JP2000097919A - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method

Info

Publication number
JP2000097919A
JP2000097919A JP10270940A JP27094098A JP2000097919A JP 2000097919 A JP2000097919 A JP 2000097919A JP 10270940 A JP10270940 A JP 10270940A JP 27094098 A JP27094098 A JP 27094098A JP 2000097919 A JP2000097919 A JP 2000097919A
Authority
JP
Japan
Prior art keywords
wave
probe
ultrasonic
flaw detection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10270940A
Other languages
Japanese (ja)
Other versions
JP3932694B2 (en
Inventor
Masao Aota
正雄 青田
Saburo Yamazaki
三朗 山崎
Tsutomu Masumoto
勉 桝本
Yasuhiro Mabuchi
靖宏 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP27094098A priority Critical patent/JP3932694B2/en
Publication of JP2000097919A publication Critical patent/JP2000097919A/en
Application granted granted Critical
Publication of JP3932694B2 publication Critical patent/JP3932694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method whereby a flaw detection for a fillet weld part can be more easily conducted and the internal defect can be detected, evaluated by carrying out the flaw detection by utilizing a transversal wave generated from a creeping wave probe and a secondary creeping wave generated through a mode transform of the transversal wave at the bottom face. SOLUTION: When an ultrasonic wave is inputted to a fillet weld part 3 by a creeping wave probe (referred to as a probe hereinafter), a part of the wave is turned to a secondary creeping wave 4c through a mode transform from a transversal wave 4b at the bottom face and reflected by an incomplete penetration corner part. The reflected ultrasonic wave is received by the probe 1, amplified and detected by an ultrasonic flaw detector 18 and sent to a data- collecting/processing apparatus 19. The probe 1 is pressed by a driving apparatus 17 to a piping flaw detect face to scan a piping joint in the whole circumferential and axial directions. The collected data are processed by the data-collecting/ processing apparatus 19 after the flaw detection is completed. The data are analyzed on the basis of a detection echo and a position of the probe when detecting the defect. A state of the defect is judged and a fatigue fracture or the like is analyzed for the progress direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、隅肉溶接部の超音
波探傷試験に係り、溶接部に内在している欠陥を検出
し、その欠陥の性状を解析判別するのに好適な超音波探
傷試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection test for a fillet weld, which is suitable for detecting a defect existing in a weld and analyzing and discriminating the nature of the defect. Related to the test method.

【0002】[0002]

【従来の技術】隅肉溶接部の超音波検査に斜角探触子と
垂直探触子を併用して、溶け込み不足及び疲労割れを検
出する超音波探傷試験方法はあるが、一個のクリーピン
グ波探触子を用いて同時に発生する横波と二次クリーピ
ング波を利用し、溶接部に内在している欠陥を検出し、
その欠陥の性状を解析判別できる超音波探傷試験方法は
なかった。
2. Description of the Related Art There is an ultrasonic flaw detection test method for detecting insufficient penetration and fatigue cracking by using a bevel probe and a vertical probe together for ultrasonic inspection of a fillet weld. Using a transverse probe and a secondary creeping wave that are simultaneously generated using a wave probe, a defect existing in the weld is detected,
There was no ultrasonic testing method that could analyze and determine the nature of the defect.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、隅肉
溶接部の超音波探傷は、斜角探触子を用いて一方向から
超音波を入射する方法で実施していたが、この方法で
は、検査物表面(以下、探傷面と記す)に対して直角又
は、水平に近い角度の割れが検出できても両者の判別が
し難いため、垂直探触子による垂直探傷を併用して超音
波の反射源を解析していた。
According to the prior art, ultrasonic inspection of a fillet weld is performed by a method in which ultrasonic waves are incident from one direction using an angle probe. In this case, it is difficult to discriminate between cracks at right angles or near horizontal angles to the surface of the inspection object (hereinafter referred to as the flaw detection surface). The source of the sound wave was analyzed.

【0004】本発明の目的は、より簡便に隅肉溶接部を
探傷し、溶接部に内在している欠陥を検出・評価できる
超音波探傷方法を提供することにある。
An object of the present invention is to provide an ultrasonic flaw detection method that can more easily detect a fillet weld and detect and evaluate defects inherent in the weld.

【0005】[0005]

【課題を解決するための手段】上記の目標を達成するた
めに、下記の如く構成する。
Means for Solving the Problems In order to achieve the above-mentioned object, the following configuration is provided.

【0006】1)図1に示すようにクリーピング波探触
子1(以下、探触子という)を配管継ぎ手ソケット部2
外表面に配置し、探触子1から発生する横波4bと、そ
の横波が底面でモード変換を起こして発生する二次クリ
ーピング波4cを利用して、隅肉溶接部3の超音波探傷
試験を行う。探触子1は、配管継ぎ手ソケット部2の円
周方向22及び軸方向23の走査ができる駆動装置17
に取付ける。駆動装置17には、配管に探触子1を圧着
するための押付け機構と探触子走査位置を検出できる位
置検出機構21a,21bを設ける。
1) A creeping wave probe 1 (hereinafter referred to as a probe) is connected to a pipe joint socket 2 as shown in FIG.
An ultrasonic flaw detection test of the fillet weld 3 using a transverse wave 4b generated from the probe 1 and a secondary creeping wave 4c generated by the mode conversion of the transverse wave at the bottom surface, which is arranged on the outer surface. I do. The probe 1 has a driving device 17 capable of scanning the pipe joint socket portion 2 in the circumferential direction 22 and the axial direction 23.
Attach to The driving device 17 is provided with a pressing mechanism for pressing the probe 1 on the pipe and position detecting mechanisms 21a and 21b capable of detecting a probe scanning position.

【0007】2)探傷データは、データ収録処理装置1
9に収録記録するとともに、記録された検出エコーのビ
ーム路程位置関係を分析し、隅肉溶接部3に内在する下
記の欠陥を判別し、評価する。
2) The flaw detection data is stored in a data recording processing device 1
9, the beam path position of the recorded detected echo is analyzed, and the following defects inherent in the fillet weld 3 are determined and evaluated.

【0008】・溶け込み不足と疲労割れの判別 ・疲労割れの進展方向の解析 本構成において、探触子1から発生する横波とその横波
から同時に発生する二次クリーピング波を利用して隅肉
溶接部3の超音波探傷を行う。
[0008] Judgment of insufficient penetration and fatigue cracking • Analysis of the direction of fatigue crack propagation In this configuration, fillet welding is performed using transverse waves generated from the probe 1 and secondary creeping waves generated simultaneously from the transverse waves. The ultrasonic inspection of the part 3 is performed.

【0009】以下図1〜図5により代表的な隅肉溶接部
であるソケット溶接部の探触子1による超音波探傷につ
いて説明する。図1に示すように探触子1を置いたとき
超音波探傷器18から探触子1を経て超音波ビーム4
は、クリーピング波4aと横波4bの2通りの経路で溶
接部に入射される。このうち、横波の一部は底面でモー
ド変換により、二次クリーピング波4cとなって図2
(a),(b)に示す超音波伝播経路5aをたどり、溶
け込み不足コーナー部6で反射される。
The ultrasonic flaw detection by the probe 1 of the socket weld, which is a typical fillet weld, will be described below with reference to FIGS. When the probe 1 is placed as shown in FIG. 1, the ultrasonic beam 4 passes through the probe 1 from the ultrasonic flaw detector 18.
Is incident on the welded portion through two routes, a creeping wave 4a and a transverse wave 4b. Of these, a part of the shear wave is converted into a secondary creeping wave 4c by mode conversion on the bottom surface, as shown in FIG.
The light travels along the ultrasonic wave propagation path 5a shown in (a) and (b) and is reflected at the corner portion 6 with insufficient penetration.

【0010】また、一部の超音波は横波のまま、図2
(a),(b)に示す超音波伝播経路7aをたどり、溶
け込み不足端部8で反射する。反射した超音波は、探触
子1に受信され、電気信号として超音波探傷器18に送
られる。
In addition, some ultrasonic waves are left as shear waves,
The light travels along the ultrasonic wave propagation path 7a shown in FIGS. The reflected ultrasonic wave is received by the probe 1 and sent to the ultrasonic flaw detector 18 as an electric signal.

【0011】この時、超音波探傷器の探傷波形には、図
2(a),(b)の右に示すように溶け込み不足コーナ
ー部反射エコー5b,溶け込み不足端部反射エコー7b
として表示される。垂直方向に疲労割れ9が発生した溶
接部を探傷した場合には、図3(a),(b)に示すよ
うに疲労割れからの反射波が超音波伝播経路10aをた
どり検出され、探傷波形上10bの位置に表示され、水
平方向に疲労割れ11が発生した溶接部を探傷した場合
には、図4(a),(b)に示すように疲労割れからの
反射波が超音波伝播経路12aをたどり検出され、探傷
波形上12bの位置に表示される。
At this time, as shown on the right of FIGS. 2A and 2B, the flaw detection waveform of the ultrasonic flaw detector includes a reflection echo 5b at the corner with insufficient penetration and a reflection echo 7b at the end with insufficient penetration.
Will be displayed as When the welded portion where the fatigue crack 9 has occurred in the vertical direction is inspected, the reflected wave from the fatigue crack is detected along the ultrasonic wave propagation path 10a as shown in FIGS. When the weld displayed at the position of the upper part 10b and the fatigue crack 11 has occurred in the horizontal direction is inspected, the reflected wave from the fatigue crack is transmitted through the ultrasonic wave propagation path as shown in FIGS. 4 (a) and 4 (b). 12a is detected and displayed at the position of 12b on the flaw detection waveform.

【0012】又、斜め方向に疲労割れ13が発生した溶
接部を探傷した場合は、図5(a),(b)に示すよう
に疲労割れからの反射波が超音波伝播経路14aをたど
り検出され、探傷波形上14bの位置に表示される。
尚、駆動装置17により溶接部配管継ぎ手の周方向22
及び軸方向23の走査を行うことにより当該溶接部の超
音波検査を行うことができ、駆動装置17に設けた周方
向位置検出機構21a及び軸方向位置検出機構21bに
より探触子位置を検出することで、探触子位置と検出さ
れた欠陥エコーのビーム路程15から溶接部に内在する
欠陥の位置を求めることができる。
When the welded portion where the fatigue crack 13 has occurred is detected in a diagonal direction, the reflected wave from the fatigue crack follows the ultrasonic wave propagation path 14a as shown in FIGS. 5 (a) and 5 (b). Is displayed at the position 14b on the flaw detection waveform.
In addition, the circumferential direction 22 of the welded pipe joint is controlled by the driving device 17.
By performing scanning in the axial direction 23, an ultrasonic inspection of the welded portion can be performed, and the probe position is detected by the circumferential position detecting mechanism 21a and the axial position detecting mechanism 21b provided in the driving device 17. Thus, the position of the defect existing in the welded portion can be obtained from the probe position and the beam path 15 of the detected defect echo.

【0013】以上に示したように、クリーピング波探触
子から発生する横波及び二次クリーピング波を利用して
超音波探傷することにより、ソケット溶接部に内在する
欠陥の検出とその欠陥の性状を判別及び評価する動作を
1回の探傷で行うことができる。又、反射エコーの時間
差関係をデータ収録処理装置で分析することにより、溶
接部に内在する欠陥の判別及び疲労割れの進展方向を解
析できる。
As described above, the ultrasonic inspection using the transverse wave and the secondary creeping wave generated from the creeping wave probe detects the defect existing in the socket weld and detects the defect. The operation of determining and evaluating the properties can be performed by one flaw detection. Further, by analyzing the time difference relationship between the reflected echoes by the data recording processing device, it is possible to determine the defect existing in the welded portion and to analyze the direction of the fatigue crack propagation.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図1
(a),(b)により説明する。図1(a),(b)
は、隅肉溶接部超音波探傷試験装置の構成例を示すもの
である。探触子1で隅肉溶接部に超音波を入射したと
き、その一部の超音波は、底面で横波4bからモード変
換により二次クリーピング波4cとなり、溶け込み不足
コーナー部6で反射される。一部の超音波は横波のまま
入射し、溶け込み不足端部8及び疲労割れ9,11,1
3で反射される。反射された超音波は探触子1に受信さ
れ超音波探傷器18内の受信増幅器によって増幅検波さ
れて、データ収録/処理装置19に送られる。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to (a) and (b). FIG. 1 (a), (b)
1 shows a configuration example of a fillet weld ultrasonic testing device. When ultrasonic waves enter the fillet weld with the probe 1, some of the ultrasonic waves become secondary creeping waves 4 c by mode conversion from the transverse waves 4 b on the bottom surface, and are reflected at the corner portions 6 with insufficient penetration. . Some of the ultrasonic waves are incident as shear waves, and the insufficient penetration edge 8 and fatigue cracks 9, 11, 1
It is reflected at 3. The reflected ultrasonic wave is received by the probe 1, amplified and detected by a receiving amplifier in the ultrasonic flaw detector 18, and sent to the data recording / processing device 19.

【0015】超音波探傷信号は、データ収録/処理装置
19でA/D変換され、駆動装置17から送られる探触
子位置信号とともに収録する。探触子1は、駆動装置1
7により配管探傷面に押し付けられ、配管継ぎ手全周及
び軸方向に走査される。収録されたデータは、探傷終了
後、データ収録/処理装置19により処理され、検出エ
コーのビーム路程,エコー高さ,欠陥を検出したときの
探触子位置をもとに分析され、欠陥の性状を判別及び疲
労割れ等については、進展方向を解析する。隅肉溶接部
に主にみられる欠陥としては、溶け込み不足及びその溶
け込み不足が起因して発生する疲労割れがある。本発明
における欠陥の判別のためのデータ処理は、疲労割れが
発生した溶接部について、溶け込み不足コーナー部を二
次クリーピング波で、端部を横波で同時に検出できるこ
とを利用する。
The ultrasonic flaw detection signal is A / D converted by the data recording / processing device 19 and recorded together with the probe position signal sent from the driving device 17. The probe 1 includes a driving device 1
7 presses against the flaw detection surface of the pipe and scans the entire circumference of the pipe joint and in the axial direction. The recorded data is processed by the data recording / processing device 19 after the end of the flaw detection, and is analyzed based on the beam path of the detected echo, the echo height, and the probe position when the defect is detected, and the nature of the defect For the determination and fatigue cracking, the direction of development is analyzed. Defects mainly observed in the fillet weld include insufficient penetration and fatigue cracks caused by the insufficient penetration. The data processing for discriminating the defect in the present invention utilizes the fact that the corner portion with insufficient penetration can be simultaneously detected by the secondary creeping wave and the end portion by the transverse wave in the welded portion where the fatigue crack has occurred.

【0016】隅肉溶接部に溶け込み不足がない場合、欠
陥波形としては何も検出されないが、溶け込み不足があ
った場合には、図2(a),(b)に示す波形が表示さ
れ、図3(a),(b)のような垂直方向に進展した疲
労割れがあった場合、その欠陥エコーは探傷波形上、溶
け込み不足端部エコーより右側に現れ、水平方向に進展
した疲労割れがあった場合には、溶け込み不足コーナー
部エコーより左側に現れる。又、斜め方向に進展した疲
労割れがあった場合は、溶け込み不足端部エコーと溶け
込み不足コーナー部エコーの間に現れる。
If there is no insufficient penetration into the fillet weld, no defect waveform is detected, but if there is insufficient penetration, the waveforms shown in FIGS. 2A and 2B are displayed. When there is a fatigue crack that has developed in the vertical direction as shown in FIGS. 3 (a) and 3 (b), the defect echo appears on the right side of the poor penetration edge echo on the flaw detection waveform, and there is a fatigue crack that has developed in the horizontal direction. In this case, it appears on the left side of the echo of the corner with insufficient penetration. In addition, when there is a fatigue crack that has developed in an oblique direction, it appears between the insufficient penetration edge echo and the poor penetration corner echo.

【0017】[0017]

【発明の効果】以上、説明した如く本発明の構成によれ
ば、隅肉溶接部の溶け込み不足及び疲労割れ等の欠陥探
傷及び解析が被検査体への探傷装置取付け一回のみで可
能となり、保守検査の合理化が図れる。
As described above, according to the configuration of the present invention, defect detection and analysis such as insufficient penetration of fillet welds and fatigue cracking can be performed only once by attaching the flaw detection device to the inspection object. Maintenance inspections can be streamlined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は本発明の実施の形態を示す
超音波探傷試験装置の構成とクリーピング波探触子の超
音波入射状態を説明する構成図及び同図(a)のA部拡
大側断面図である。
FIGS. 1 (a) and 1 (b) are a configuration diagram for explaining a configuration of an ultrasonic flaw detection test apparatus showing an embodiment of the present invention and an ultrasonic incident state of a creeping wave probe, and FIGS. 2 is an enlarged side sectional view of a portion A of FIG.

【図2】(a)及び(b)は本発明の実施の形態を示す
溶け込み不足を検出するときの超音波伝播経路図及びそ
の欠陥波形図である。
FIGS. 2 (a) and (b) are an ultrasonic wave propagation path diagram and a defect waveform diagram thereof when detecting insufficient penetration according to an embodiment of the present invention.

【図3】(a)及び(b)は本発明の実施の形態を示す
探傷面に対して垂直方向に進展した疲労割れを検出する
ときの超音波伝播経路図及びその欠陥波形図である。
FIGS. 3A and 3B are an ultrasonic wave propagation path diagram and a defect waveform diagram thereof when detecting a fatigue crack that has developed in a direction perpendicular to a flaw detection surface according to the embodiment of the present invention.

【図4】(a)及び(b)は本発明の実施の形態を示す
探傷面に対して水平方向に進展した疲労割れを検出する
ときの超音波伝播経路図及びその欠陥波形図である。
FIGS. 4 (a) and (b) are an ultrasonic wave propagation path diagram and a defect waveform diagram when detecting fatigue cracks that have developed in a horizontal direction with respect to a flaw detection surface according to the embodiment of the present invention.

【図5】(a)及び(b)は本発明の実施の形態を示す
探傷面に対して斜め方向に進展した疲労割れを検出する
ときの超音波伝播経路図及びその欠陥波形図である。
5 (a) and 5 (b) are an ultrasonic wave propagation path diagram and a defect waveform diagram when detecting fatigue cracks which have developed in an oblique direction to a flaw detection surface according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…クリーピング波探触子、2…配管継ぎ手ソケット
部、3…隅肉溶接部、4a…クリーピング波、4b…横
波、4c…二次クリーピング波、5a…二次クリーピン
グ波による溶け込み不足コーナー部検出時の超音波伝播
経路、5b…二次クリーピング波による溶け込み不足コ
ーナー部エコー、6…溶け込み不足コーナー部、7a…
横波による溶け込み不足端部検出時の超音波伝播経路、
7b…横波による溶け込み不足端部エコー、8…溶け込
み不足端部、9…垂直方向に進展した疲労割れ、10a
…垂直方向に進展した疲労割れの超音波伝播経路、10
b…垂直方向に進展した疲労割れエコー、11…水平方
向に進展した疲労割れ、12a…水平方向に進展した疲
労割れの超音波伝播経路、12b…水平方向に進展した
疲労割れエコー、13…斜め方向に進展した疲労割れ、
14a…斜め方向に進展した疲労割れの超音波伝播経
路、14b…斜め方向に進展した疲労割れエコー、15
…欠陥エコーのビーム路程、16…欠陥エコー波高値、
17…駆動装置、18…超音波探傷器、19…データ収
録/処理装置、20…制御装置、21a…周方向探触子位
置検出器、21b…軸方向探触子位置検出器、22…円
周走査方向、23…軸走査方向、24…送信振動子、2
5…受信振動子。
DESCRIPTION OF SYMBOLS 1 ... Creeping wave probe, 2 ... Pipe joint socket part, 3 ... Fillet welded part, 4a ... Creeping wave, 4b ... Lateral wave, 4c ... Secondary creeping wave, 5a ... Penetration by secondary creeping wave Ultrasonic wave propagation path at the time of detection of an insufficient corner portion, 5b ... Echo of a corner with insufficient penetration due to secondary creeping wave, 6 ... Corner portion with insufficient penetration, 7a ...
Ultrasonic propagation path at the time of detection of insufficient penetration edge by transverse wave,
7b: echo of insufficient penetration edge due to shear wave, 8: edge of insufficient penetration, 9: fatigue crack propagated in vertical direction, 10a
... Ultrasonic propagation path of fatigue cracks that have developed in the vertical direction
b: Fatigue crack echo propagated in the vertical direction, 11: Fatigue crack propagated in the horizontal direction, 12a: Ultrasonic propagation path of the fatigue crack propagated in the horizontal direction, 12b: Fatigue crack echo propagated in the horizontal direction, 13: Oblique Fatigue cracks,
14a: Ultrasonic propagation path of fatigue cracks extending in an oblique direction, 14b: Echo of fatigue cracks extending in an oblique direction, 15
... Defect echo beam path, 16 ... Defect echo peak value,
17 ... Drive device, 18 ... Ultrasonic flaw detector, 19 ... Data recording / processing device, 20 ... Control device, 21a ... Circumferential probe position detector, 21b ... Axial probe position detector, 22 ... Circle Circumferential scanning direction, 23: axial scanning direction, 24: transmitting oscillator, 2
5 ... Reception vibrator.

フロントページの続き (72)発明者 山崎 三朗 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 桝本 勉 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 馬渕 靖宏 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 2G047 AB07 BA03 BC02 BC07 CB00 CB02 CB06 GA05 GA19 GG09 GG19 GG27 Continued on the front page (72) Inventor Saburo Yamazaki 3-2-1 Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Engineering Co., Ltd. (72) Inventor Tsutomu Masumoto 3-2-1 Sachimachi, Hitachi City, Ibaraki Hitachi Within Engineering Co., Ltd. (72) Inventor Yasuhiro Mabuchi 3-1-1, Sachimachi, Hitachi-shi, Ibaraki F-term in Hitachi, Ltd. Hitachi Plant F-term (reference) 2G047 AB07 BA03 BC02 BC07 CB00 CB02 CB06 GA05 GA19 GG09 GG19 GG27

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】クリーピング波探触子を使用して行う超音
波探傷法において、クリーピング波と同時に発生する横
波の反射波と二次クリーピング波の反射波の到達時間差
を測定・評価することを特徴とする超音波探傷法。
In an ultrasonic flaw detection method using a creeping wave probe, the arrival time difference between a reflected wave of a transverse wave and a reflected wave of a secondary creeping wave, which are generated simultaneously with the creeping wave, is measured and evaluated. An ultrasonic flaw detection method characterized in that:
【請求項2】上記請求項1において、横波反射波と二次
クリーピング反射波の時間差から反射源の性状を評価す
るようにしたことを特徴とする超音波探傷法。
2. The ultrasonic flaw detection method according to claim 1, wherein the property of the reflection source is evaluated from the time difference between the shear wave reflected wave and the secondary creeping reflected wave.
JP27094098A 1998-09-25 1998-09-25 Ultrasonic flaw detection Expired - Fee Related JP3932694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27094098A JP3932694B2 (en) 1998-09-25 1998-09-25 Ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27094098A JP3932694B2 (en) 1998-09-25 1998-09-25 Ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JP2000097919A true JP2000097919A (en) 2000-04-07
JP3932694B2 JP3932694B2 (en) 2007-06-20

Family

ID=17493133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27094098A Expired - Fee Related JP3932694B2 (en) 1998-09-25 1998-09-25 Ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JP3932694B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305117A (en) * 2000-04-27 2001-10-31 Ishikawajima Harima Heavy Ind Co Ltd Diaphragm inspecting instrument
JP2003057214A (en) * 2001-08-10 2003-02-26 Nkk Corp Ultrasonic flaw detection method and apparatus in fillet welding section
JP2010038820A (en) * 2008-08-07 2010-02-18 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection device
JP2017161441A (en) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 Welded joint ultrasonic flaw detecting method and welded joint ultrasonic flaw detector
JP2018194358A (en) * 2017-05-15 2018-12-06 三菱電機株式会社 Ultrasonic inspection method and ultrasonic inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305117A (en) * 2000-04-27 2001-10-31 Ishikawajima Harima Heavy Ind Co Ltd Diaphragm inspecting instrument
JP4644907B2 (en) * 2000-04-27 2011-03-09 株式会社Ihi Diaphragm inspection device
JP2003057214A (en) * 2001-08-10 2003-02-26 Nkk Corp Ultrasonic flaw detection method and apparatus in fillet welding section
JP2010038820A (en) * 2008-08-07 2010-02-18 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection device
JP2017161441A (en) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 Welded joint ultrasonic flaw detecting method and welded joint ultrasonic flaw detector
JP2018194358A (en) * 2017-05-15 2018-12-06 三菱電機株式会社 Ultrasonic inspection method and ultrasonic inspection device

Also Published As

Publication number Publication date
JP3932694B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US7168322B2 (en) Method for ultrasonic control of weld joints
WO2006025591A1 (en) Evaluation method and device for spot welded portion by ultrasonic wave
JPH0352908B2 (en)
JP6069123B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
CN107449829A (en) A kind of butt weld Non-Destructive Testing acceptance method
JP4437656B2 (en) Ultrasonic flaw detector
JP2001021542A (en) Measuring of weld line transverse crack defect length
US20190293606A1 (en) Method for ultrasonically inspecting an aluminothermically welded rail joint
JP2000097919A (en) Ultrasonic flaw detection method
WO2020039850A1 (en) Method and device for evaluating bonding interface
JP4559931B2 (en) Ultrasonic flaw detection method
JP2009058238A (en) Method and device for defect inspection
JP4120360B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP6173636B1 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JPH09257764A (en) Manual scanning type ultrasonic flaw detection apparatus
JP4606860B2 (en) Defect identification method and apparatus by ultrasonic inspection
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP2006162321A5 (en)
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP4175762B2 (en) Ultrasonic flaw detector
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
JP2007132770A (en) Plate member inspection method and device
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
RU2262689C1 (en) Method and device for testing rolled stock
JP2017106786A (en) Portable type higher harmonic nondestructive inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees