JP2000106323A - Manufacture of laminated ceramic capacitor - Google Patents

Manufacture of laminated ceramic capacitor

Info

Publication number
JP2000106323A
JP2000106323A JP10273403A JP27340398A JP2000106323A JP 2000106323 A JP2000106323 A JP 2000106323A JP 10273403 A JP10273403 A JP 10273403A JP 27340398 A JP27340398 A JP 27340398A JP 2000106323 A JP2000106323 A JP 2000106323A
Authority
JP
Japan
Prior art keywords
internal electrode
plate film
thickness
resist plate
ceramic green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10273403A
Other languages
Japanese (ja)
Inventor
Wataru Kurahashi
渡 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10273403A priority Critical patent/JP2000106323A/en
Publication of JP2000106323A publication Critical patent/JP2000106323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To substantially make uniform a film thickness of an internal electrode to ensure continuity by a method wherein the internal electrode is printed by use of a thin resist plate film at lamination initial stage of the internal electrode and by use of a thick resist plate film from a lamination middle stage. SOLUTION: A ceramic green sheet 1 is overlaid on a printing face of an internal electrode 2, and half pressurization is made at a predetermined pressurizing force, then it is slid by a predetermined length in the longitudinal direction of the internal electrode 2 with respect to the internal electrode 2 of a first layer to carry out printing for the internal electrode 2 of a second layer. Thereafter, it is dried at a temperature of 120 deg.C. Thus, the ceramic green sheet 1 is laminated and the internal electrode 2 is printed to be dried, repeatedly, and the ceramic green sheet 1 and the internal electrode 2 are respectively laminated in 30 layers. Thereafter, by use of a resist plate film 3 of the internal electrode 2, the thickness of the resist plate film 3 is changed, and the laminations of 10 layers are repeated, respectively. Finally, an upper invalid layer sheet is overlaid, and the entirety is pressurized at a predetermined pressing force to manufacture a laminated body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層セラミックコン
デンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】以下従来の積層セラミックコンデンサの
製造方法について説明する。
2. Description of the Related Art A conventional method for manufacturing a multilayer ceramic capacitor will be described below.

【0003】図3は内部電極2が多積層の場合における
後半段階の内部電極2の印刷状態を示した拡大断面図、
図4はセラミックグリーンシート1面にパラジウムを主
成分とする内部電極2を印刷した状態を示す平面図、図
5は積層セラミックコンデンサの断面図を示した。図3
〜図5において3はレジスト版膜、4は印刷スクリー
ン、5は電極ペースト、6は切断位置、7はセラミック
層、8は焼結体、9は無効層、10は外部電極である。
FIG. 3 is an enlarged sectional view showing a printing state of the internal electrodes 2 in the latter half stage when the internal electrodes 2 are multi-layered.
FIG. 4 is a plan view showing a state in which an internal electrode 2 containing palladium as a main component is printed on the surface of the ceramic green sheet 1, and FIG. 5 is a sectional view of the multilayer ceramic capacitor. FIG.
5, reference numeral 3 denotes a resist plate film, 4 denotes a printing screen, 5 denotes an electrode paste, 6 denotes a cutting position, 7 denotes a ceramic layer, 8 denotes a sintered body, 9 denotes an ineffective layer, and 10 denotes an external electrode.

【0004】先ず、チタン酸バリウムを主成分とする材
料粉末に、バインダ、有機溶剤および可塑剤を加えスラ
リーとした後、公知のブレード法を用い所定厚さのセラ
ミックグリーンシート1を作製する。
First, a binder, an organic solvent, and a plasticizer are added to a material powder containing barium titanate as a main component to form a slurry, and then a ceramic green sheet 1 having a predetermined thickness is produced by a known blade method.

【0005】次に、このセラミックグリーンシート1を
所定枚数積層して上、下無効層9用シートを作製する。
次いで、下部無効層9用シートの面にセラミックグリー
ンシート1を重ね、その面に内部電極2を印刷し乾燥を
行う。続いて、内部電極2の印刷面に次のセラミックグ
リーンシート1を重ね加圧圧着した後、その面に内部電
極2を印刷し乾燥を行う。このようにして、セラミック
グリーンシート1を加圧圧着、内部電極2の印刷乾燥を
交互に所定層数繰返した後、最後に上部無効層9用シー
トを積層加圧して積層体(図示せず)を作製する。尚、
内部電極2の印刷用レジスト版膜3の厚さは一種類のも
のを用い、また内部電極2を印刷したセラミックグリー
ンシート1は、内部電極2の長手方向に一層おきに交互
に所定寸法ずらして積層を行う。
Next, a predetermined number of the ceramic green sheets 1 are laminated to produce a sheet for the upper and lower ineffective layers 9.
Next, the ceramic green sheet 1 is overlaid on the surface of the lower inactive layer 9 sheet, the internal electrodes 2 are printed on the surface, and drying is performed. Subsequently, the next ceramic green sheet 1 is overlaid on the printing surface of the internal electrode 2 and pressed and pressed, and then the internal electrode 2 is printed and dried on the surface. In this way, the ceramic green sheet 1 is pressed and pressed and the internal electrode 2 is repeatedly printed and dried a predetermined number of times, and finally, the sheet for the upper ineffective layer 9 is laminated and pressed to form a laminate (not shown). Is prepared. still,
The thickness of the printing resist plate film 3 of the internal electrode 2 is one type, and the ceramic green sheets 1 on which the internal electrode 2 is printed are alternately shifted by a predetermined size in the longitudinal direction of the internal electrode 2 alternately. Lamination is performed.

【0006】次いで、積層体を図4に示す切断位置6に
沿って積層セラミックコンデンサのグリーンチップ(図
示せず)形状に切断を行う。切断されたグリーンチップ
はその長手方向の対向する端面に、内部電極2がセラミ
ックグリーンシート1を挟んで一層おきに交互に露出し
た構成となっている。
Next, the laminate is cut into green chip (not shown) shapes of the multilayer ceramic capacitor along a cutting position 6 shown in FIG. The cut green chips have a configuration in which the internal electrodes 2 are alternately exposed on the opposite end faces in the longitudinal direction with the ceramic green sheets 1 interposed therebetween.

【0007】その後、グリーンチップを1300℃以上
の温度で焼成を行い、その焼結体8の内部電極2が露出
した端面部に内部電極2と電気的に接続するように外部
電極10を形成し図5に示すような積層セラミックコン
デンサを得る方法が一般的であった。
After that, the green chip is fired at a temperature of 1300 ° C. or more, and an external electrode 10 is formed on the exposed end face of the sintered body 8 so as to be electrically connected to the internal electrode 2. A method of obtaining a multilayer ceramic capacitor as shown in FIG. 5 has been general.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記従
来の積層セラミックコンデンサの製造方法では、セラミ
ックグリーンシート1と内部電極2の積層数が多くなる
に従って、印刷した内部電極2の重なり部分が図3に示
すように盛り上がって内部電極2の印刷面が凸状にな
る。このため印刷した内部電極2の長手方向の中央部が
薄くなってしまう。これが更に継続すると最終的には、
印刷した内部電極2の中央部が極めて薄くなり連続性が
悪くなるという問題点を有していた。
However, in the above-described conventional method for manufacturing a multilayer ceramic capacitor, as the number of laminated ceramic green sheets 1 and internal electrodes 2 increases, the overlapping portion of the printed internal electrodes 2 is shown in FIG. As shown, the printed surface of the internal electrode 2 becomes convex. For this reason, the central part in the longitudinal direction of the printed internal electrode 2 becomes thin. If this continues further, eventually
There is a problem that the central part of the printed internal electrode 2 becomes extremely thin and the continuity deteriorates.

【0009】本発明は前記課題を解決するもので、セラ
ミックグリーンシートと内部電極の多積層の場合におい
ても、内部電極の膜厚がほぼ均質で、連続性を確保する
ことのできる積層セラミックコンデンサの製造方法を提
供することを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and has a multilayer ceramic capacitor in which the thickness of the internal electrodes is substantially uniform and the continuity can be ensured even in the case of multiple lamination of ceramic green sheets and internal electrodes. It is intended to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に本発明は、セラミックグリーンシートと内部電極を交
互に複数層積層して作成する積層セラミックコンデンサ
の積層体の積層工程において、前記内部電極の積層初期
段階は薄い厚さのレジスト版膜を用い、積層途中段階か
ら厚いレジスト版膜を用い内部電極の印刷を行う方法と
したものである。
In order to solve the above-mentioned problems, the present invention provides a method of forming a multilayer ceramic capacitor by laminating a plurality of ceramic green sheets and internal electrodes alternately. In the initial stage of lamination, a resist plate film having a small thickness is used, and printing of internal electrodes is performed using a thick resist plate film in the middle of lamination.

【0011】この方法とすることにより、積層数が多く
なっても内部電極の中央部が薄くなり、電極切れを無く
すことができる。
According to this method, even if the number of layers is increased, the central portion of the internal electrode is thinned, so that the electrode can be prevented from being cut.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、セラミックグリーンシートと内部電極を交互に複数
層積層して作成する積層セラミックコンデンサの積層体
の積層工程において、前記内部電極の積層初期段階は薄
いレジスト版膜を用い、積層途中段階から厚いレジスト
版膜を用い内部電極の印刷を行う積層セラミックコンデ
ンサの製造方法である。これによりセラミックグリーン
シートと内部電極の積層数が多くなった場合の内部電極
の重なり部分の凸面に対しても、内部電極の長手方向の
中央部が薄くなることを抑制し、内部電極の中央部の膜
厚を必要とされる厚さに保つことが可能となるという作
用を有するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is characterized in that, in the step of laminating a multilayer body of a multilayer ceramic capacitor formed by alternately laminating a plurality of ceramic green sheets and internal electrodes, The initial stage of lamination is a method of manufacturing a multilayer ceramic capacitor in which a thin resist plate film is used, and an internal electrode is printed using a thick resist plate film in the middle of lamination. As a result, even when the number of stacked ceramic green sheets and internal electrodes increases, the central portion in the longitudinal direction of the internal electrodes is prevented from becoming thin even on the convex surface of the overlapping portion of the internal electrodes. Has an effect that the thickness of the film can be maintained at a required thickness.

【0013】本発明の請求項2に記載の発明は、内部電
極の膜厚を2から4μmの範囲とする請求項1に記載の
積層セラミックコンデンサの製造方法である。これは内
部電極の材料金属成分が、次工程の焼成時に焼結しても
内部電極としての連続性が保たれ電極切れの発生がな
く、しかもその熱膨脹収縮反応がセラミックグリーンシ
ートの焼結に影響を及ぼさない厚さを規定したものであ
る。
According to a second aspect of the present invention, there is provided the method for manufacturing a multilayer ceramic capacitor according to the first aspect, wherein the thickness of the internal electrode is in the range of 2 to 4 μm. This is because even if the metal component of the internal electrode is sintered during the next firing process, the continuity of the internal electrode is maintained without electrode breakage, and the thermal expansion and contraction reaction affects the sintering of the ceramic green sheet. The thickness does not affect the thickness.

【0014】本発明の請求項3に記載の発明は、内部電
極用の電極ペーストの粘度を10,000から30,0
00cpsの範囲とする請求項1に記載の積層セラミッ
クコンデンサの製造方法である。これは内部電極を2か
ら4μmの厚さに精度よく印刷できる電極ペーストの粘
度を規定したものである。
According to a third aspect of the present invention, the viscosity of the electrode paste for an internal electrode is from 10,000 to 30,000.
2. The method for manufacturing a multilayer ceramic capacitor according to claim 1, wherein the range is 00 cps. This stipulates the viscosity of the electrode paste that can print the internal electrodes with a thickness of 2 to 4 μm with high accuracy.

【0015】以下に本発明の一実施の形態について説明
する。 (実施の形態1)図1は、本発明の積層セラミックコン
デンサの製造方法の一実施の形態における積層初期段階
の内部電極2の印刷状態を示す拡大断面図、図2はセラ
ミックグリーンシート1と内部電極2の積層数が多くな
った状態で、レジスト版膜3の厚さを変更して印刷する
状態を示す拡大断面図である。
An embodiment of the present invention will be described below. (Embodiment 1) FIG. 1 is an enlarged sectional view showing a printing state of an internal electrode 2 at an initial stage of lamination in an embodiment of a method of manufacturing a multilayer ceramic capacitor according to the present invention, and FIG. FIG. 4 is an enlarged cross-sectional view showing a state in which the thickness of the resist plate film 3 is changed and printing is performed in a state where the number of layers of the electrodes 2 is increased.

【0016】積層セラミックコンデンサの構成は従来例
で説明したものと同一であり、製造方法においても従来
例と同じ部材を用いるため、図面上の符号は同じ符号を
用い、説明として同じ部分は省略する。
The structure of the multilayer ceramic capacitor is the same as that described in the conventional example. Since the same members are used in the manufacturing method as in the conventional example, the same reference numerals are used in the drawings, and the same parts are omitted in the description. .

【0017】先ず、従来方法と同様な手段で作製した2
5μmの厚さのセラミックグリーンシート1を10枚積
層加圧して上、下無効層9用シートを作製する。
First, 2 was prepared by the same means as the conventional method.
Ten ceramic green sheets 1 each having a thickness of 5 μm are laminated and pressed to form a sheet for the upper and lower ineffective layers 9.

【0018】次に、下部無効層9用シート面にセラミッ
クグリーンシート1を重ね、その面に第一層目の内部電
極2として図4に示す幅0.55mm、長さ3.20mm、
隣合う内部電極2の間隔が幅方向0.38mm、長さ方向
0.52mmの内部電極2を、レジスト版膜3の厚さ10
μmを用いパラジウムを主成分とする電極ペースト5で
印刷した後、120℃の温度で乾燥を行う。
Next, the ceramic green sheet 1 is superimposed on the sheet surface for the lower ineffective layer 9, and the inner electrode 2 of the first layer is 0.55 mm wide and 3.20 mm long as shown in FIG.
An internal electrode 2 having an interval between adjacent internal electrodes 2 of 0.38 mm in the width direction and 0.52 mm in the length direction is connected to the resist plate film 3 having a thickness of 10 mm.
After printing with an electrode paste 5 containing palladium as a main component using μm, drying is performed at a temperature of 120 ° C.

【0019】次いで、内部電極2の印刷面にセラミック
グリーンシート1を重ね200kg/cm2の加圧力で仮加
圧を行い、続いて第一層目の内部電極2に対し、内部電
極2の長手方向に0.93mmずらして第二層目の内部電
極2の印刷を行った後、120℃の温度で乾燥を行う。
このようにして順次、セラミックグリーンシート1の積
層、仮加圧、第一層目の内部電極2の印刷部の真上に第
三層目の内部電極2の印刷乾燥、セラミックグリーンシ
ート1の積層、仮加圧、第二層目の内部電極2印刷部の
真上に第四層目の内部電極2の印刷乾燥と、交互にセラ
ミックグリーンシート1の積層、内部電極2の印刷、乾
燥を繰返し、セラミックグリーンシート1と内部電極2
をそれぞれ30層積層を行う。このとき30層目の内部
電極2は図3に示す状態に近いものとなっている。
Next, the ceramic green sheet 1 is superimposed on the printed surface of the internal electrode 2 and a temporary pressurization is performed with a pressing force of 200 kg / cm 2. After printing the internal electrode 2 of the second layer by shifting it by 0.93 mm in the direction, drying is performed at a temperature of 120 ° C.
In this manner, the lamination of the ceramic green sheets 1, the temporary pressurization, the printing of the third-layer internal electrodes 2 immediately above the printed portion of the first-layer internal electrodes 2, and the lamination of the ceramic green sheets 1 are sequentially performed. , Temporary pressurization, printing and drying of the fourth-layer internal electrode 2 directly above the printed portion of the second-layer internal electrode 2, alternately lamination of the ceramic green sheets 1, printing and drying of the internal electrode 2 are repeated. , Ceramic green sheet 1 and internal electrode 2
Are respectively laminated in 30 layers. At this time, the internal electrode 2 of the 30th layer is close to the state shown in FIG.

【0020】その後、図2に示すように内部電極2のレ
ジスト版膜3の厚さを15μmに変更し、前記同様にそ
れぞれ10層積層を繰返した後、最後に上部無効層9用
シートを重ね、全体を加圧力400kg/cm2で一分間本
加圧し積層体(図示せず)を作製する。得られた積層体
を図4に示す切断位置6に沿って、長さ1.86mm、幅
0.93mm、内部電極2の積層数40層のグリーンチッ
プ(図示せず)形状に切断した。このときグリーンチッ
プはその長手方向の端面に、セラミックグリーンシート
1を挟んで一層おきに内部電極2が交互に露出した構成
となっている。
After that, as shown in FIG. 2, the thickness of the resist plate film 3 of the internal electrode 2 was changed to 15 μm, and ten layers were repeated in the same manner as described above. Then, the whole is fully pressurized at a pressure of 400 kg / cm 2 for one minute to produce a laminate (not shown). The obtained laminate was cut along a cutting position 6 shown in FIG. 4 into a green chip (not shown) having a length of 1.86 mm, a width of 0.93 mm, and 40 layers of the internal electrodes 2. At this time, the green chip has a configuration in which the internal electrodes 2 are alternately exposed on the end faces in the longitudinal direction with the ceramic green sheet 1 interposed therebetween.

【0021】次に、グリーンチップをジルコニア粉末を
散布した高純度アルミナサヤにいれ、大気雰囲気中の1
300℃の温度で2時間焼成し焼結体8を作製する。
Next, the green chips are placed in a high-purity alumina sheath to which zirconia powder is sprayed, and the green chips are placed in an air atmosphere.
The sintered body 8 is produced by firing at a temperature of 300 ° C. for 2 hours.

【0022】次いで、焼結体8の内部電極2が露出した
端面を研磨した後、内部電極2と電気的に接続するよう
に、外部電極10としてインジウム−ガリウム合金を塗
布し、図5に示すような積層セラミックコンデンサを完
成させた。また比較例として、レジスト版膜3の厚さ1
0μmのみを用い、セラミックグリーンシート1と内部
電極2をそれぞれ40層積層する従来方法の積層セラミ
ックコンデンサの作製も併せて行った。
Next, after polishing the end surface of the sintered body 8 where the internal electrode 2 is exposed, an indium-gallium alloy is applied as an external electrode 10 so as to be electrically connected to the internal electrode 2, as shown in FIG. Such a multilayer ceramic capacitor was completed. As a comparative example, the thickness of the resist plate film 3 was 1
Using only 0 μm, a multilayer ceramic capacitor of a conventional method in which 40 layers each of the ceramic green sheet 1 and the internal electrode 2 were laminated was also manufactured.

【0023】得られたそれぞれの積層セラミックコンデ
ンサ各50個の静電容量を測定しその結果を(表1)に
示した。
The capacitance of each of the 50 obtained multilayer ceramic capacitors was measured, and the results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】(表1)に示すように、本発明の積層途中
から、レジスト版膜3の厚みを変更した積層セラミック
コンデンサは、定格の静電容量1000±50pFに対
するバラツキが小さいのに対し、従来方法の積層セラミ
ックコンデンサは950pF以下の不良品が12個発生
していることが分かる。これは本発明の内部電極2のレ
ジスト版膜3を途中から15μmに厚くすることによ
り、内部電極2の連続性が保たれ積層セラミックコンデ
ンサの焼結過程で内部電極2の焼結による切れの発生が
防止されたことを示している。
As shown in Table 1, the multilayer ceramic capacitor of the present invention in which the thickness of the resist plate film 3 is changed during the lamination process has a small variation with respect to the rated capacitance of 1000 ± 50 pF, while the conventional capacitor has a small variation. It can be seen that 12 defective ceramic capacitors of 950 pF or less are generated in the multilayer ceramic capacitor of the method. This is because the continuity of the internal electrode 2 is maintained by increasing the thickness of the resist plate film 3 of the internal electrode 2 of the present invention to 15 μm from the middle, and cuts due to sintering of the internal electrode 2 during the sintering process of the multilayer ceramic capacitor. Is prevented.

【0026】これを確認するために、従来品の不良を研
磨し、内部電極2の連続性を確認した結果、焼結体8の
一方の表面側の内部電極2の中央部で切れが発生してい
ることが観察された。このことから図3に示すように、
セラミックグリーンシート1と内部電極2の積層数が多
くなった場合、内部電極2の重なりの凸部が印刷した内
部電極2の連続性を妨げていることが明らかとなる。
In order to confirm this, the defect of the conventional product was polished and the continuity of the internal electrode 2 was confirmed. As a result, a cut occurred at the center of the internal electrode 2 on one surface side of the sintered body 8. Was observed. From this, as shown in FIG.
When the number of laminations of the ceramic green sheets 1 and the internal electrodes 2 increases, it becomes clear that the overlapping convex portions of the internal electrodes 2 hinder the continuity of the printed internal electrodes 2.

【0027】尚、本実施の形態1においてレジスト版膜
3の厚さを2種類用いたが、積層数が更に多くなる場合
は、必要に応じ更にレジスト版膜3の種類を増やす必要
があるが、レジスト版膜3の厚さを15μm以上にする
と内部電極2の形成部と非形成部の厚み差が大きくな
り、本加圧でセラミックグリーンシート1どうしの接着
性が低下し好ましくない。
In the first embodiment, two kinds of thicknesses of the resist plate film 3 are used. However, when the number of layers is further increased, it is necessary to further increase the types of the resist plate film 3 as necessary. On the other hand, if the thickness of the resist plate film 3 is 15 μm or more, the difference in thickness between the portion where the internal electrode 2 is formed and the portion where the internal electrode 2 is not formed becomes large, and the adhesiveness between the ceramic green sheets 1 is reduced by the main pressure, which is not preferable.

【0028】(実施の形態2)実施の形態1と同様に、
厚さ25μmのセラミックグリーンシート1を用い、内
部電極2の積層数30層までは(表2)に示すように、
レジスト版膜3の厚さを、4,6,10,15μm、こ
れに対し31から40層までは6,10,15,20μ
mのレジスト版膜3を組合せ、実施の形態1と同様に積
層セラミックコンデンサを作製し、得られた積層セラミ
ックコンデンサの評価を(表2)に示した。
(Embodiment 2) As in Embodiment 1,
As shown in (Table 2), a ceramic green sheet 1 having a thickness of 25 μm was used, and up to 30 layers of the internal electrodes 2 were laminated.
The thickness of the resist plate film 3 is 4, 6, 10, 15 μm, whereas the thickness of the resist plate film 3 is 6, 10, 15, 20 μm for 31 to 40 layers.
The multi-layer ceramic capacitor was manufactured in the same manner as in the first embodiment by combining the m resist plate films 3 and the evaluation of the obtained multi-layer ceramic capacitor was shown in (Table 2).

【0029】尚、本実施の形態2では電極ペースト5の
粘度を25000cpsのものを用い、レジスト版膜3
の厚みを4,6,10,15,20μmとして印刷した
内部電極2の乾燥後の中央部の厚さがそれぞれ1,2,
4,5,7μmとなるように調整した。
In the second embodiment, the electrode paste 5 having a viscosity of 25,000 cps is used.
The thickness of the central portion of the printed internal electrode 2 after drying was 4, 6, 10, 15, 20 μm,
It was adjusted to be 4, 5, 7 μm.

【0030】[0030]

【表2】 [Table 2]

【0031】(表2)に示すように、積層初期段階で内
部電極2の厚さが1μm(レジスト版膜3の厚さ4μ
m)、途中から内部電極2の厚さ2μm(レジスト版膜
3の厚さ6μm)の組合せの場合、静電容量950pF
以下の不良品が40個検出された。一方、積層初期段階
で内部電極2の厚さが5μm(レジスト版膜3の厚さ1
5μm)、途中から内部電極2の厚さ7μm(レジスト
版膜3の厚さ20μm)の組合せの場合では、静電容量
は定格範囲内に収まるもののデラミネーションが13発
生している。
As shown in Table 2, at the initial stage of lamination, the thickness of the internal electrode 2 was 1 μm (the thickness of the resist plate film 3 was 4 μm).
m), when the combination of the thickness of the internal electrode 2 is 2 μm (the thickness of the resist plate film 3 is 6 μm), the capacitance is 950 pF.
The following 40 defective products were detected. On the other hand, at the initial stage of lamination, the thickness of the internal electrode 2 is 5 μm (the thickness of the resist plate film 3 is 1 μm).
In the case of a combination of 5 μm) and 7 μm in thickness of the internal electrode 2 (20 μm in thickness of the resist plate film 3) from the middle, 13 delaminations occur although the capacitance is within the rated range.

【0032】他方、それ以外の組合せでは、いずれも静
電容量は定格容量範囲に収まり、またデラミネーション
不良が発生していないことが分かる。このことは内部電
極2の厚さが1μmより薄いと初期段階の積層において
も電極切れが発生し、また内部電極2の厚さを必要以上
に厚くするとセラミックグリーンシート1どうしの接着
性が低下しデラミネーションの発生につながることを示
している。
On the other hand, in the other combinations, it can be seen that the capacitance is within the rated capacity range and that no delamination failure occurs. This means that if the thickness of the internal electrode 2 is less than 1 μm, electrode breakage will occur even in the initial lamination, and if the internal electrode 2 is made thicker than necessary, the adhesion between the ceramic green sheets 1 will decrease. This indicates that delamination may occur.

【0033】従って積層初期段階では内部電極2の厚さ
を2から4μmに制御し、積層途中段階から内部電極2
の厚みを4から5μmに制御することで、静電容量及び
デラミネーションの不良の発生を防止できることが明ら
かとなる。また、内部電極2の厚さを全て4μmとした
場合、発生数は低下するがデラミネーション不良が確認
されている。
Therefore, in the initial stage of lamination, the thickness of the internal electrode 2 is controlled to 2 to 4 μm, and
It is clear that by controlling the thickness of the substrate from 4 to 5 μm, it is possible to prevent the occurrence of defective capacitance and delamination. When the thickness of all the internal electrodes 2 is 4 μm, the number of occurrences decreases, but delamination failure is confirmed.

【0034】(実施の形態3)実施の形態1と同様に、
厚さ25μmのセラミックグリーンシート1を用い、内
部電極2の積層数30層まではレジスト版膜3の厚さを
10μm、31から40層まではレジスト版膜3の厚さ
を15μm用い、電極ペースト5の粘度を(表3)に示
すように8,000から35,000cpsとし、その
外の条件は実施の形態1と同じにして積層セラミックコ
ンデンサを作製した。得られた積層セラミックコンデン
サについて実施の形態1と同様に評価しその結果を(表
3)に示した。
(Embodiment 3) As in Embodiment 1,
A ceramic green sheet 1 having a thickness of 25 μm was used. The thickness of the resist plate film 3 was 10 μm for up to 30 layers of the internal electrodes 2, and the thickness of the resist plate film 3 was 15 μm for 31 to 40 layers. As shown in Table 3, the viscosity of Sample No. 5 was 8,000 to 35,000 cps, and the other conditions were the same as in Embodiment 1 to produce a multilayer ceramic capacitor. The obtained multilayer ceramic capacitor was evaluated in the same manner as in Embodiment 1, and the results are shown in (Table 3).

【0035】[0035]

【表3】 [Table 3]

【0036】(表3)に示したように、本発明の電極ペ
ースト5の粘度を10,000から30,000cps
のものを用いた場合、静電容量値は全て定格範囲に収ま
っているのに対し、粘度が8,000または35,00
0cpsでは何れとも950pF以下の不良が25個、
または11個発生し、静電容量のバラツキも大きいもの
となっている。
As shown in Table 3, the viscosity of the electrode paste 5 of the present invention was from 10,000 to 30,000 cps.
, The capacitance values are all within the rated range, while the viscosity is 8,000 or 35,000.
At 0 cps, there are 25 defects of 950 pF or less,
Alternatively, eleven are generated, and the variation in the capacitance is large.

【0037】尚、これらの静電容量不良品を研磨し、内
部電極2の状況を観察した結果、何れも内部電極2切れ
が確認された。粘度が8,000cpsの場合、電極金
属成分量が少なくなり、10μmのレジスト版膜3を用
いた30層までの内部電極2に切れが発生し、35,0
00cpsの場合粘度が高過ぎ、電極ペースト5が印刷
スクリーン4のメッシュからの抜けが悪くなり部分的に
印刷かすれが発生したことに起因したものと思われる。
Incidentally, these defective capacitors were polished, and the condition of the internal electrodes 2 was observed. When the viscosity is 8,000 cps, the amount of the electrode metal component decreases, and up to 30 layers of internal electrodes 2 using a 10 μm resist plate film 3 are cut off, resulting in 35.0%
In the case of 00 cps, the viscosity is too high, and it is considered that the electrode paste 5 is hardly removed from the mesh of the printing screen 4, and the printing is partially blurred.

【0038】以上の結果から電極ペースト5の粘度は1
0,000から30,000cpsの範囲に制御するこ
とで静電容量のバラツキが少なく、しかも内部電極2の
連続性を確保できることが明らかとなる。
From the above results, the viscosity of the electrode paste 5 is 1
It is clear that by controlling the range from 000 to 30,000 cps, variation in capacitance is small and continuity of the internal electrode 2 can be ensured.

【0039】[0039]

【発明の効果】以上本発明によれば、セラミックグリー
ンシートと内部電極を交互に複数層積層して作成する積
層セラミックコンデンサの積層体の積層工程において、
内部電極の積層初期段階は薄いレジスト版膜を用い、積
層途中段階から厚いレジスト版膜を用い印刷を行う、同
一積層体の内部電極を少なくとも二種類以上の厚さのレ
ジスト版を用い印刷を行い、必要に応じ、内部電極用ペ
ーストの粘度を10,000から30,000cpsの
範囲に制御したものを用いることによって、静電容量の
バラツキの小さい、しかも内部電極の連続性を確保し、
デラミネーション不良の発生を抑制した優れた性能の積
層セラミックコンデンサを提供することが可能となる。
As described above, according to the present invention, in the step of laminating a multilayer body of a multilayer ceramic capacitor formed by alternately laminating a plurality of ceramic green sheets and internal electrodes,
The initial stage of lamination of internal electrodes is performed using a thin resist plate film, and printing is performed from the middle of lamination using a thick resist plate film.The internal electrodes of the same laminate are printed using a resist plate of at least two or more thicknesses. If necessary, the viscosity of the internal electrode paste is controlled in the range of 10,000 to 30,000 cps, so that the variation of the capacitance is small and the continuity of the internal electrode is ensured.
It is possible to provide a multilayer ceramic capacitor having excellent performance in which occurrence of delamination failure is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミックコンデンサの製造方法
の一実施の形態における積層初期段階の内部電極の印刷
状態を示す拡大断面図
FIG. 1 is an enlarged cross-sectional view showing a printed state of internal electrodes in an initial stage of lamination in one embodiment of a method for manufacturing a multilayer ceramic capacitor of the present invention.

【図2】同積層途中段階からレジスト版膜を変更し内部
電極を印刷する状態を示す拡大断面図
FIG. 2 is an enlarged cross-sectional view showing a state in which a resist plate film is changed from the middle of the lamination and an internal electrode is printed.

【図3】従来の多積層体の積層途中段階の内部電極の印
刷状態を示す拡大断面図
FIG. 3 is an enlarged cross-sectional view showing a printing state of an internal electrode in the middle of lamination of a conventional multi-laminate.

【図4】セラミックグリーンシート面に内部電極を印刷
した状態を示す平面図
FIG. 4 is a plan view showing a state where internal electrodes are printed on a ceramic green sheet surface.

【図5】積層セラミックコンデンサの断面図FIG. 5 is a sectional view of a multilayer ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 セラミックグリーンシート 2 内部電極 3 レジスト版膜 4 印刷スクリーン 5 電極ペースト 6 切断位置 7 セラミック層 8 焼結体 9 無効層 10 外部電極 DESCRIPTION OF SYMBOLS 1 Ceramic green sheet 2 Internal electrode 3 Resist plate film 4 Printing screen 5 Electrode paste 6 Cutting position 7 Ceramic layer 8 Sintered body 9 Invalid layer 10 External electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミックグリーンシートと内部電極を
交互に複数層積層して作成する積層セラミックコンデン
サの積層体の積層工程において、前記内部電極の積層初
期段階は薄いレジスト版膜を用い、積層途中段階から厚
いレジスト版膜を用いて内部電極の印刷を行う積層セラ
ミックコンデンサの製造方法。
In a laminating step of a multilayer ceramic capacitor formed by alternately laminating a plurality of ceramic green sheets and internal electrodes, an initial stage of laminating the internal electrodes uses a thin resist plate film, Of manufacturing a multilayer ceramic capacitor in which internal electrodes are printed using a thick resist plate film.
【請求項2】 内部電極の膜厚を2から4μmの範囲と
する請求項1に記載の積層セラミックコンデンサの製造
方法。
2. The method according to claim 1, wherein the thickness of the internal electrode is in a range of 2 to 4 μm.
【請求項3】 内部電極用電極ペーストの粘度を10,
000から30,000cpsの範囲とする請求項1に
記載の積層セラミックコンデンサの製造方法。
3. The viscosity of the electrode paste for an internal electrode is 10,
2. The method for manufacturing a multilayer ceramic capacitor according to claim 1, wherein the range is from 000 to 30,000 cps.
JP10273403A 1998-09-28 1998-09-28 Manufacture of laminated ceramic capacitor Pending JP2000106323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10273403A JP2000106323A (en) 1998-09-28 1998-09-28 Manufacture of laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10273403A JP2000106323A (en) 1998-09-28 1998-09-28 Manufacture of laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2000106323A true JP2000106323A (en) 2000-04-11

Family

ID=17527417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10273403A Pending JP2000106323A (en) 1998-09-28 1998-09-28 Manufacture of laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2000106323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227364A (en) * 2007-03-15 2008-09-25 Tdk Corp Internal electrode formation paste, lamination layer ceramic type electronic component, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227364A (en) * 2007-03-15 2008-09-25 Tdk Corp Internal electrode formation paste, lamination layer ceramic type electronic component, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0611018B2 (en) How to stack ceramic green sheets
JP3760942B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH05101970A (en) Laminated porcelain capacitor and its manufacture
JPH09190947A (en) Laminated ceramic electronic component
JP2002343674A (en) Manufacturing method of laminated ceramic capacitor
JP2000106323A (en) Manufacture of laminated ceramic capacitor
JP2001023853A (en) Manufacture of multilayer ceramic capacitor
JP4696410B2 (en) Manufacturing method of multilayer ceramic electronic component
WO2006109466A1 (en) Method for forming internal electrode pattern and method for manufacturing multilayer ceramic electronic component using same
JP3496184B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH05304042A (en) Layered ceramic capacitor and manufacture thereof
JP4449544B2 (en) Method for forming internal electrode pattern and method for producing multilayer ceramic electronic component using the same
JP4788484B2 (en) Method for manufacturing ceramic laminate
JP3147667B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3196713B2 (en) Manufacturing method of ceramic electronic components
JP3538308B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH08181032A (en) Laminated ceramic capacitor
JPH09153429A (en) Manufacture of laminated ceramic electronic component
JPH0379007A (en) Green sheet for laminated ceramic capacitor and manufacture of laminated ceramic capacitor
JP3047706B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH02117118A (en) Green sheet for laminated ceramic capacitor
JPH09213560A (en) Laminated ceramic electronic component
JPH07263271A (en) Manufacture of laminated ceramic component
JPH07211577A (en) Manufacture of laminated ceramic capacitor
JP2005197332A (en) Manufacturing method for ceramic electronic part