structure 25 detachably mounted on the upper surface 2 and a pressurizing device 26 provided integrally with the upper structure 25. Here, the upper structure 2
A space surrounded by the lower heating / cooling plate 22 and the lower heating / cooling plate 22 forms a chamber 27.

【0039】上側の加熱・冷却板21は、ベロー28を
介して上部構造体25に支持されており、上下動自在に
設けられている。また、上側の加熱・冷却板21および
下側の加熱・冷却板22内には、熱媒循環流路23,2
4が形成されている。
The upper heating / cooling plate 21 is supported by the upper structure 25 via a bellows 28, and is provided to be vertically movable. Heat medium circulation channels 23 and 2 are provided in the upper heating / cooling plate 21 and the lower heating / cooling plate 22.
4 are formed.

【0040】熱媒循環流路23の一端にはベロー30a
を備えた熱媒配管30および熱媒供給ライン33aが、
熱媒循環流路24の一端には熱媒供給ライン33bが接
続されており、熱媒供給ライン33a,33bは途中で
1本の熱媒供給ライン33に統合される。統合された熱
媒供給ライン33には、低温熱媒供給ライン34の一端
および高温熱媒供給ライン35の一端がそれぞれ接続さ
れている。低温熱媒供給ライン34の他端は低温熱媒N
L が満たされた低温熱媒タンクに接続されており、高温
熱媒供給ライン35の他端は高温熱媒NH が満たされた
高温熱媒タンク32に接続されている。
A bellows 30a is provided at one end of the heat medium circulation passage 23.
The heat medium pipe 30 and the heat medium supply line 33a provided with
A heat medium supply line 33b is connected to one end of the heat medium circulation passage 24, and the heat medium supply lines 33a and 33b are integrated into one heat medium supply line 33 on the way. One end of a low-temperature heating medium supply line 34 and one end of a high-temperature heating medium supply line 35 are connected to the integrated heating medium supply line 33. The other end of the low-temperature heat medium supply line 34 is a low-temperature heat medium N
The low-temperature heating medium tank filled with L is connected, and the other end of the high-temperature heating medium supply line 35 is connected to the high-temperature heating medium tank 32 filled with the high-temperature heating medium NH .

【0041】ここで、低温熱媒供給ライン34および高
温熱媒供給ライン35には、それぞれポンプおよびバル
ブが設けられている。また、低温熱媒タンク31はヒー
タと冷却手段(例えば、冷却コイル)を、高温熱媒タン
ク32はヒータを備えている。
Here, the low-temperature heating medium supply line 34 and the high-temperature heating medium supply line 35 are provided with a pump and a valve, respectively. The low-temperature heat medium tank 31 includes a heater and a cooling unit (for example, a cooling coil), and the high-temperature heat medium tank 32 includes a heater.

【0042】また、熱媒循環流路23の他端にはベロー
36aを備えた熱媒配管36および熱媒回収ライン37
aが、熱媒循環流路24の他端には熱媒回収ライン37
bが接続されており、熱媒回収ライン37a,37bは
途中で1本の熱媒回収ライン37に統合される。熱媒回
収ライン37には、切替バルブを介して、低温熱媒回収
ライン38の一端および高温熱媒回収ライン39の一端
がそれぞれ接続されている。低温熱媒回収ライン38の
他端は低温熱媒タンク31に接続されており、高温熱媒
回収ライン39の他端は高温熱媒タンク32に接続され
ている。
At the other end of the heat medium circulation channel 23, a heat medium pipe 36 having a bellows 36a and a heat medium recovery line 37
a is a heat medium recovery line 37 at the other end of the heat medium circulation flow path 24.
b is connected, and the heat medium recovery lines 37a and 37b are integrated into one heat medium recovery line 37 on the way. One end of a low-temperature heat medium recovery line 38 and one end of a high-temperature heat medium recovery line 39 are connected to the heat medium recovery line 37 via a switching valve. The other end of the low-temperature heat medium recovery line 38 is connected to the low-temperature heat medium tank 31, and the other end of the high-temperature heat medium recovery line 39 is connected to the high-temperature heat medium tank 32.

【0043】下側の加熱・冷却板22には、一端がチャ
ンバー27に臨んだ供給穴41および排気穴42が形成
されている。
The lower heating / cooling plate 22 has a supply hole 41 and an exhaust hole 42 whose one end faces the chamber 27.

【0044】供給穴41の他端は作動液供給ライン44
に接続されており、作動液供給ライン44は作動液タン
ク43に接続されている。また、排気穴42の他端は排
気ライン45に接続されており、その排気ライン45は
途中から真空引ライン46、作動液回収ライン48、お
よび大気開放ライン50の3つのラインに分岐してい
る。真空引ライン46には真空ポンプ47が設けられて
おり、作動液回収ライン48は作動液回収タンク49に
接続されている。
The other end of the supply hole 41 is connected to a working fluid supply line 44.
The working fluid supply line 44 is connected to the working fluid tank 43. The other end of the exhaust hole 42 is connected to an exhaust line 45, and the exhaust line 45 branches from the middle into three lines: a vacuum line 46, a hydraulic fluid recovery line 48, and an atmosphere release line 50. . A vacuum pump 47 is provided in the evacuation line 46, and a hydraulic fluid recovery line 48 is connected to a hydraulic fluid recovery tank 49.

【0045】ここで、作動液供給ライン44、真空引ラ
イン46、作動液回収ライン48、および大気開放ライ
ン50のそれぞれにはバルブが設けられている。
Here, a valve is provided for each of the working fluid supply line 44, the evacuation line 46, the working fluid recovery line 48, and the atmosphere release line 50.

【0046】次に、本発明の製造方法を説明する。Next, the manufacturing method of the present invention will be described.

【0047】片面に異形断面溝5が形成された金属平板
(例えば、金属銅板)1の溝形成面に対して所定の隙間
を設けて蓋板(例えば、金属銅板)2を対面させる。
A cover plate (for example, a metal copper plate) 2 faces a groove forming surface of a metal flat plate (for example, a metal copper plate) 1 having a modified cross-sectional groove 5 formed on one side thereof.

【0048】具体的には、図10に示すように、接合し
ようとする金属平板1の異形断面溝5を除いた部分およ
び金属平板1と相対する面の蓋板2の全面に、予め、ハ
ンダ(例えば、Sn−3.5Agハンダ)等の接合金属
層51をメッキなどの手段で付着形成しておくと共に、
接合金属材の粒(又は突起)からなるスペーサ52を両
面間に適宜配置した状態で、上側の加熱・冷却板21お
よび下側の加熱・冷却板22の間に挟み込んでチャンバ
ー27内にセットする。
More specifically, as shown in FIG. 10, soldering is performed in advance on a portion of the metal plate 1 to be joined except for the deformed cross-sectional groove 5 and on the entire surface of the cover plate 2 facing the metal plate 1. (For example, Sn-3.5Ag solder) or the like, and a bonding metal layer 51 is formed by means of plating or the like.
In a state where spacers 52 made of particles (or protrusions) of a joining metal material are appropriately arranged between both surfaces, the spacers 52 are sandwiched between the upper heating / cooling plate 21 and the lower heating / cooling plate 22 and set in the chamber 27. .

【0049】ここで、両加熱・冷却板21,22の熱媒
循環流路23,24に、低温熱媒タンク31および高温
熱媒タンク32から各ラインを介して低温熱媒(約40
0K(127℃))NL および高温熱媒(約520K
(247℃))NH を循環供給することにより、両加熱
・冷却板21,22の温度調節が可能であるが、この時
点では熱媒循環流路23,24に低温熱媒NL を循環供
給し、両加熱・冷却板21,22の温度を作動液蒸気
(例えば、フロンR−114)Sの封入温度(約400
K)に保っておく。
Here, the low-temperature heat medium (approximately 40) is supplied from the low-temperature heat medium tank 31 and the high-temperature heat medium tank 32 to the heat medium circulation passages 23 and 24 of the heating / cooling plates 21 and 22 via the respective lines.
0K (127 ° C)) N L and high-temperature heat carrier (about 520K
(247 ° C.)) By circulating and supplying NH , the temperature of both the heating and cooling plates 21 and 22 can be adjusted. At this time, the low-temperature heat medium NL is circulated through the heat medium circulation passages 23 and 24. The heating and cooling plates 21 and 22 are supplied and the temperature of the working fluid vapor (for example, Freon R-114) S is filled (about 400 ° C.).
K).

【0050】次に、真空ライン46のバルブを開くと共
に、真空ポンプ47を作動させ、排気穴42を介してチ
ャンバー27内を略真空にする。その後、真空ライン4
6のバルブを閉じた後、作動液供給ライン44のバルブ
を開くと共に、供給穴41を介してチャンバー27内に
所定の密度を有する作動液蒸気Sを注入する。その後、
チャンバー27内が作動液蒸気Sで飽和した後、作動液
供給ライン44のバルブを閉じる。
Next, the valve of the vacuum line 46 is opened, and the vacuum pump 47 is operated to evacuate the inside of the chamber 27 through the exhaust hole 42. Then, vacuum line 4
After closing the valve of No. 6, the valve of the working fluid supply line 44 is opened, and the working fluid vapor S having a predetermined density is injected into the chamber 27 through the supply hole 41. afterwards,
After the inside of the chamber 27 is saturated with the working fluid vapor S, the valve of the working fluid supply line 44 is closed.

【0051】次に、熱媒循環流路23,24に循環供給
する熱媒を、低温熱媒NL から高温熱媒NH に切替え、
両加熱・冷却板21,22の温度を接合金属の溶融温度
(約520K)まで上昇させると共に、上側の加熱・冷
却板21を下側の加熱・冷却板22の方向に加圧して金
属平板1および蓋板2を加圧し、両板1,2の接合面の
接合金属層51およびスペーサ52を溶融させる。これ
によって、両板1,2の接合面が密着接合されて両板
1,2の内部に各作動液流路6が形成され、かつ、その
各作動液流路6内に作動液蒸気Sが閉じこめられる。
Next, the heat medium circulating and supplied to the heat medium circulation channels 23 and 24 is switched from the low-temperature heat medium NL to the high-temperature heat medium NH .
The temperature of the two heating / cooling plates 21 and 22 is raised to the melting temperature of the joining metal (about 520 K), and the upper heating / cooling plate 21 is pressed in the direction of the lower heating / cooling plate 22 so that the metal flat plate 1 is pressed. Then, the cover plate 2 is pressed to melt the joining metal layer 51 and the spacer 52 on the joining surface of the two plates 1 and 2. Thereby, the joining surfaces of the two plates 1 and 2 are tightly joined to form the respective working fluid passages 6 inside the two plates 1 and 2, and the working fluid vapor S is formed in the respective working fluid passages 6. You are trapped.

【0052】その後、熱媒循環流路23,24に循環供
給する熱媒を、高温熱媒NH から低温熱媒NL に切替え
ると共に、両加熱・冷却板21,22を冷却して、溶融
した接合金属を固化させて平面状ヒートパイプ10を得
る。これによって、両板1,2の内部に密閉された各作
動液流路6が形成される。また、その各作動液流路6内
に封入された作動液蒸気Sは、凝縮して作動液Lと作動
液蒸気Sになる。
Thereafter, the heat medium circulated to the heat medium circulation channels 23 and 24 is switched from the high-temperature heat medium NH to the low-temperature heat medium NL , and the heating / cooling plates 21 and 22 are cooled and melted. The flattened heat pipe 10 is obtained by solidifying the joined metal. As a result, each of the working fluid passages 6 sealed inside the plates 1 and 2 is formed. The hydraulic fluid vapor S sealed in each hydraulic fluid flow path 6 condenses into a hydraulic fluid L and a hydraulic fluid vapor S.

【0053】次に、作動液回収ライン48のバルブを開
き、排気穴42、排気ライン45、および作動液回収ラ
イン48を介して作動液蒸気Sを作動液回収タンク49
に回収する。この時、作動液蒸気Sは、作動液回収タン
ク49内の冷却手段により冷却されて作動液Lとして回
収され、作動液タンク43で再利用される。
Next, the valve of the hydraulic fluid recovery line 48 is opened, and the hydraulic fluid vapor S is supplied to the hydraulic fluid recovery tank 49 through the exhaust hole 42, the exhaust line 45, and the hydraulic fluid recovery line 48.
To be collected. At this time, the hydraulic fluid vapor S is cooled by the cooling means in the hydraulic fluid recovery tank 49, collected as the hydraulic fluid L, and reused in the hydraulic fluid tank 43.

【0054】次に、作動液回収ライン48のバルブを閉
じた後、大気開放ライン50のバルブを開いてチャンバ
ー27内に大気(外気)を注入する。
Next, after closing the valve of the working fluid recovery line 48, the valve of the atmosphere release line 50 is opened to inject the atmosphere (outside air) into the chamber 27.

【0055】最後に、上部構造体25および上側の加熱
・冷却板21を取り外して平面状ヒートパイプ10を取
り出す。
Finally, the upper structure 25 and the upper heating / cooling plate 21 are removed, and the flat heat pipe 10 is taken out.

【0056】ここで、作動液流路6内の作動液Lの封入
率(作動液流路6の全容積に対する作動液Lの体積の割
合)は、平面状ヒートパイプ10の形成時における作動
液Lの蒸気密度(温度関数)で容易に調整することがで
きる。本発明の平面状ヒートパイプ10の作動液Lとし
て用いるフロンR−114の飽和状態における液と蒸気
の密度ρ′,ρ″と温度の関係および圧力と温度の関係
を図7に示す。
Here, the encapsulation rate of the working fluid L in the working fluid flow path 6 (the ratio of the volume of the working fluid L to the total volume of the working fluid flow path 6) depends on the working fluid L when the heat pipe 10 is formed. It can be easily adjusted by the vapor density (temperature function) of L. FIG. 7 shows the relationship between the liquid and vapor densities ρ ′, ρ ″ and the temperature and the relationship between the pressure and the temperature in the saturated state of the Freon R-114 used as the working liquid L of the planar heat pipe 10 of the present invention.

【0057】図7に示すように、両加熱・冷却板21,
22の温度が常温T1 の時の飽和液の密度をρ1 ′、両
加熱・冷却板21,22の温度をT2 に上昇させた時の
飽和蒸気の密度をρ2 ″とすると、密度ρ2 ″の作動液
蒸気Sを作動液流路6内に封入した後、全体の温度をT
1 まで冷却した場合、作動液流路6内の作動液蒸気Sの
大部分は凝縮して密度ρ1 ′の作動液Lと密度ρ1 ″の
飽和作動液蒸気Sとなる。したがって、作動液流路6内
における作動液Lの封入率は、 ψ(%)=(ρ2 ″/ρ1 ′)×100 となる。
As shown in FIG. 7, both heating / cooling plates 21 and
Assuming that the density of the saturated liquid when the temperature of the sample 22 is the normal temperature T 1 is ρ 1 ′, and the density of the saturated vapor when the temperatures of the heating and cooling plates 21 and 22 are raised to T 2 is ρ 2 ″, the density After the working fluid vapor S of ρ 2 ″ is sealed in the working fluid flow path 6, the entire temperature is reduced to T
When cooling to 1, most of the hydraulic fluid steam S of the working fluid flow path 6 is the working fluid L and the saturated hydraulic fluid steam S of the density [rho 1 "of the density [rho 1 'condensed. Therefore, hydraulic fluid The enclosing rate of the working fluid L in the flow path 6 is as follows: ψ (%) = (ρ 2 ″ / ρ 1 ′) × 100

【0058】作動液封入率と温度との関係を図8に示
す。
FIG. 8 shows the relationship between the working fluid filling rate and the temperature.

【0059】通常のヒートパイプにおいては、作動液L
の封入率(ψ)が10〜30%程度であり、例えば、T
1 を300K(27℃)、ψを15%とすると、図8に
示すように、作動液蒸気Sの封入温度T2 は約400K
(127℃)とすればよいことがわかる。この時の作動
液蒸気Sの蒸気圧は、図7に示したように、約2.4M
Paであり、比較的低圧である。
In a normal heat pipe, the working fluid L
Is about 10 to 30%, for example, T
1 300K (27 ° C.), when 15% of [psi, as shown in FIG. 8, enclosed temperature T 2 of the hydraulic fluid steam S is about 400K
(127 ° C.). At this time, the vapor pressure of the working fluid vapor S is about 2.4M as shown in FIG.
Pa and relatively low pressure.

【0060】両板1,2の金属接合は作動液Lの分解温
度以下で行う必要があり、両板1,2の素材として銅を
用いる場合、両板1,2の金属接合方法としては、ハン
ダ付け法(例えば、Sn−3.5Ag又はSn−35P
bなどの低温ハンダを使用)、純Snを用いたSn拡散
接合法、超音波圧接法、或いはこれらの複合法(例え
ば、接合用金属を介在させた超音波圧接法など)を用い
ることができる。
The metal joining of the two plates 1 and 2 needs to be performed at a temperature lower than the decomposition temperature of the working fluid L. When copper is used as the material of the two plates 1 and 2, the metal joining method of the two plates 1 and 2 is as follows. Soldering method (for example, Sn-3.5Ag or Sn-35P
b), a Sn diffusion bonding method using pure Sn, an ultrasonic pressure welding method, or a combination thereof (for example, an ultrasonic pressure welding method with a bonding metal interposed) can be used. .

【0061】また、作動液Lとしては、フロン、パーフ
ロロカーボン、メタノールなどが使用可能である。
As the working fluid L, chlorofluorocarbon, perfluorocarbon, methanol or the like can be used.

【0062】尚、本発明の平面状ヒートパイプの製造方
法においては、金属平板1および蓋板2の構成材として
銅を、接合金属層51およびスペーサ52の構成材とし
てSn−3.5Agからなるハンダを、作動液Lとして
フロンR−114を用いているが、この組み合わせに特
に限定するものではなく、両板1,2の接合温度で作動
液Lが熱分解されず、両板1,2を広範囲に亘って気密
に接合可能で、平面状ヒートパイプ10として使用中に
不凝縮性ガス又は腐食の発生がなく、平面状ヒートパイ
プ10の使用温度範囲における作動液蒸気Sの蒸気圧が
高すぎず、作動液Lが不燃性である等の条件を満たす組
み合わせであればよい。
In the method of manufacturing a flat heat pipe of the present invention, copper is used as a material for the metal flat plate 1 and the cover plate 2, and Sn-3.5Ag is used as a material for the bonding metal layer 51 and the spacer 52. Although CFC R-114 is used as the working fluid L as the solder, the combination is not particularly limited. The working fluid L is not thermally decomposed at the joining temperature of the two plates 1 and 2, Can be joined air-tight over a wide range, there is no generation of non-condensable gas or corrosion during use as the planar heat pipe 10, and the vapor pressure of the working fluid vapor S in the operating temperature range of the planar heat pipe 10 is high. Any combination that satisfies conditions such as the non-flammability of the working fluid L may be used.

【0063】すなわち、本発明の平面状ヒートパイプの
製造方法によれば、作動液流路6の形成と作動液流路6
内への作動液Lおよび作動液蒸気Sの封入を同時に行っ
ているため、製造工程が簡略となり、製造コストの低減
を図ることができる。
That is, according to the method for manufacturing a planar heat pipe of the present invention, the formation of the working fluid flow path 6 and the working fluid flow path 6
Since the working fluid L and the working fluid vapor S are simultaneously sealed in the inside, the manufacturing process is simplified, and the manufacturing cost can be reduced.

【0064】また、平面状ヒートパイプ10の作動温度
の最高値を373K(100℃)とした時のフロンR−
114の飽和蒸気圧は、図7に示したように、約1.5
MPaであるため、作動液流路6の幅を小さくすること
により、蓋板2の厚さを薄くすることができ、平面状ヒ
ートパイプ10の薄型化を図ることが可能となる。
When the maximum value of the operating temperature of the flat heat pipe 10 is 373 K (100 ° C.), Freon R-
The saturated vapor pressure of 114 is about 1.5, as shown in FIG.
Since the pressure is MPa, the thickness of the cover plate 2 can be reduced by reducing the width of the working liquid flow path 6, and the thickness of the planar heat pipe 10 can be reduced.

【0065】さらに、作動液蒸気Sが封入される時点で
は、各作動液流路6の内・外部に圧力差が殆どない(作
動液蒸気Sの流れが生じていない)ため、金属接合に悪
影響を及ぼすことはない。
Further, at the time when the working fluid vapor S is sealed, there is almost no pressure difference between the inside and outside of each working fluid flow path 6 (the flow of the working fluid vapor S is not generated). Does not affect.

【0066】また更に、両板1,2の接合面近傍にある
作動液蒸気Sは、両板1,2の接合温度が作動液蒸気S
の飽和温度より高いことから“乾き蒸気”の状態になっ
ており、ハンダ等の接合金属層51およびスペーサ52
に対して不活性であるため、金属接合に悪影響を及ぼす
ことはない。
Further, the working fluid vapor S in the vicinity of the joint surface between the two plates 1 and 2 has the joining temperature of the working fluid vapor S
Is higher than the saturation temperature of the substrate, and is in a “dry steam” state.
, It does not adversely affect metal bonding.

【0067】次に、本発明の他の実施の形態を説明す
る。
Next, another embodiment of the present invention will be described.

【0068】他の実施の形態の平面状ヒートパイプの横
断面図を図2に示す。尚、図1と同様の部材には同じ符
号を付している。
FIG. 2 shows a cross-sectional view of a planar heat pipe according to another embodiment. The same members as those in FIG. 1 are denoted by the same reference numerals.

【0069】本発明の平面状ヒートパイプ10は、図1
に示したように、表面が平滑な金属平板1の片面に浅溝
部3と深溝部4からなる異形断面溝5を形成したもので
あった。
The flat heat pipe 10 of the present invention is shown in FIG.
As shown in FIG. 5, a metal plate 1 having a smooth surface was formed with a modified cross-sectional groove 5 consisting of a shallow groove 3 and a deep groove 4 on one surface.

【0070】これに対して、本実施の形態の平面状ヒー
トパイプ11は、図2に示すように、表面が平滑な金属
平板1の両面に浅溝部3と深溝部4からなる異形断面溝
5を形成し、その金属平板1の両面に、表面が平滑な蓋
板2a,2bを接合し、異形断面溝5と蓋板2a,2b
で囲まれた空間を作動液(図示せず)と作動液蒸気(図
示せず)を封入するための作動液流路6としたものであ
る。
On the other hand, as shown in FIG. 2, the flat heat pipe 11 according to the present embodiment has a deformed cross-sectional groove 5 comprising a shallow groove 3 and a deep groove 4 on both sides of a flat metal plate 1 having a smooth surface. Are formed on both sides of the metal flat plate 1, and the lid plates 2a and 2b having smooth surfaces are joined to each other, and the irregularly shaped groove 5 and the lid plates 2a and 2b are formed.
The space enclosed by is defined as a working fluid flow path 6 for enclosing a working fluid (not shown) and a working fluid vapor (not shown).

【0071】本実施の形態の平面状ヒートパイプ11に
おいても、本発明の平面状ヒートパイプ10と同様の効
果を発揮することは言うまでもなく、さらに熱輸送能力
(熱分散性)が高まるという新たな効果を発揮する。
It is needless to say that the flat heat pipe 11 of the present embodiment also exerts the same effect as the flat heat pipe 10 of the present invention, and a new heat transfer capability (heat dispersibility) is further improved. It is effective.

【0072】[0072]

【実施例】長さ150mm、幅50mm、厚さ1.1m
mで、硬質銅板からなる金属平板の片面に横断面凸状の
異形断面溝を形成すると共に、その溝形成面の異形断面
溝部以外にSn−3.5Agハンダを用いて接合金属層
を形成する。また、長さ150mm、幅50mm、厚さ
0.4mmで、硬質銅板からなる蓋板の接合面全面にS
n−3.5Agハンダを用いて接合金属層を形成する。
[Example] Length 150mm, width 50mm, thickness 1.1m
At m, a deformed cross-section groove having a convex cross-section is formed on one surface of a metal flat plate made of a hard copper plate, and a joining metal layer is formed using Sn-3.5Ag solder at portions other than the deformed cross-section groove portion of the groove forming surface. . In addition, the length of 150 mm, the width of 50 mm, the thickness of 0.4 mm, S over the entire joining surface of the lid plate made of a hard copper plate
A bonding metal layer is formed using n-3.5Ag solder.

【0073】金属平板の溝形成面と蓋板の接合金属層形
成面との間に、直径1mm、Sn−3.5Agハンダ粒
からなるスペーサを介在させて相対させ、図9に示した
平面状ヒートパイプ製造装置の両加熱・冷却板21,2
2間にセットする。
A spacer having a diameter of 1 mm and made of Sn-3.5Ag solder particles was interposed between the groove forming surface of the metal flat plate and the joining metal layer forming surface of the lid plate, and the flat surface shown in FIG. Both heating and cooling plates 21 and 2 of the heat pipe manufacturing apparatus
Set between two.

【0074】その後、作動液としてフロンR−114を
用い、上述したような手順で平面状ヒートパイプ製造装
置を作動させ、長さ150mm、幅50mm、厚さ約
1.5mmの平面状ヒートパイプを作製する。
Thereafter, the flat heat pipe producing apparatus having a length of 150 mm, a width of 50 mm and a thickness of about 1.5 mm was operated by using the fluorocarbon R-114 as a working fluid and operating the flat heat pipe manufacturing apparatus in the above-described procedure. Make it.

【0075】このようにして作製した平面状ヒートパイ
プに曲げ加工を施して、図11(a),(b)に示すよ
うな湾曲ヒートパイプ55を作製する。この湾曲ヒート
パイプ55の蓋板2側における一端側に回路基板(図示
せず)を形成する。
The flat heat pipe manufactured in this manner is subjected to bending to obtain a curved heat pipe 55 as shown in FIGS. 11 (a) and 11 (b). A circuit board (not shown) is formed at one end of the curved heat pipe 55 on the side of the lid plate 2.

【0076】その後、図12(a),(b)に示すよう
に、この湾曲ヒートパイプ55の蓋板2側における一端
側(図12中では左側)に形成された回路基板(図示せ
ず)上に、発熱量の異なる複数の半導体素子56などを
搭載すると共に、他端側(図12中では右側)に冷却装
置(例えば、放熱フィン)57を設けて半導体モジュー
ル58を作製する。
Thereafter, as shown in FIGS. 12A and 12B, a circuit board (not shown) formed on one end (left side in FIG. 12) of the curved heat pipe 55 on the side of the cover plate 2. A plurality of semiconductor elements 56 having different calorific values are mounted thereon, and a cooling device (for example, a radiation fin) 57 is provided on the other end side (right side in FIG. 12) to manufacture a semiconductor module 58.

【0077】この半導体モジュール58は、各半導体素
子56の放熱量が異なるものの、湾曲ヒートパイプ55
内部に形成された各作動液流路(図示せず)の働きによ
り、全体が均熱化されて略等温状態に保つことが可能で
ある。また、湾曲ヒートパイプ55は、各作動液流路間
に貫通穴またはネジ穴などの加工が可能であるため、各
半導体素子56や冷却装置57の固定が容易である。
This semiconductor module 58 has a curved heat pipe 55 although the heat radiation amount of each semiconductor element 56 is different.
By the action of each working fluid flow path (not shown) formed inside, the entire body can be kept at a substantially uniform temperature by equalizing the temperature. In addition, since the curved heat pipe 55 can be formed with a through hole or a screw hole between the respective working liquid flow paths, each semiconductor element 56 and the cooling device 57 can be easily fixed.

【0078】[0078]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0079】(1) 金属平板に形成された異形断面溝
と蓋板で形成される密閉空間を作動液流路としているた
め、ウィック力が大きく、薄型で、大面積な平面状ヒー
トパイプを得ることができる。
(1) Since the working fluid flow path is a closed space formed by the irregular cross-sectional groove formed in the metal flat plate and the cover plate, a wicking force is large, a thin, large-area planar heat pipe is obtained. be able to.

【0080】(2) 作動液流路の形成と作動液流路内
への作動液および作動液蒸気の封入を同時に行っている
ため、製造工程が簡略となり、製造コストの低減を図る
ことができる。
(2) Since the formation of the working fluid flow path and the sealing of the working fluid and the working fluid vapor into the working fluid flow path are performed simultaneously, the manufacturing process is simplified and the manufacturing cost can be reduced. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は、本発明の平面状ヒートパイプの
横断面図であり、図1(b)は、図1(a)の要部拡大
図である。
FIG. 1A is a cross-sectional view of a planar heat pipe of the present invention, and FIG. 1B is an enlarged view of a main part of FIG. 1A.

【図2】他の実施の形態の平面状ヒートパイプの横断面
図である。
FIG. 2 is a cross-sectional view of a planar heat pipe according to another embodiment.

【図3】本発明の平面状ヒートパイプの上面図の一例で
ある。
FIG. 3 is an example of a top view of the planar heat pipe of the present invention.

【図4】本発明の平面状ヒートパイプの上面図の一例で
ある。
FIG. 4 is an example of a top view of the planar heat pipe of the present invention.

【図5】本発明の平面状ヒートパイプの上面図の一例で
ある。
FIG. 5 is an example of a top view of the planar heat pipe of the present invention.

【図6】本発明の平面状ヒートパイプの上面図の一例で
ある。
FIG. 6 is an example of a top view of the planar heat pipe of the present invention.

【図7】本発明の平面状ヒートパイプの作動液として用
いるフロンR−114の飽和状態における液と蒸気の密
度ρ′,ρ″と温度の関係および圧力と温度の関係を示
す図である。
FIG. 7 is a diagram showing the relationship between the density of liquid and vapor ρ ′, ρ ″ and temperature and the relationship between pressure and temperature in the saturated state of Freon R-114 used as the working fluid of the planar heat pipe of the present invention.

【図8】作動液封入率と温度との関係を示す図である。FIG. 8 is a diagram showing the relationship between the working fluid filling rate and temperature.

【図9】本発明の平面状ヒートパイプの製造装置の一例
を示す模式図である。
FIG. 9 is a schematic view showing an example of the apparatus for manufacturing a planar heat pipe of the present invention.

【図10】図9の部分拡大図である。FIG. 10 is a partially enlarged view of FIG. 9;

【図11】図11(a)は、本発明の平面状ヒートパイ
プに曲げ加工を施したものの正面図であり、図11
(b)は、図11(a)のD方向矢視図である。
FIG. 11 (a) is a front view of a flat heat pipe of the present invention obtained by bending the heat pipe.
FIG. 12B is a view as seen in the direction of arrow D in FIG.

【図12】図12(a)は、図11の湾曲ヒートパイプ
に半導体素子等を搭載したものの上面図であり、図12
(b)は、図12(a)のE方向矢視図である。
FIG. 12A is a top view of a semiconductor device or the like mounted on the curved heat pipe of FIG. 11;
FIG. 12B is a view as seen in the direction of arrow E in FIG.

【図13】マイクロヒートパイプの横断面図である。FIG. 13 is a cross-sectional view of the micro heat pipe.

【図14】図14(a)は、従来の平面状ヒートパイプ
の上面図であり、図14(b)は、図14(a)のA−
A線断面図である。
14 (a) is a top view of a conventional planar heat pipe, and FIG. 14 (b) is a sectional view taken on line A- of FIG. 14 (a).
FIG. 3 is a sectional view taken along line A.

【図15】図15(a)は、従来の平面状ヒートパイプ
の上面図であり、図15(b)は、図15(a)のB−
B線断面図である。
FIG. 15 (a) is a top view of a conventional planar heat pipe, and FIG. 15 (b) is a sectional view taken along line B- of FIG. 15 (a).
It is a B sectional view.

【図16】図16(a)は、従来の平面状ヒートパイプ
の上面図であり、図16(b)は図16(a)のC−C
線断面図である。
FIG. 16 (a) is a top view of a conventional planar heat pipe, and FIG. 16 (b) is a sectional view taken along line CC of FIG. 16 (a).
It is a line sectional view.

【符号の説明】[Explanation of symbols]

1 金属平板 2 蓋板(カバー用金属平板) 3 浅溝部 4 深溝部 5 異形断面溝 6 作動液流路 10,11 平面状ヒートパイプ 51 接合金属層(接合用金属の層) 52 スペーサ(突起又は粒) L 作動液 S 作動液蒸気(作動液の蒸気 DESCRIPTION OF SYMBOLS 1 Metal flat plate 2 Cover plate (cover metal flat plate) 3 Shallow groove part 4 Deep groove part 5 Irregular cross-section groove 6 Working fluid channel 10, 11 Planar heat pipe 51 Joining metal layer (joining metal layer) 52 Spacer (projection or Particles) L Hydraulic fluid S Hydraulic fluid vapor (Hydraulic fluid vapor)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 密閉された作動液流路内に、作動液と作
動液の蒸気を満たした平面状ヒートパイプにおいて、金
属平板に浅溝部と深溝部からなる異形断面溝を形成し、
その金属平板の溝形成面とカバー用金属平板を接合する
と共に、上記異形断面溝に上記作動液と上記作動液の蒸
気を封入して上記作動液流路としたことを特徴とする平
面状ヒートパイプ。
1. A flat heat pipe filled with a working fluid and a vapor of the working fluid in a closed working fluid flow path, wherein a deformed cross-sectional groove including a shallow groove portion and a deep groove portion is formed in a metal flat plate.
A flat heat, wherein the groove forming surface of the metal flat plate and the cover metal flat plate are joined together, and the working fluid and the vapor of the working fluid are sealed in the irregular cross-sectional groove to form the working fluid flow path. pipe.
【請求項2】 上記異形断面溝は、上記金属平板の端面
に連通せず、かつ、複数個形成されている請求項1記載
の平面状ヒートパイプ。
2. The flat heat pipe according to claim 1, wherein a plurality of said irregular cross-sectional grooves are not formed in communication with an end face of said flat metal plate, and a plurality of said grooves are formed.
【請求項3】 上記異形断面溝の深溝部が上記作動液の
蒸気を流すための蒸気流路であると共に、上記浅溝部が
上記作動液を流すための液流路である請求項1又は請求
項2記載の平面状ヒートパイプ。
3. The method according to claim 1, wherein the deep groove portion of the irregular cross-sectional groove is a vapor flow path for flowing the vapor of the working fluid, and the shallow groove portion is a liquid flow path for flowing the working fluid. Item 2. A planar heat pipe according to item 2.
【請求項4】 上記金属平板に、上記各異形断面溝を相
互に連結するための異形断面連結溝を形成した請求項2
又は請求項3記載の平面状ヒートパイプ。
4. The metal flat plate is formed with an irregular cross-section connecting groove for connecting the respective irregular cross-sectional grooves to each other.
Or the planar heat pipe according to claim 3.
【請求項5】 密閉された作動液流路内に、作動液と作
動液の蒸気を満たした平面状ヒートパイプの製造方法に
おいて、浅溝部と深溝部からなる異形断面溝が形成され
た金属平板の溝形成面とカバー用金属平板を、所定の間
隔を設けて相対させ、その後、所定密度の作動液蒸気雰
囲気中、両金属平板の温度を作動液蒸気の飽和温度以上
の温度に保った状態で、両金属平板を接近・接触させる
と共に、接合面を金属的に接合して作動液流路の形成と
作動液流路内への作動液および作動液蒸気の封入を同時
に行うことを特徴とする平面状ヒートパイプの製造方
法。
5. A method of manufacturing a flat heat pipe filled with a working fluid and a vapor of the working fluid in a closed working fluid flow path, wherein a flat metal plate having a deformed cross-sectional groove including a shallow groove and a deep groove is formed. The groove forming surface and the cover metal flat plate are opposed to each other at a predetermined interval, and then the temperature of both metal flat plates is maintained at a temperature equal to or higher than the saturation temperature of the hydraulic liquid vapor in a hydraulic liquid vapor atmosphere of a predetermined density. The two metal flat plates are brought close to and in contact with each other, and the joining surfaces are metallically joined to simultaneously form the working fluid flow path and enclose the working fluid and the working fluid vapor in the working fluid flow path. Of manufacturing a flat heat pipe.
【請求項6】 上記両金属平板の相対する面に、予め、
接合用金属の層を均一に形成しておくと共に、少なくと
もどちらか一方の面に接合用金属製の突起を形成してお
く又は上記層間に接合用金属製の粒を介在させて上記間
隔を設ける請求項5記載の平面状ヒートパイプの製造方
法。
6. A method according to claim 1, wherein said two metal flat plates have opposite surfaces.
The bonding metal layer is formed uniformly, and the bonding metal protrusion is formed on at least one of the surfaces, or the bonding metal particles are interposed between the layers to provide the spacing. A method for manufacturing a planar heat pipe according to claim 5.
【請求項7】 上記間隔を保ちながら相対させると共
に、両金属平板が接近する方向に圧力を加え、所定密度
の作動液蒸気の飽和雰囲気中、両金属平板を接合用金属
の融点以上の温度に加熱し、上記接合用金属を溶融させ
て上記接合面を金属的に接合する請求項5又は請求項6
記載の平面状ヒートパイプの製造方法。
7. A pressure is applied in a direction in which the two metal plates approach each other while maintaining the above-mentioned interval, and the two metal plates are brought to a temperature higher than the melting point of the joining metal in a saturated atmosphere of a working liquid vapor having a predetermined density. The heating is performed to melt the joining metal and to join the joining surface metallically.
The manufacturing method of the planar heat pipe of the description.
【請求項8】 上記間隔を保ちながら相対させると共
に、両金属平板が接近する方向に圧力を加え、所定密度
の作動液蒸気の飽和雰囲気中、両金属平板に超音波を付
与して上記接合面を金属的に接合する請求項5又は請求
項6記載の平面状ヒートパイプの製造方法。
8. A pressure is applied in a direction in which the two metal flat plates approach each other while maintaining the above-mentioned interval, and ultrasonic waves are applied to the two metal flat plates in a saturated atmosphere of a working liquid vapor of a predetermined density to thereby form the bonding surface. The method for producing a planar heat pipe according to claim 5 or 6, wherein the metal is joined metallically.
JP28670698A 1998-10-08 1998-10-08 Planar heat pipe and method of manufacturing the same Expired - Fee Related JP3552553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28670698A JP3552553B2 (en) 1998-10-08 1998-10-08 Planar heat pipe and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28670698A JP3552553B2 (en) 1998-10-08 1998-10-08 Planar heat pipe and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000111281A true JP2000111281A (en) 2000-04-18
JP3552553B2 JP3552553B2 (en) 2004-08-11

Family

ID=17707949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28670698A Expired - Fee Related JP3552553B2 (en) 1998-10-08 1998-10-08 Planar heat pipe and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3552553B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068318A1 (en) * 2001-02-28 2002-09-06 Sony Corporation Heat transport device
JP2007003102A (en) * 2005-06-24 2007-01-11 Kiko Kagi Kofun Yugenkoshi Method of manufacturing flat plate type thermotube
JP2010243115A (en) * 2009-04-09 2010-10-28 Nippon Light Metal Co Ltd Heat exchanger plate and method of manufacturing the same
JP2011247462A (en) * 2010-05-25 2011-12-08 Fujitsu Ltd Loop type heat pipe and evaporator manufacturing method of the loop type heat pipe
US9995537B2 (en) 2013-01-25 2018-06-12 Furukawa Electric Co., Ltd. Heat pipe
WO2020184620A1 (en) * 2019-03-11 2020-09-17 大日本印刷株式会社 Vapor chamber, electronic apparatus, and vapor chamber sheet
KR20210016537A (en) 2018-05-30 2021-02-16 다이니폰 인사츠 가부시키가이샤 Vapor Chamber and Electronics
WO2021029204A1 (en) * 2019-08-09 2021-02-18 矢崎エナジーシステム株式会社 Structure, and method for manufacturing same
JP2023009093A (en) * 2017-03-27 2023-01-19 大日本印刷株式会社 Vapor chamber and substrate mounted with vapor chamber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068318A1 (en) * 2001-02-28 2002-09-06 Sony Corporation Heat transport device
JP2007003102A (en) * 2005-06-24 2007-01-11 Kiko Kagi Kofun Yugenkoshi Method of manufacturing flat plate type thermotube
JP2010243115A (en) * 2009-04-09 2010-10-28 Nippon Light Metal Co Ltd Heat exchanger plate and method of manufacturing the same
JP2011247462A (en) * 2010-05-25 2011-12-08 Fujitsu Ltd Loop type heat pipe and evaporator manufacturing method of the loop type heat pipe
US9995537B2 (en) 2013-01-25 2018-06-12 Furukawa Electric Co., Ltd. Heat pipe
JP2023009093A (en) * 2017-03-27 2023-01-19 大日本印刷株式会社 Vapor chamber and substrate mounted with vapor chamber
JP7396435B2 (en) 2017-03-27 2023-12-12 大日本印刷株式会社 Vapor chamber and vapor chamber mounting board
KR20210016537A (en) 2018-05-30 2021-02-16 다이니폰 인사츠 가부시키가이샤 Vapor Chamber and Electronics
US11903167B2 (en) 2018-05-30 2024-02-13 Dai Nippon Printing Co., Ltd. Vapor chamber with condensate flow paths disposed on wall parts
WO2020184620A1 (en) * 2019-03-11 2020-09-17 大日本印刷株式会社 Vapor chamber, electronic apparatus, and vapor chamber sheet
WO2021029204A1 (en) * 2019-08-09 2021-02-18 矢崎エナジーシステム株式会社 Structure, and method for manufacturing same
GB2600039A (en) * 2019-08-09 2022-04-20 Yazaki Energy System Corp Structure, and method for manufacturing same
GB2600039B (en) * 2019-08-09 2023-06-07 Yazaki Energy System Corp Structure, and method for manufacturing same

Also Published As

Publication number Publication date
JP3552553B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
US7690419B2 (en) Porous media cold plate
US7677299B2 (en) Nearly isothermal heat pipe heat sink
KR950014046B1 (en) Optimized integral heat pipe and electronic circuit module arrangement
KR20030065686A (en) Heat pipe and method thereof
CN110763059B (en) Ultrathin uniform temperature plate and manufacturing method thereof
JP2006140435A (en) Bendable heat spreader with wire mesh-based microstructure and method of manufacturing same
CN105682431B (en) A kind of liquid cold plate
US20080053648A1 (en) Structure for cooling a surface
JP3552553B2 (en) Planar heat pipe and method of manufacturing the same
CN104764350A (en) Method for manufacturing uniform-heating plate with foam copper as liquid absorption core
CN104896983A (en) Manufacturing method of soaking plate with ultrathin foam silver as liquid absorbing core
CN113465430B (en) Ultrathin thermal diode based on gas-liquid coplanar structure and preparation method thereof
WO2020143493A1 (en) Vapor chamber, heat dissipation module, and semiconductor device
CN110260697A (en) A kind of aluminium base soaking plate
KR20180055696A (en) Heat-radiation structure with high general performance and methods of preparation thereof
CN103123236A (en) Hot plate of metal fiber felt liquid absorption cores
CN211012603U (en) Ultrathin flexible flat heat pipe
CN112201633A (en) Liquid cooling integrated inflation type soaking plate and manufacturing method thereof
TW202120881A (en) Ultra-thin vapor chamber and a manufacturing method thereof by welding and sealing the first metal plate with a thin and thermally conductive second metal plate after the sintering process, and then vacuumizing and injecting with a working fluid
JP4458872B2 (en) heatsink
JPH03186195A (en) Radiator with heat pipe and manufacture thereof
CN110360860A (en) A kind of processing method of soldering formula soaking plate
CN213042910U (en) Liquid cooling system with integrated design
CN110351993B (en) Phase-change liquid cooling heat dissipation system
TWI754124B (en) Manufacturing method of vaper chamber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees