JP6173636B1 - Ultrasonic inspection method and ultrasonic inspection apparatus - Google Patents

Ultrasonic inspection method and ultrasonic inspection apparatus Download PDF

Info

Publication number
JP6173636B1
JP6173636B1 JP2017079669A JP2017079669A JP6173636B1 JP 6173636 B1 JP6173636 B1 JP 6173636B1 JP 2017079669 A JP2017079669 A JP 2017079669A JP 2017079669 A JP2017079669 A JP 2017079669A JP 6173636 B1 JP6173636 B1 JP 6173636B1
Authority
JP
Japan
Prior art keywords
probe
subject
wave
ultrasonic
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017079669A
Other languages
Japanese (ja)
Other versions
JP2018179751A (en
Inventor
譲 河野
譲 河野
繁樹 金村
繁樹 金村
哲示 山上
哲示 山上
高橋 修
修 高橋
書丙 張
書丙 張
Original Assignee
株式会社日本工業試験所
ジャパンプローブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本工業試験所, ジャパンプローブ株式会社 filed Critical 株式会社日本工業試験所
Priority to JP2017079669A priority Critical patent/JP6173636B1/en
Application granted granted Critical
Publication of JP6173636B1 publication Critical patent/JP6173636B1/en
Publication of JP2018179751A publication Critical patent/JP2018179751A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】被検体の欠陥の存在位置に探触子を配置しなくても、欠陥の位置と程度を検出できる超音波検査方法を提供する。【解決手段】下端部分がコンクリート6に埋設された鋼板4に、超音波の送信探触子1と受信探触子2を、鋼板4の表面に関して互いに同じ側に配置すると共に、互いに同じ方向である下方に傾斜させて配置する。送信探触子1と受信探触子2は、鋼板4に対して空気を介在させて配置し、鋼板4との間で空気を介して超音波の送信及び受信を行う。送信探触子1で400kHzの超音波を送信して鋼板4に板波を伝播させ、鋼板4の腐食部5で反射した超音波の反射波を受信探触子2で受信する。板波の反射波で腐食部5の存在が検出された位置で、送信探触子1で750kHzの超音波を送信して鋼板4に表面波を伝播させ、腐食部5で反射した超音波の反射波を受信探触子2で受信し、表面波の反射波に基づいて腐食部5の位置と深さを検出する。【選択図】図1To provide an ultrasonic inspection method capable of detecting the position and degree of a defect without arranging a probe at a position where a defect exists in a subject. An ultrasonic transmission probe 1 and a reception probe 2 are arranged on the same side with respect to the surface of the steel plate 4 in a steel plate 4 whose lower end portion is embedded in concrete 6 and in the same direction as each other. It is inclined at a certain downward position. The transmission probe 1 and the reception probe 2 are arranged with air interposed between the steel plate 4 and transmit and receive ultrasonic waves between the steel plate 4 and the air. The transmission probe 1 transmits a 400 kHz ultrasonic wave to propagate the plate wave to the steel plate 4, and the reflected wave of the ultrasonic wave reflected by the corroded portion 5 of the steel plate 4 is received by the reception probe 2. At the position where the presence of the corroded portion 5 is detected by the reflected wave of the plate wave, the transmitting probe 1 transmits an ultrasonic wave of 750 kHz to propagate the surface wave to the steel plate 4 and the ultrasonic wave reflected by the corroded portion 5 is transmitted. The reflected wave is received by the receiving probe 2, and the position and depth of the corroded portion 5 are detected based on the reflected wave of the surface wave. [Selection] Figure 1

Description

本発明は、例えば鋼板の埋設部に発生する腐食の検出に好適な超音波検査方法及び超音波検査装置に関する。   The present invention relates to an ultrasonic inspection method and an ultrasonic inspection apparatus suitable for detecting, for example, corrosion occurring in a buried portion of a steel plate.

従来、鋼製橋脚や波型鋼板ウェブ桁や照明柱等のように、鋼材がコンクリートや地盤に接する構造では、鋼材のコンクリートや地盤に埋設された部分である地際部に、雨水が滞留して腐食が生じやすい。このような鋼材の地際部分の健全性を評価するため、非破壊検査が行われている。地際部に行われる非破壊検査として、渦電流探傷検査と超音波検査がある。   Conventionally, in structures such as steel bridge piers, corrugated steel web girders, and lighting columns, where steel is in contact with concrete or the ground, rainwater is retained at the ground, where the steel is buried in the concrete or the ground. Corrosion is likely to occur. Nondestructive inspection is performed in order to evaluate the soundness of the ground part of such steel materials. Nondestructive inspections performed on the ground include eddy current inspection and ultrasonic inspection.

渦電流探傷検査は、コイルに交流電流を印加したときに生じる変動磁界によって被検体に渦電流を発生させ、渦電流の変化に基づいて傷を検出するものである(例えば、特許文献1参照)。渦電流探傷検査は、検査対象の鋼材に探触子を接触することなく、非接触で連続的に検査を行うことができる。   In the eddy current flaw inspection, an eddy current is generated in a subject by a fluctuating magnetic field generated when an alternating current is applied to a coil, and a flaw is detected based on a change in the eddy current (see, for example, Patent Document 1). . The eddy current flaw inspection can be continuously performed in a non-contact manner without bringing the probe into contact with the steel material to be inspected.

一方、超音波検査は、被検体に超音波を送信し、その透過波や反射波の有無や強度に基づいて、損傷の有無や位置を検出するものである。超音波の反射波に基づいて、金属柱の地際部の損傷を検出する方法として、金属柱の地上部に探触子を固定し、この探触子から送信した超音波の反射波の強度を、予め準備した試験片における反射波の強度と比較して、地際部の腐食の有無と程度を評価する欠陥評価方法がある(例えば、特許文献2参照)。この欠陥評価方法では、接触媒質を介して探触子を金属柱に固定しており、この探触子から送信されて金属柱を伝播する超音波は、SH波である。   On the other hand, the ultrasonic inspection transmits ultrasonic waves to a subject and detects the presence or absence and position of damage based on the presence or absence and intensity of the transmitted wave or reflected wave. As a method of detecting damage to the ground part of the metal column based on the reflected wave of the ultrasonic wave, the intensity of the reflected wave of the ultrasonic wave transmitted from this probe is fixed to the ground part of the metal column. Is compared with the intensity of the reflected wave in a test piece prepared in advance, and there is a defect evaluation method for evaluating the presence and degree of corrosion at the ground (see, for example, Patent Document 2). In this defect evaluation method, the probe is fixed to the metal column via the contact medium, and the ultrasonic wave transmitted from the probe and propagating through the metal column is an SH wave.

特開2000−310618号公報JP 2000-310618 A 特開2013−160683号公報JP 2013-160683 A

しかしながら、上記渦電流探傷検査は、探触子を腐食部が存在する位置に通過させる必要があるため、地際部に存在する腐食を検出するためには、鋼材を埋設する地盤やコンクリートを除去する必要がある。したがって、検査に手間がかかる問題がある。また、鋼材と一体化したコンクリートを除去することにより、構造の強度が低下する問題がある。また、検査結果に異常が無い場合であっても、除去したコンクリートを回復するための補修が必要となる問題がある。すなわち、鋼材は非破壊であっても、鋼材に接する部材を破壊する必要があるという問題がある。また、渦電流探傷により腐食の存在を検知できても、腐食の深さを検知することができない。   However, since the eddy current flaw inspection needs to pass the probe to the position where the corroded portion exists, in order to detect the corrosion existing on the ground portion, the ground and concrete where the steel material is buried are removed. There is a need to. Therefore, there is a problem that the inspection takes time. Moreover, there is a problem that the strength of the structure is lowered by removing the concrete integrated with the steel material. Moreover, even if there is no abnormality in the inspection result, there is a problem that repair is required to recover the removed concrete. That is, even if the steel material is non-destructive, there is a problem that it is necessary to destroy a member that contacts the steel material. Even if the presence of corrosion can be detected by eddy current flaw detection, the depth of corrosion cannot be detected.

また、上記超音波を用いた欠陥評価方法は、金属柱に接触触媒を介して探触子を固定するので、超音波の送信方向が固定される。したがって、広範囲の探傷を行うためには、対象範囲において、探触子の固定と、超音波の送信及び受信とを繰り返す必要があり、手間がかかる問題がある。また、上記超音波を用いた欠陥評価方法は、SH波を金属柱に伝播させるので、超音波の伝播速度が比較的遅く、欠陥の検出に時間がかかる問題がある。   In the defect evaluation method using ultrasonic waves, the probe is fixed to the metal column via the contact catalyst, so that the transmission direction of the ultrasonic waves is fixed. Therefore, in order to perform a wide range of flaw detection, it is necessary to repeat the fixing of the probe and the transmission and reception of ultrasonic waves in the target range, which is troublesome. In addition, the defect evaluation method using ultrasonic waves has a problem in that since the SH wave propagates to the metal column, the propagation speed of the ultrasonic waves is relatively slow, and it takes time to detect the defects.

そこで、本発明の課題は、被検体の欠陥の存在位置に探触子を配置しなくても、欠陥の位置と程度を検出できる超音波検査方法を提供することにある。また、被検体への探触子の固定が不要であり、少ない手間で被検体の広範囲の欠陥を迅速に検出できる超音波検査方法を提供することにある。   Therefore, an object of the present invention is to provide an ultrasonic inspection method capable of detecting the position and degree of a defect without arranging a probe at the position where the defect exists in the subject. It is another object of the present invention to provide an ultrasonic inspection method that does not require the probe to be fixed to the subject and that can quickly detect a wide range of defects in the subject with less effort.

上記課題を解決するため、本発明の超音波検査方法は、超音波の送信探触子と受信探触子を、被検体の表面の同じ側に、互いに同じ方向に傾斜させて配置する工程と、
上記送信探触子から上記被検体に空気を介して第1の周波数の超音波を入射させ、上記被検体に板波を発生させる工程と、
上記被検体からの超音波を、上記受信探触子により空気を介して受信する工程と、
上記受信探触子が受信した超音波に基づいて、上記被検体の欠陥の有無を判断する工程と、
上記被検体に欠陥が有ると判断されたとき、上記送信探触子から上記被検体に空気を介して第2の周波数の超音波を入射させ、上記被検体に表面波を発生させる工程と、
上記被検体からの超音波を、上記受信探触子により空気を介して受信する工程と、
上記受信探触子が受信した超音波に基づいて、上記被検体の欠陥の位置及び/又は深さを検出する工程と
を備えることを特徴としている。
In order to solve the above-described problem, the ultrasonic inspection method of the present invention includes a step of arranging an ultrasonic transmission probe and a reception probe on the same side of the surface of the subject so as to be inclined in the same direction. ,
A step of causing an ultrasonic wave of a first frequency to be incident on the subject from the transmission probe to the subject to generate a plate wave on the subject;
Receiving ultrasonic waves from the subject through the air with the receiving probe;
Determining the presence or absence of a defect in the subject based on the ultrasound received by the reception probe; and
When it is determined that the subject has a defect, a step of causing a ultrasonic wave of a second frequency to enter the subject from the transmission probe to the subject via air, and generating a surface wave on the subject;
Receiving ultrasonic waves from the subject through the air with the receiving probe;
And a step of detecting the position and / or depth of the defect of the subject based on the ultrasonic wave received by the reception probe.

上記構成によれば、超音波の送信探触子と受信探触子を、被検体の表面の同じ側に、互いに同じ方向に傾斜させて配置するので、送信探触子から送信された超音波が被検体を伝播する方向に存在する欠陥を、この欠陥で反射された反射波に基づいて検出できる。したがって、被検体の欠陥の存在位置に探触子を配置しなくても、被検体の欠陥を検出することができる。また、本発明によれば、送信探触子と受信探触子を、被検体との間に空気を介在させて配置するので、接触触媒で探触子を被検体に固定する従来の欠陥評価方法よりも、送信探触子及び受信探触子の配置の手間を大幅に削減できる。また、被検体の表面に板波を伝播させ、被検体からの超音波に基づいて欠陥の有無を判断する。欠陥が有ると判断されたとき、送信探触子から超音波を送信して被検体に表面波を伝播させ、被検体からの超音波に基づいて欠陥の位置及び/又は深さを検出する。これにより、全ての位置で表面波を発生させて欠陥を検出するよりも、迅速かつ効率的に、欠陥の位置及び/深さを検出することができる。ここで、第1の周波数は、被検体に板波を発生させる周波数であり、被検体の板厚と超音波の入射角度に基づいて定められる。また、第2の周波数は、被検体に表面波を発生させる周波数であり、超音波の入射角度に基づいて定められる。   According to the above configuration, since the ultrasonic transmission probe and the reception probe are arranged on the same side of the surface of the subject and inclined in the same direction, the ultrasonic wave transmitted from the transmission probe is arranged. Can be detected based on the reflected wave reflected by the defect. Therefore, the defect of the subject can be detected without arranging the probe at the position where the defect of the subject exists. In addition, according to the present invention, since the transmission probe and the reception probe are arranged with air interposed between the subject and the probe, the conventional defect evaluation in which the probe is fixed to the subject with a contact catalyst. Compared to the method, it is possible to greatly reduce the labor of arranging the transmitting probe and the receiving probe. Further, a plate wave is propagated to the surface of the subject, and the presence or absence of a defect is determined based on the ultrasonic wave from the subject. When it is determined that there is a defect, an ultrasonic wave is transmitted from the transmission probe to propagate a surface wave to the subject, and the position and / or depth of the defect is detected based on the ultrasonic wave from the subject. Thus, the position and / or depth of the defect can be detected more quickly and efficiently than when the surface wave is generated at all positions to detect the defect. Here, the first frequency is a frequency for generating a plate wave in the subject, and is determined based on the plate thickness of the subject and the incident angle of the ultrasonic wave. The second frequency is a frequency that causes the subject to generate a surface wave, and is determined based on the incident angle of the ultrasonic wave.

一実施形態の超音波検査方法は、上記被検体が他の材料と接触する接触部を有し、この接触部に生じた欠陥を検出する。   In an ultrasonic inspection method according to an embodiment, the subject has a contact portion in contact with another material, and a defect generated in the contact portion is detected.

上記実施形態によれば、被検体の表面の同じ側に、互いに同じ方向に傾斜させて配置された送信探触子と受信探触子により、超音波の伝播方向に存在する欠陥を検出できる。したがって、被検体の接触部以外の部分に配置した送信探触子及び受信探触子により、接触部の欠陥を検出することができる。すなわち、他の材料の存在により、この材料に接触されて直接観察できない位置にある被検体の欠陥を、接触部以外の部分に配置した送信探触子及び受信探触子により、非破壊で検出することができる。   According to the above-described embodiment, it is possible to detect a defect existing in the propagation direction of the ultrasonic wave by using the transmission probe and the reception probe which are arranged on the same side of the surface of the subject and inclined in the same direction. Therefore, a defect in the contact portion can be detected by the transmission probe and the reception probe arranged in a portion other than the contact portion of the subject. In other words, non-destructive detection of the defect of the subject in a position where it cannot be directly observed due to the presence of another material by using a transmitting probe and a receiving probe arranged in a portion other than the contact portion. can do.

一実施形態の超音波検査方法は、上記第1の周波数が300〜500kHzであり、上記第2の周波数が600〜1000kHzである。   In the ultrasonic inspection method according to one embodiment, the first frequency is 300 to 500 kHz, and the second frequency is 600 to 1000 kHz.

上記実施形態によれば、300〜500kHzの周波数の超音波により被検体に板波を形成することができ、600〜1000kHzの周波数の超音波により被検体に表面波を形成することができる。特に、板波を形成する第1の周波数は400kHzが好ましく、表面波を形成する第2の周波数は750kHzが好ましい。   According to the above embodiment, a plate wave can be formed on the subject with ultrasonic waves having a frequency of 300 to 500 kHz, and a surface wave can be formed on the subject with ultrasonic waves having a frequency of 600 to 1000 kHz. In particular, the first frequency for forming the plate wave is preferably 400 kHz, and the second frequency for forming the surface wave is preferably 750 kHz.

一実施形態の超音波検査方法は、予め上記被検体と実質的に同じ材料に模擬欠陥を形成した試験体に板波を発生させたときの受信探触子の受信結果を収集しておき、この試験体の受信結果と、上記被検体に板波を発生させたときの受信探触子の受信結果とを比較することにより、上記被検体の欠陥の有無を推定する。   The ultrasonic inspection method of one embodiment collects reception results of a reception probe when a plate wave is generated in a test body in which a simulated defect is formed in substantially the same material as the subject in advance, By comparing the reception result of the specimen with the reception result of the reception probe when a plate wave is generated in the subject, the presence or absence of the defect of the subject is estimated.

上記実施形態によれば、予め、検査対象の被検体と実質的に同じ材料に模擬欠陥を形成した試験体を準備し、この試験体に板波を発生させたときの受信探触子の受信結果を収集しておく。この試験体の受信結果は、例えば試験体に設定した座標に関する超音波の振幅や波高値や音圧の分布を採用することができる。この試験体の受信結果と、被検体に板波を発生させたときの受信探触子の受信結果とを比較し、試験体の模擬欠陥の有無に基づいて、被検体の欠陥の有無を推定することができる。   According to the above-described embodiment, a test body in which a simulated defect is formed in substantially the same material as an object to be inspected is prepared in advance, and reception of a reception probe when a plate wave is generated in the test body is received. Collect the results. As the reception result of the test body, for example, the ultrasonic amplitude, peak value, and sound pressure distribution related to the coordinates set on the test body can be adopted. Compare the reception result of this specimen with the reception result of the reception probe when a plate wave is generated in the subject, and estimate the presence or absence of the specimen defect based on the presence or absence of the simulated defect in the specimen. can do.

一実施形態の超音波検査方法は、予め上記被検体と実質的に同じ材料に模擬欠陥を形成した試験体に表面波を発生させたときの受信探触子の受信結果を収集しておき、この試験体の受信結果と、上記被検体に表面波を発生させたときの受信探触子の受信結果とを比較することにより、上記被検体の欠陥の位置及び/又は深さを推定する。   The ultrasonic inspection method of one embodiment collects reception results of a reception probe when a surface wave is generated in a test body in which a simulated defect is formed in substantially the same material as the subject in advance, By comparing the reception result of the specimen and the reception result of the reception probe when the surface wave is generated in the subject, the position and / or depth of the defect of the subject is estimated.

上記実施形態によれば、予め、検査対象の被検体と実質的に同じ材料に模擬欠陥を形成した試験体を準備し、この試験体に表面波を発生させたときの受信探触子の受信結果を収集しておく。この試験体の受信結果は、例えば試験体に設定した座標に関する超音波の振幅や波高値や音圧の分布を採用することができる。この試験体の受信結果と、被検体に表面波を発生させたときの受信探触子の受信結果とを比較し、試験体の模擬欠陥の位置及び/又は深さに基づいて、被検体の欠陥の位置及び/又は深さを推定することができる。   According to the above-described embodiment, a test body in which a simulated defect is formed in substantially the same material as the subject to be inspected is prepared in advance, and reception of the reception probe when a surface wave is generated in the test body is received. Collect the results. As the reception result of the test body, for example, the ultrasonic amplitude, peak value, and sound pressure distribution related to the coordinates set on the test body can be adopted. The reception result of this specimen is compared with the reception result of the reception probe when the surface wave is generated in the subject, and based on the position and / or depth of the simulated defect of the specimen, The position and / or depth of the defect can be estimated.

一実施形態の超音波検査方法は、上記送信探触子及び受信探触子を、上記被検体の主要面に沿って、この主要面の法線方向から観て上記送信探触子の超音波の送信方向と直角の方向に移動させ、移動途中の複数個所で順次超音波の送信と受信を行う。   In one embodiment of the ultrasonic inspection method, the transmission probe and the reception probe are viewed along the main surface of the subject from the normal direction of the main surface, and the ultrasonic wave of the transmission probe is observed. The ultrasonic waves are transmitted and received sequentially at a plurality of locations in the middle of the movement.

上記実施形態によれば、送信探触子及び受信探触子を、上記被検体の主要面に沿って、この主要面の法線方向から観て上記送信探触子の超音波の送信方向と直角の方向に移動させ、移動途中の複数個所で順次超音波の送信と受信を行うことにより、上記被検体の主要面を走査することができる。したがって、被検体の検査を効率的に行うことができる。特に、上記被検体に板波を伝播させて走査することにより、迅速かつ効率的に欠陥の有無を検出できる。ここで、上記主要面の法線方向から観て送信探触子の超音波の送信方向は鉛直方向であり、上記送信探触子及び受信探触子を移動する方向は水平方向であるのが好ましい。また、上記被検体の主要面は、被検体が平坦な板である場合、この板の表面であり、被検体が波板である場合、この波板の峰を含んで形成される面である。   According to the embodiment, the transmission probe and the reception probe are viewed along the main surface of the subject from the normal direction of the main surface, and the transmission direction of the ultrasonic waves of the transmission probe is The main surface of the subject can be scanned by moving in a direction perpendicular to each other and sequentially transmitting and receiving ultrasonic waves at a plurality of locations in the middle of movement. Therefore, the examination of the subject can be performed efficiently. In particular, the presence or absence of a defect can be detected quickly and efficiently by propagating a plate wave to the subject for scanning. Here, when viewed from the normal direction of the main surface, the transmission direction of the ultrasonic waves of the transmission probe is the vertical direction, and the direction of moving the transmission probe and the reception probe is the horizontal direction. preferable. Further, the main surface of the subject is the surface of the plate when the subject is a flat plate, and the surface formed including the peaks of the corrugated plate when the subject is a corrugated plate. .

本発明の超音波検査装置は、上記超音波検査方法を実行するための超音波検査装置であって、
送信探触子を、被検体に対する傾斜角度を調節可能かつ交換可能に保持する送信探触子保持体と、
受信探触子を、被検体に対する傾斜角度を調節可能かつ交換可能に保持する受信探触子保持体と、
上記被検体に板波と表面波を選択的に発生させるように上記送信探触子を駆動する送信探触子駆動部と、
上記送信探触子保持体及び受信探触子保持体が取り付けられたケーシングと、
上記ケーシングを、上記被検体の主要面に沿って、この主要面の法線方向から観て上記送信探触子の超音波の送信方向と直角の方向に移動させる移動部と
を備えることを特徴としている。
An ultrasonic inspection apparatus of the present invention is an ultrasonic inspection apparatus for executing the ultrasonic inspection method,
A transmission probe holder for holding the transmission probe in an adjustable and interchangeable manner with respect to the subject; and
A receiving probe holder for holding the receiving probe in an adjustable and interchangeable manner with respect to the subject; and
A transmission probe driving unit that drives the transmission probe so as to selectively generate a plate wave and a surface wave in the subject;
A casing to which the transmission probe holder and the reception probe holder are attached;
A moving unit that moves the casing in a direction perpendicular to the ultrasonic transmission direction of the transmission probe as viewed from the normal direction of the main surface along the main surface of the subject. It is said.

上記実施形態によれば、送信探触子が、送信探触子保持体により、被検体に対する傾斜角度が調節可能かつ交換可能に保持される。また、受信探触子が、受信探触子保持体により、被検体に対する傾斜角度が調節可能かつ交換可能に保持される。上記送信探触子保持体で保持された送信探触子の角度を所定の角度に設定すると共に、送信探触子駆動部により、被検体に板波と表面波を選択的に発生させるように送信探触子を駆動することにより、被検体の厚み等の条件に応じて、被検体に板波と表面を選択的に発生させることができる。また、上記送信探触子保持体及び受信探触子保持体が取り付けられたケーシングを、移動部により、被検体の主要面に沿って、この主要面の法線方向から観て上記送信探触子の超音波の送信方向と直角の方向に移動させることにより、上記被検体の主要面を走査することができる。したがって、被検体の検査を効率的に行うことができる。特に、上記被検体に板波を発生させて走査することにより、迅速かつ効率的に欠陥の有無を検出できる。ここで、上記主要面の法線方向から観て送信探触子の超音波の送信方向は鉛直方向であり、上記送信探触子及び受信探触子を移動する方向は水平方向であるのが好ましい。また、上記被検体の主要面は、被検体が平坦な板である場合、この板の表面であり、被検体が波板である場合、この波板の峰を含んで形成される面である。   According to the embodiment, the transmission probe is held by the transmission probe holder so that the inclination angle with respect to the subject can be adjusted and exchanged. In addition, the reception probe is held by the reception probe holder so that the inclination angle with respect to the subject can be adjusted and exchanged. The angle of the transmission probe held by the transmission probe holder is set to a predetermined angle, and a plate wave and a surface wave are selectively generated in the subject by the transmission probe driving unit. By driving the transmission probe, it is possible to selectively generate a plate wave and a surface on the subject according to conditions such as the thickness of the subject. Further, the transmission probe holder and the receiving probe holder attached to the casing are attached to the transmission probe as viewed from the normal direction of the main surface along the main surface of the subject by the moving unit. The main surface of the subject can be scanned by moving the child in a direction perpendicular to the transmission direction of the ultrasonic waves. Therefore, the examination of the subject can be performed efficiently. In particular, the presence or absence of defects can be detected quickly and efficiently by generating a plate wave and scanning the subject. Here, when viewed from the normal direction of the main surface, the transmission direction of the ultrasonic waves of the transmission probe is the vertical direction, and the direction of moving the transmission probe and the reception probe is the horizontal direction. preferable. Further, the main surface of the subject is the surface of the plate when the subject is a flat plate, and the surface formed including the peaks of the corrugated plate when the subject is a corrugated plate. .

本発明の実施形態の超音波検査方法を説明する模式図である。It is a schematic diagram explaining the ultrasonic inspection method of embodiment of this invention. 実施形態の超音波検査装置を示す側面図である。It is a side view which shows the ultrasonic inspection apparatus of embodiment. 実施形態の超音波検査装置を示す背面図である。It is a rear view which shows the ultrasonic inspection apparatus of embodiment. 超音波検査装置が備える送信探触子保持体と受信探触子保持体を示す断面図である。It is sectional drawing which shows the transmission probe holding body and reception probe holding body with which an ultrasonic inspection apparatus is provided. 実施形態の超音波検査装置を示すブロック図である。It is a block diagram which shows the ultrasonic inspection apparatus of embodiment. 超音波検査装置で被検体を検査する様子を示す図である。It is a figure which shows a mode that a test object is test | inspected with an ultrasonic inspection apparatus. 被検体に表面波を生成したときの超音波の波高値の分布を示す画像である。It is an image which shows distribution of the crest value of an ultrasonic wave when a surface wave is generated in a subject. 試験体を示す断面図である。It is sectional drawing which shows a test body. 試験体を示す正面図である。It is a front view which shows a test body. 試験体に表面波を生成したときの超音波の波高値の分布を示す画像である。It is an image which shows distribution of the crest value of an ultrasonic wave when generating a surface wave in a test object.

以下、本発明の実施形態を、添付の図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の実施形態の超音波検査方法を説明する模式図である。実施形態の超音波検査方法として、コンクリート6に下端部分が埋設された被検体としての鋼板4について、地際部を含む埋設部分に生じた腐食5の位置と深さを非破壊で検出する場合について説明する。   FIG. 1 is a schematic diagram for explaining an ultrasonic inspection method according to an embodiment of the present invention. As the ultrasonic inspection method of the embodiment, in the case where the position and depth of the corrosion 5 generated in the embedded portion including the subsurface portion is detected in a nondestructive manner with respect to the steel plate 4 as the subject in which the lower end portion is embedded in the concrete 6 Will be described.

本実施形態の超音波検査方法では、鋼板4のコンクリート6の表面から所定の高さに、超音波の送信探触子1と受信探触子2を配置する。送信探触子1と受信探触子2を、鋼板4の表面に関して互いに同じ側に配置すると共に、互いに同じ方向である下方に傾斜させて配置する。送信探触子1と受信探触子2は、鋼板4に対して空気を介在させて配置し、送信探触子1及び受信探触子2と鋼板4との間で空気を介して超音波の送信及び受信を行う。送信探触子1及び受信探触子2は、鋼板4との間で空気を介して送信及び受信する超音波により探傷を行う所謂空中超音波探傷を行う。送信探触子1は、駆動信号を受け、所定の周波数の矩形波で形成されたバースト波の超音波を、符号Aで示すように送信する。   In the ultrasonic inspection method of the present embodiment, the ultrasonic transmission probe 1 and the reception probe 2 are arranged at a predetermined height from the surface of the concrete 6 of the steel plate 4. The transmission probe 1 and the reception probe 2 are arranged on the same side with respect to the surface of the steel plate 4, and are inclined downward in the same direction. The transmission probe 1 and the reception probe 2 are arranged with air interposed between the steel plate 4 and ultrasonic waves between the transmission probe 1 and the reception probe 2 and the steel plate 4 via the air. Send and receive. The transmission probe 1 and the reception probe 2 perform so-called airborne ultrasonic flaw detection in which flaw detection is performed with ultrasonic waves transmitted and received between the steel plate 4 and air. The transmission probe 1 receives the drive signal and transmits an ultrasonic wave of a burst wave formed by a rectangular wave having a predetermined frequency as indicated by a symbol A.

受信探触子2は、鋼板4の端部で反射した超音波の反射波や、鋼板4の欠陥としての腐食部5で反射した超音波の反射波を、符号Bで示すように受信する。送信探触子1及び受信探触子2は、鋼板4に対して同じ方向を向いて配置されているので、鋼板4の送信探触子1及び受信探触子2の配置位置よりも鋼板4の延在方向に位置する腐食部5を、この腐食部5での反射波に基づいて検出することができる。また、鋼板4の腐食部5がコンクリート6内に存在しても、送信探触子1から鋼板4の延在方向に進行する超音波の反射波によって、問題無く腐食部5を検出できる。   The receiving probe 2 receives the reflected wave of the ultrasonic wave reflected by the end of the steel plate 4 and the reflected wave of the ultrasonic wave reflected by the corroded part 5 as a defect of the steel plate 4 as indicated by reference numeral B. Since the transmission probe 1 and the reception probe 2 are arranged in the same direction with respect to the steel plate 4, the steel plate 4 is located more than the arrangement position of the transmission probe 1 and the reception probe 2 of the steel plate 4. It is possible to detect the corroded portion 5 located in the extending direction of the base plate based on the reflected wave from the corroded portion 5. Even if the corroded portion 5 of the steel plate 4 exists in the concrete 6, the corroded portion 5 can be detected without any problem by the reflected wave of the ultrasonic wave traveling in the extending direction of the steel plate 4 from the transmission probe 1.

本実施形態の超音波検査方法は、鋼板4に板波と表面波との2種類の超音波を伝播させて、腐食部5の位置及び深さを検出する。まず、送信探触子1から鋼板4に超音波を送信して板波を生成し、この板波の反射波を受信探触子2で受信し、受信探触子2の受信結果に基づいて、鋼板4の欠陥の有無を検出する。板波は、平板や棒状の材料を伝播するガイド波であり、複数のモードが重畳して伝播する超音波である。板波は、鋼板4の板厚に応じて、超音波の入射角度と、周波数を所定の値に調節することにより、鋼板4に生成することができる。鋼板4に板波を生成する周波数が、本発明の第1の周波数である。送信探触子1が送信する第1の周波数は、300〜500kHzが好ましく、400kHzが特に好ましい。送信探触子1は、鋼板4の側面視において下方に傾斜した方向に超音波を送信し、これにより、鋼板4を鉛直下方に進行する板波を生成させる。鋼板4に板波を伝播させると、受信探触子2により、腐食部5で反射した反射波と、鋼板4の下端で反射した反射波とが受信される。上記腐食部5による反射波と、鋼板4の下端の反射波の伝達時間の差により、鋼板4の下端よりも送信探触子1側に存在する腐食部5等の欠陥を検出することができる。   In the ultrasonic inspection method of the present embodiment, two types of ultrasonic waves, a plate wave and a surface wave, are propagated through the steel plate 4 to detect the position and depth of the corroded portion 5. First, an ultrasonic wave is transmitted from the transmission probe 1 to the steel plate 4 to generate a plate wave, and the reflected wave of this plate wave is received by the reception probe 2, and based on the reception result of the reception probe 2. The presence or absence of defects in the steel plate 4 is detected. The plate wave is a guide wave that propagates through a flat plate or rod-like material, and is an ultrasonic wave that is propagated by superimposing a plurality of modes. The plate wave can be generated in the steel plate 4 by adjusting the incident angle of the ultrasonic wave and the frequency to a predetermined value according to the plate thickness of the steel plate 4. The frequency which produces | generates a plate wave on the steel plate 4 is the 1st frequency of this invention. The first frequency transmitted by the transmission probe 1 is preferably 300 to 500 kHz, and particularly preferably 400 kHz. The transmission probe 1 transmits ultrasonic waves in a direction inclined downward in a side view of the steel plate 4, thereby generating a plate wave that travels vertically downward on the steel plate 4. When the plate wave is propagated to the steel plate 4, the reception probe 2 receives the reflected wave reflected by the corroded portion 5 and the reflected wave reflected by the lower end of the steel plate 4. Due to the difference in transmission time between the reflected wave from the corroded portion 5 and the reflected wave at the lower end of the steel plate 4, defects such as the corroded portion 5 present on the transmission probe 1 side from the lower end of the steel plate 4 can be detected. .

板波によって欠陥の存在が検出されると、この欠陥が検出された位置で、鋼板4に表面波を進行させて欠陥の位置と深さを検出する。すなわち、板波用の送信探触子1を表面波用の送信探触子1に交換すると共に、板波用の受信探触子2を表面波用の受信探触子2に交換する。交換した表面波用の送信探触子1から鋼板4に超音波を送信して表面波を生成し、この表面波の反射波を受信探触子2で受信し、受信探触子2の受信結果に基づいて、鋼板4の欠陥の位置や深さを検出する。表面波は、被検体の表面部分を伝播する超音波であり、伝播する側の表面に存在する欠陥で反射した反射波に基づいて、欠陥の位置と深さを、板波よりも精度良く検出することができる。表面波は、超音波の入射角度と、周波数を所定の値に調節することにより、鋼板4に生成することができる。鋼板4に表面波を生成する周波数が、本発明の第2の周波数である。送信探触子1が送信する第2の周波数は、600〜1000kHzが好ましく、750kHzが特に好ましい。   When the presence of a defect is detected by a plate wave, a surface wave is advanced to the steel plate 4 at the position where the defect is detected, and the position and depth of the defect are detected. That is, the plate wave transmission probe 1 is replaced with a surface wave transmission probe 1 and the plate wave reception probe 2 is replaced with a surface wave reception probe 2. An ultrasonic wave is generated from the exchanged surface wave transmission probe 1 to the steel plate 4 to generate a surface wave, and the reflected wave of the surface wave is received by the reception probe 2 and received by the reception probe 2. Based on the result, the position and depth of the defect in the steel plate 4 are detected. Surface waves are ultrasonic waves that propagate through the surface of the subject, and detect the position and depth of defects more accurately than plate waves based on the reflected waves reflected by the defects present on the surface on the propagation side. can do. The surface wave can be generated on the steel plate 4 by adjusting the incident angle and frequency of the ultrasonic wave to predetermined values. The frequency at which the surface wave is generated on the steel plate 4 is the second frequency of the present invention. The second frequency transmitted by the transmission probe 1 is preferably 600 to 1000 kHz, and particularly preferably 750 kHz.

本実施形態の超音波検査方法は、鋼板4を板波により一次検査を行い、この一次検査で欠陥が検出された位置で、表面波により二次検査を行って欠陥の詳細を検出する。一次検査は、鋼板4の超音波の入射位置から鉛直下方に超音波を伝播させて入射位置の下方の欠陥の有無を検出する工程を、送信探触子1及び受信探触子2の水平方向への移動と交互に繰り返すことにより、鋼板4を走査する。すなわち、超音波の板波を鉛直方向に送信及び受信する工程と、送信探触子1及び受信探触子2を超音波の送信方向と直角の水平方向へ移動する工程とを繰り返して、鋼板4の走査を行う。板波は、鋼板4の送信探触子1が存在する表側面に存在する欠陥と、裏側面に存在する欠陥のいずれによっても反射するので、鋼板4の表側面で走査すれば、両面の欠陥を検出することができる。一方、表面波は鋼板4の一方の面の欠陥しか検出できないが、一次検査により板波で欠陥が検出された位置に限定すれば、二次検査により表面波で表側面と裏側面との両方を検査しても、表面波で全ての表側面と裏側面を検査するよりも、少ない手間で欠陥の位置と深さを検出することができる。   In the ultrasonic inspection method of the present embodiment, the steel plate 4 is subjected to a primary inspection using a plate wave, and the details of the defect are detected by performing a secondary inspection using a surface wave at a position where a defect is detected in the primary inspection. The primary inspection is a process of detecting the presence or absence of defects below the incident position by propagating the ultrasonic wave vertically downward from the ultrasonic wave incident position of the steel plate 4 in the horizontal direction of the transmitting probe 1 and the receiving probe 2. The steel plate 4 is scanned by repeating alternately with the movement to. That is, the step of transmitting and receiving the ultrasonic wave plate in the vertical direction and the step of moving the transmission probe 1 and the reception probe 2 in the horizontal direction perpendicular to the transmission direction of the ultrasonic wave are repeated. 4 scans are performed. Since the plate wave is reflected by both a defect present on the front side surface where the transmission probe 1 of the steel plate 4 is present and a defect present on the back side surface, if scanning is performed on the front side surface of the steel plate 4, a defect on both sides is detected. Can be detected. On the other hand, the surface wave can only detect defects on one surface of the steel plate 4, but if it is limited to the position where the defects were detected by the plate wave by the primary inspection, both the front side surface and the back side surface by the surface wave by the secondary inspection. Even if the inspection is performed, the position and depth of the defect can be detected with less effort than inspecting all the front and back surfaces with surface waves.

また、板波による一次検査を行った後、一次検査で欠陥が検出された位置に限定して二次検査を行うので、伝播速度が比較的早い板波で鋼板4の全体を検査し、これにより限定された部分を、伝播速度が比較的遅い表面波で検査することになる。したがって、全てを表面波で検査するよりも短い時間で、全てを表面波で検査した場合と同等の精度の検査が可能である。   In addition, since the secondary inspection is performed only at the position where the defect is detected in the primary inspection after the primary inspection by the plate wave, the entire steel plate 4 is inspected by the plate wave having a relatively high propagation speed. Therefore, the limited portion is inspected with a surface wave having a relatively low propagation velocity. Therefore, it is possible to perform inspection with the same accuracy as when all the surfaces are inspected in a shorter time than when all the surfaces are inspected.

また、本実施形態の超音波検査方法は、送信探触子1と受信探触子2を、鋼板4との間に空気を介在させて配置するので、接触触媒で探触子を鋼板4に固定する必要が無い。したがって、送信探触子1から超音波を鉛直方向に伝播させて受信探触子2で反射波を受信する工程と、送信探触子1及び受信探触子2を水平方向に移動させる工程の繰り返しを少ない手間で行うことができる。その結果、送信探触子1及び受信探触子2による鋼板4の走査を容易に行うことができる。   In the ultrasonic inspection method of the present embodiment, the transmitting probe 1 and the receiving probe 2 are arranged with air interposed between the steel plate 4 and the probe is attached to the steel plate 4 with a contact catalyst. There is no need to fix. Therefore, a step of propagating ultrasonic waves from the transmission probe 1 in the vertical direction and receiving a reflected wave by the reception probe 2, and a step of moving the transmission probe 1 and the reception probe 2 in the horizontal direction. Repeating can be performed with little effort. As a result, the steel plate 4 can be easily scanned by the transmission probe 1 and the reception probe 2.

図2は、実施形態の超音波検査装置を示す側面図であり、図3は、実施形態の超音波検査装置を示す正面図である。本実施形態の超音波検査装置は、上記超音波検査方法を実施するためのものである。この超音波検査装置10は、超音波を送信する送信探触子1と、超音波を受信する受信探触子2と、送信探触子1及び受信探触子2を収容するケーシング11と、ケーシング11の下端に設けられた車輪12と、ケーシング11を移動させる力を付与するためのハンドル13と、ケーシング11の姿勢を表示する水準器15を備える。また、被検体である鋼板4に磁力で固定される固定部21と、この固定部21によって支持されるレール20と、このレール20に嵌合した状態でレール20に沿ってガイドされる被ガイド部18と、この被ガイド部18とケーシング11の上部の間を連結するリンク17を備える。リンク17は、レール20と直角を成す平面内にケーシング11を揺動可能に、被ガイド部18とケーシング11との間を連結している。上記レール20と被ガイド部18と車輪12により、本発明の移動部を構成している。   FIG. 2 is a side view illustrating the ultrasonic inspection apparatus according to the embodiment, and FIG. 3 is a front view illustrating the ultrasonic inspection apparatus according to the embodiment. The ultrasonic inspection apparatus of the present embodiment is for carrying out the ultrasonic inspection method. The ultrasonic inspection apparatus 10 includes a transmission probe 1 that transmits ultrasonic waves, a reception probe 2 that receives ultrasonic waves, a casing 11 that houses the transmission probe 1 and the reception probe 2, and A wheel 12 provided at the lower end of the casing 11, a handle 13 for applying a force for moving the casing 11, and a level 15 for displaying the attitude of the casing 11 are provided. Further, a fixed portion 21 fixed to the steel plate 4 as a subject by magnetic force, a rail 20 supported by the fixed portion 21, and a guided portion guided along the rail 20 while being fitted to the rail 20. And a link 17 that connects the guided portion 18 and the upper portion of the casing 11. The link 17 connects the guided portion 18 and the casing 11 so that the casing 11 can swing in a plane perpendicular to the rail 20. The rail 20, the guided portion 18 and the wheel 12 constitute a moving portion of the present invention.

図4は、ケーシング11内に収容される送信探触子1及び受信探触子2と、これらの送信探触子1及び受信探触子2を保持する保持体を示す断面図である。この保持体は、送信探触子保持体と受信探触子保持体とを兼ねている。この保持体は、送信探触子1及び受信探触子2を、超音波を送受信可能に収容する保持枠25と、この保持枠25内に設けられて送信探触子1と受信探触子2の間で超音波を遮蔽する遮蔽壁26を有する。保持枠25は、超音波検査装置10のケーシング11に設けられた開口と連なり、送信探触子1及び受信探触子2により送受信される超音波が通過する開口と、この開口に連なって送信探触子1及び受信探触子2を収容する収容室を有する。保持枠25の側部には、送信探触子1と受信探触子2を夫々固定するためのネジ穴が設けられている。このネジ穴は、送信探触子1と受信探触子2の夫々に対応して側面に2個ずつ設けられており、2個のうちの一方のネジ穴は、挿通するネジの位置が調節可能な長孔に形成されている。この長孔に挿通するネジの位置を調節して送信探触子1と受信探触子2に夫々螺合し、締結することにより、送信探触子1と受信探触子2の傾斜角度が調節可能になっている。これにより、送信探触子1からの超音波の水平方向に対する出射角度θと、受信探触子2への超音波の水平方向に対する入射角度θが、夫々調節可能になっている。保持枠25内の送信探触子1を収容する部分と、受信探触子2を収容する部分の間に、遮蔽壁26が設けられており、送信探触子1から送信した超音波が受信探触子2へ直接伝達することを防止している。 FIG. 4 is a cross-sectional view showing the transmission probe 1 and the reception probe 2 housed in the casing 11 and a holding body for holding the transmission probe 1 and the reception probe 2. This holding body serves as both a transmission probe holding body and a receiving probe holding body. The holding body includes a holding frame 25 that accommodates the transmission probe 1 and the receiving probe 2 so that ultrasonic waves can be transmitted and received, and the transmission probe 1 and the receiving probe that are provided in the holding frame 25. There is a shielding wall 26 that shields ultrasonic waves between the two. The holding frame 25 is connected to an opening provided in the casing 11 of the ultrasonic inspection apparatus 10, and an opening through which an ultrasonic wave transmitted and received by the transmission probe 1 and the reception probe 2 passes, and is transmitted to the opening. It has a storage chamber for storing the probe 1 and the reception probe 2. Screw holes for fixing the transmission probe 1 and the reception probe 2 are provided on the sides of the holding frame 25. Two screw holes are provided on the side surface corresponding to each of the transmission probe 1 and the reception probe 2, and the position of the screw to be inserted is adjusted in one of the two screw holes. It is formed in a possible long hole. By adjusting the position of the screw inserted through the long hole and screwing and fastening to the transmission probe 1 and the reception probe 2, respectively, the inclination angle of the transmission probe 1 and the reception probe 2 can be adjusted. It is adjustable. Thereby, the emission angle θ 1 of the ultrasonic wave from the transmission probe 1 with respect to the horizontal direction and the incident angle θ 2 of the ultrasonic wave to the reception probe 2 with respect to the horizontal direction can be adjusted. A shielding wall 26 is provided between a portion in the holding frame 25 that accommodates the transmission probe 1 and a portion that accommodates the reception probe 2, so that ultrasonic waves transmitted from the transmission probe 1 are received. Direct transmission to the probe 2 is prevented.

図5は、実施形態の超音波検査装置を示すブロック図である。超音波検査装置10は、送信探触子1を駆動するための矩形波のバースト信号を発生する信号発生部31と、信号発生部31を制御する処理装置32と、送信探触子1が送信する超音波を設定する入力を操作者から受ける入力部33を備える。上記信号発生部31及び処理装置32により、送信探触子1を駆動する送信探触子駆動部を構成している。この信号発生部31及び処理装置32を含んで構成される送信探触子駆動部は、板波を発生させる送信探触子1と、表面波を発生させる送信探触子1のいずれも駆動可能に形成されている。すなわち、送信探触子1を交換して設定が行われることにより、板波と表面波を選択的に送信可能に形成されている。また、送信探触子1の交換に対応して、受信探触子2も板波用と表面波用に交換することにより、板波と表面波を選択的に受信可能に形成されている。また、受信探触子2が受信した超音波を増幅するアンプ34と、増幅された超音波の受信信号をデジタル化するA/Dコンバータ35を備える。A/Dコンバータ35でデジタル化された超音波の受信信号は、処理装置32により記憶装置37に記憶される。記憶装置37に記憶された超音波の受信信号は、解析プログラムがインストールされたコンピュータに読み込まれ、解析が行われて、波高値分布等の解析結果画像が表示装置に出力される。   FIG. 5 is a block diagram illustrating the ultrasonic inspection apparatus according to the embodiment. The ultrasonic inspection apparatus 10 includes a signal generator 31 that generates a rectangular wave burst signal for driving the transmission probe 1, a processing device 32 that controls the signal generator 31, and a transmission probe 1 that transmits the signal. An input unit 33 is provided for receiving an input for setting an ultrasonic wave to be received from an operator. The signal generator 31 and the processing device 32 constitute a transmission probe driving unit that drives the transmission probe 1. The transmission probe driving unit configured to include the signal generation unit 31 and the processing device 32 can drive both the transmission probe 1 that generates a plate wave and the transmission probe 1 that generates a surface wave. Is formed. In other words, the setting is performed by exchanging the transmission probe 1 so that the plate wave and the surface wave can be selectively transmitted. Corresponding to the exchange of the transmission probe 1, the reception probe 2 is also exchanged for a plate wave and a surface wave, so that a plate wave and a surface wave can be selectively received. In addition, an amplifier 34 that amplifies the ultrasonic waves received by the reception probe 2 and an A / D converter 35 that digitizes the reception signals of the amplified ultrasonic waves are provided. The ultrasonic reception signal digitized by the A / D converter 35 is stored in the storage device 37 by the processing device 32. The ultrasonic reception signal stored in the storage device 37 is read into a computer in which an analysis program is installed, analyzed, and an analysis result image such as a peak value distribution is output to the display device.

次に、上記構成の超音波検査装置10により、下端がコンクリート6に埋め込まれた鋼板4の地際部の検査を行う場合について説明する。まず、図6に示すように、鋼板4の主要面である表面に、固定部21でレール20を固定する。レール20は、コンクリート6の表面に対して平行になるように固定する。続いて、一次検査を行うため、板波を生成するための送信探触子1を保持枠25に取り付ける。このとき、送信探触子1の取り付け角度を、鋼板4の厚みと送信する超音波の周波数に基づいて調節する。また、受信探触子2を保持枠25に取り付け、取り付け角度を調節する。続いて、送信探触子1が送信する周波数を、入力部33で入力して設定する。一次検査の場合、送信周波数は、例えば400kHzに設定する。   Next, a case where the ultrasonic inspection apparatus 10 having the above configuration is used to inspect the ground portion of the steel plate 4 whose lower end is embedded in the concrete 6 will be described. First, as shown in FIG. 6, the rail 20 is fixed to the surface which is the main surface of the steel plate 4 by the fixing portion 21. The rail 20 is fixed so as to be parallel to the surface of the concrete 6. Subsequently, the transmission probe 1 for generating a plate wave is attached to the holding frame 25 in order to perform a primary inspection. At this time, the mounting angle of the transmission probe 1 is adjusted based on the thickness of the steel plate 4 and the frequency of ultrasonic waves to be transmitted. Further, the reception probe 2 is attached to the holding frame 25, and the attachment angle is adjusted. Subsequently, the frequency transmitted by the transmission probe 1 is input and set by the input unit 33. In the case of the primary inspection, the transmission frequency is set to 400 kHz, for example.

こうして一次検査の準備が完了すると、超音波検査装置10の被ガイド部18をレール20に嵌合させて、超音波検査装置10をレール20の一端側に配置する。続いて、入力部33に一次検査の開始を入力し、操作者がハンドル13を把持して超音波検査装置10をレール20に沿って移動させる。操作者は、水準器15を確認してケーシング11を水平に保持しながら、超音波検査装置10を移動させる。超音波検査装置10の移動方向は、矢印Dで示すように、鋼板4の表面の法線方向から観た送信探触子1の超音波の送信方向である矢印A1の方向に対して直角の方向である。入力部33に一次検査の開始が入力されると、処理装置32の制御により、信号発生部31から駆動信号が送信探触子1に出力され、これに応じて送信探触子1が400kHzの矩形波からなるバースト波の超音波を送信する。送信探触子1から送信された超音波は、所定の傾斜角度で鋼板4に入力され、鋼板4に板波が伝播する。この板波の鋼板4の下端や欠陥で反射された反射波が、受信探触子2で受信され、アンプ34で増幅されてA/Dコンバータ35でデジタル信号に変換され、記憶装置37に記憶される。受信探触子2の受信信号は、超音波検査装置10の位置情報に関連付けられて記憶される。超音波検査装置10の位置情報は、車輪12の回転数や被ガイド部18の位置検出情報等によって特定される。超音波検査装置10をレール20に沿って移動させながら、送信探触子1の超音波の送信と受信探触子2の反射波の受信を繰り返して行うことにより、鋼板4の主要面を走査する。超音波検査装置10がレール20の他端に達すると、操作者はハンドル13による超音波検査装置10の移動を終了し、入力部33で一次検査の終了を入力する。   When the preparation for the primary inspection is thus completed, the guided portion 18 of the ultrasonic inspection apparatus 10 is fitted to the rail 20, and the ultrasonic inspection apparatus 10 is disposed on one end side of the rail 20. Subsequently, the start of the primary inspection is input to the input unit 33, and the operator holds the handle 13 and moves the ultrasonic inspection apparatus 10 along the rail 20. The operator checks the level 15 and moves the ultrasonic inspection apparatus 10 while holding the casing 11 horizontally. As indicated by an arrow D, the moving direction of the ultrasonic inspection apparatus 10 is perpendicular to the direction of the arrow A1, which is the ultrasonic transmission direction of the transmission probe 1 viewed from the normal direction of the surface of the steel plate 4. Direction. When the start of the primary inspection is input to the input unit 33, a drive signal is output from the signal generation unit 31 to the transmission probe 1 under the control of the processing device 32, and the transmission probe 1 is set to 400 kHz according to this. Transmits ultrasonic waves of burst waves consisting of rectangular waves. The ultrasonic wave transmitted from the transmission probe 1 is input to the steel plate 4 at a predetermined inclination angle, and the plate wave propagates to the steel plate 4. A reflected wave reflected by the lower end of the steel plate 4 or a defect is received by the reception probe 2, amplified by the amplifier 34, converted into a digital signal by the A / D converter 35, and stored in the storage device 37. Is done. The reception signal of the reception probe 2 is stored in association with the position information of the ultrasonic inspection apparatus 10. The position information of the ultrasonic inspection apparatus 10 is specified by the number of rotations of the wheel 12, the position detection information of the guided portion 18, and the like. The main surface of the steel plate 4 is scanned by repeatedly transmitting the ultrasonic wave of the transmission probe 1 and receiving the reflected wave of the reception probe 2 while moving the ultrasonic inspection apparatus 10 along the rail 20. To do. When the ultrasonic inspection apparatus 10 reaches the other end of the rail 20, the operator ends the movement of the ultrasonic inspection apparatus 10 by the handle 13 and inputs the end of the primary inspection through the input unit 33.

一次検査が終了すると、受信探触子2の受信信号を記憶装置37からコンピュータに読み出し、コンピュータで受信信号を解析して、欠陥としての腐食の有無を検出する。図7は、一次検査による検査結果を示す画像である。図7は、鋼板4の走査範囲において受信された超音波の波高値の分布を、色調により示す画像である。受信された超音波の波高値は、送信された超音波の波高値に対する割合(%)によって表されており、色調に対応する波高値の割合の値を、図7の上部に凡例として記載している。図7において、横軸は鋼板4の水平方向位置であり、原点はレール20の一端であって、図6における鋼板4の水平方向の左端を示す。縦軸は鋼板4の鉛直方向位置であり、原点は鋼板4の下端を示す。波高値分布によれば、鋼板4の下端から約50mm〜150mmの範囲に、送信波に対する受信波の波高値が50%以上の部分が存在し、これにより、鋼板4の腐食の存在が想定される。   When the primary inspection is completed, the reception signal of the reception probe 2 is read from the storage device 37 to the computer, and the reception signal is analyzed by the computer to detect the presence or absence of corrosion as a defect. FIG. 7 is an image showing an inspection result by the primary inspection. FIG. 7 is an image showing the distribution of the peak values of ultrasonic waves received in the scanning range of the steel plate 4 by color tone. The peak value of the received ultrasonic wave is represented by the ratio (%) to the peak value of the transmitted ultrasonic wave, and the ratio value of the peak value corresponding to the color tone is described as a legend at the top of FIG. ing. In FIG. 7, the horizontal axis is the horizontal position of the steel plate 4, the origin is one end of the rail 20, and the horizontal end of the steel plate 4 in FIG. 6 is shown. The vertical axis is the vertical position of the steel plate 4, and the origin indicates the lower end of the steel plate 4. According to the crest value distribution, there is a portion in which the crest value of the received wave with respect to the transmitted wave is 50% or more in the range of about 50 mm to 150 mm from the lower end of the steel plate 4, thereby presuming the presence of corrosion of the steel plate 4. The

板波の反射波による欠陥の検出は、位置や深さの検出精度が比較的低いので、一次検査で厚みの減少が検出された部分について、欠陥の位置及び深さを高い精度で特定するため、表面波による二次検査を行う。まず、表面波を生成するための送信探触子1及び受信探触子2を保持枠25に取り付け、送信探触子1の取り付け角度を、鋼板4の厚みと送信する超音波の周波数に基づいて調節する。続いて、送信探触子1が送信する周波数を、入力部33により、鋼板4に表面波を生成する値に設定する。例えば、送信周波数を750kHzに設定する。そして、二次検査の対象範囲として、鋼板4の厚みの減少が検出された範囲を設定する。   The detection of defects using reflected waves of plate waves has a relatively low position and depth detection accuracy, so that the position and depth of defects can be identified with high accuracy in the areas where thickness reduction is detected in the primary inspection. Second inspection by surface wave. First, the transmission probe 1 and the reception probe 2 for generating surface waves are attached to the holding frame 25, and the attachment angle of the transmission probe 1 is based on the thickness of the steel plate 4 and the frequency of ultrasonic waves to be transmitted. Adjust. Subsequently, the frequency transmitted by the transmission probe 1 is set to a value that generates a surface wave on the steel plate 4 by the input unit 33. For example, the transmission frequency is set to 750 kHz. And the range where the reduction | decrease in the thickness of the steel plate 4 was detected is set as an object range of a secondary inspection.

こうして二次検査の準備が完了すると、超音波検査装置10をレール20に嵌合させ、一次検査で鋼板4の厚みの減少が検出された位置に超音波検査装置10を配置する。続いて、入力部33に二次検査の開始を入力し、操作者がハンドル13を把持して超音波検査装置10をレール20に沿って移動させる。二次検査の開始が入力されると、処理装置32の制御により、信号発生部31から駆動信号が送信探触子1に出力され、これに応じて送信探触子1が750kHzの矩形波からなるバースト波の超音波を送信する。送信探触子1から送信された超音波は、所定の傾斜角度で鋼板4に入力され、鋼板4に表面波が伝播する。鋼板4に伝播する表面波は、鋼板4の下端や腐食部分で反射され、この反射波が受信探触子2で受信される。受信探触子2が受信した反射波は、アンプ34で増幅されてA/Dコンバータ35でデジタル信号に変換され、記憶装置37に記憶される。受信探触子2の受信信号は、超音波検査装置10の位置情報に関連付けられて記憶される。位置情報に基づいて処理装置32が二次検査の対象範囲の通過を検出すると、送信探触子1からの超音波の送信を停止して二次検査を終了する。なお、超音波の停止は操作者の操作で行ってもよい。   When the preparation for the secondary inspection is thus completed, the ultrasonic inspection apparatus 10 is fitted to the rail 20, and the ultrasonic inspection apparatus 10 is disposed at a position where the reduction in the thickness of the steel plate 4 is detected in the primary inspection. Subsequently, the start of the secondary inspection is input to the input unit 33, and the operator holds the handle 13 and moves the ultrasonic inspection apparatus 10 along the rail 20. When the start of the secondary inspection is input, a control signal is output from the signal generator 31 to the transmission probe 1 under the control of the processing device 32, and the transmission probe 1 responds to the rectangular wave of 750 kHz accordingly. Sends burst wave ultrasound. The ultrasonic wave transmitted from the transmission probe 1 is input to the steel plate 4 at a predetermined inclination angle, and the surface wave propagates to the steel plate 4. The surface wave propagating to the steel plate 4 is reflected by the lower end of the steel plate 4 and the corroded portion, and this reflected wave is received by the receiving probe 2. The reflected wave received by the reception probe 2 is amplified by the amplifier 34, converted into a digital signal by the A / D converter 35, and stored in the storage device 37. The reception signal of the reception probe 2 is stored in association with the position information of the ultrasonic inspection apparatus 10. When the processing device 32 detects the passage of the target range of the secondary inspection based on the position information, the transmission of the ultrasonic wave from the transmission probe 1 is stopped and the secondary inspection is ended. The ultrasonic wave may be stopped by an operator's operation.

二次検査が終了すると、受信探触子2の受信信号を記憶装置37からコンピュータに読み出し、コンピュータで受信信号を解析して、欠陥としての腐食の位置と深さを検出する。二次検査の結果は、一次検査と同様に、受信探触子2が受信した超音波の波高値の分布を色調で表した画像で示すのが好ましい。表面波を用いた二次検査により、鋼板4の腐食の位置と深さを精度良く検出することができる。   When the secondary inspection is completed, the reception signal of the reception probe 2 is read from the storage device 37 to the computer, and the reception signal is analyzed by the computer to detect the position and depth of corrosion as a defect. As in the primary inspection, the result of the secondary inspection is preferably shown as an image representing the distribution of the peak values of the ultrasonic waves received by the receiving probe 2 in color tone. By the secondary inspection using the surface wave, the position and depth of corrosion of the steel plate 4 can be accurately detected.

なお、表面波による二次検査において、鋼板4の一方の面に送信探触子1及び受信探触子2を配置して取得した受信信号で欠陥が検出されない場合、他方の面に送信探触子1及び受信探触子2を配置して受信信号を取得する。これは、板波は鋼板4の全体を伝達するので、両面の欠陥を検出できるが、表面波は鋼板4のいずれか一方の面しか伝達しないので、欠陥の存在する面に送信探触子1及び受信探触子2を配置して超音波を伝播させる必要があるからである。   In the secondary inspection using the surface wave, when no defect is detected in the received signal obtained by arranging the transmission probe 1 and the reception probe 2 on one surface of the steel plate 4, the transmission probe is disposed on the other surface. The child 1 and the receiving probe 2 are arranged to obtain a received signal. This is because the plate wave is transmitted through the entire steel plate 4 so that a defect on both sides can be detected. However, since the surface wave is transmitted through only one surface of the steel plate 4, the transmission probe 1 is applied to the surface where the defect exists. This is because it is necessary to dispose the reception probe 2 and propagate the ultrasonic waves.

本実施形態の超音波検査方法において、受信探触子2による受信信号は、反射波の波高値を示しており、この波高値の分布に基づいて、欠陥の有無と位置と深さを検出した。このような受信探触子2の受信結果に基づいて欠陥の有無と位置と深さを検出するために、事前に、試験体を用いて受信結果のキャリブレーションを行う。図8は試験体を示す断面図であり、図9は試験体を示す正面図である。試験体40は矩形の鋼板で形成され、正面視において下部の中央に、腐食を模した直径がHの円形の凹部41が形成されている。この凹部41は、断面図に示すように最大深さがdの円弧状の輪郭を有する。この円弧状断面の凹部41は、健全部との境界の断面が緩やかな角度を成す腐食を模擬することにより、超音波の反射形態が、腐食部分に近くなるように設定している。この凹部41の下方の両側に、貫通孔42,42が設けられており、この貫通孔42は貫通腐食を模擬している。   In the ultrasonic inspection method of the present embodiment, the received signal from the reception probe 2 indicates the peak value of the reflected wave, and the presence / absence, position, and depth of a defect are detected based on the distribution of the peak value. . In order to detect the presence / absence, position, and depth of a defect based on the reception result of the reception probe 2 as described above, the reception result is calibrated using a test specimen in advance. FIG. 8 is a cross-sectional view showing the test body, and FIG. 9 is a front view showing the test body. The test body 40 is formed of a rectangular steel plate, and a circular concave portion 41 having a diameter H simulating corrosion is formed at the center of the lower portion in a front view. The recess 41 has an arcuate contour having a maximum depth d as shown in the sectional view. The concave portion 41 having an arc-shaped cross section is set so that the reflection form of the ultrasonic wave is close to the corroded portion by simulating the corrosion in which the cross section of the boundary with the healthy portion forms a gentle angle. Through holes 42 are provided on both sides below the recess 41, and the through holes 42 simulate through corrosion.

図10は、上記試験体40を超音波検査装置10で検査したときの受信探触子2の受信結果を示す図である。この受信結果は、図7と同様に、試験体40の走査範囲で受信探触子2が受信した反射波の波高値の分布を、色調により示した画像である。図7と同様に、色調に対応する波高値の割合の値を、図10の上部に凡例として記載している。試験体40の走査は、試験体40の上部に、送信探触子1で下側の傾斜方向に向かって超音波を送信しながら、水平方向に超音波検査装置10を移動させて行った。図10において、横軸は試験体40の水平方向位置であり、原点は水平方向の左端を示す。縦軸は試験体40の鉛直方向位置であり、原点は試験体40への超音波の入射位置に設定している。縦軸の下端は、試験体40の下端に対応する。図10の受信結果に示されるように、受信結果の波高値分布によれば、試験体40の超音波の入射位置から下方に約110mm〜175mm、かつ、試験体40の左端から160mm〜190mmの範囲に、凹部41に対応して受信波の波高値が送信波に対して50%である高波高値領域51が存在する。これにより、波高値の増大が、深さdの厚みの減少に対応することが分かる。なお、図10の受信結果において、52は試験体40の下端での反射波に対応する波高値の増加領域であり、53は貫通孔での反射波に対応する波高値の増加領域である。   FIG. 10 is a diagram illustrating a reception result of the reception probe 2 when the test body 40 is inspected by the ultrasonic inspection apparatus 10. This reception result is an image showing the distribution of the peak values of the reflected waves received by the reception probe 2 in the scanning range of the test body 40 in the same manner as in FIG. As in FIG. 7, the ratio of the crest value corresponding to the color tone is shown as a legend at the top of FIG. The scanning of the test body 40 was performed by moving the ultrasonic inspection apparatus 10 in the horizontal direction to the upper part of the test body 40 while transmitting the ultrasonic wave toward the lower inclined direction by the transmission probe 1. In FIG. 10, the horizontal axis represents the horizontal position of the test body 40, and the origin represents the left end in the horizontal direction. The vertical axis represents the vertical position of the test body 40, and the origin is set to the position where the ultrasonic wave is incident on the test body 40. The lower end of the vertical axis corresponds to the lower end of the test body 40. As shown in the reception result of FIG. 10, according to the peak value distribution of the reception result, about 110 mm to 175 mm downward from the ultrasonic incident position of the test body 40 and 160 mm to 190 mm from the left end of the test body 40. In the range, there is a high peak value region 51 corresponding to the recess 41 where the peak value of the received wave is 50% of the transmitted wave. Thereby, it turns out that the increase in the crest value corresponds to the decrease in the thickness of the depth d. In the reception result of FIG. 10, 52 is an increasing region of the peak value corresponding to the reflected wave at the lower end of the test body 40, and 53 is an increasing region of the peak value corresponding to the reflected wave at the through hole.

このように、本実施形態の超音波検査方法は、欠陥としての腐食を模した試験体40により、受信探触子2の受信結果のキャリブレーションを行うことにより、腐食の位置と深さを良好な精度で検出することができる。   As described above, the ultrasonic inspection method according to the present embodiment calibrates the reception result of the reception probe 2 with the test body 40 that simulates corrosion as a defect, so that the position and depth of corrosion are good. Can be detected with high accuracy.

上記実施形態において、操作者がハンドル13を把持して超音波検査装置10を移動させたが、超音波検査装置10に車輪12を駆動する駆動装置を設け、処理装置32で駆動装置を制御して車輪12を駆動し、超音波検査装置10を移動させてもよい。   In the above embodiment, the operator grips the handle 13 and moves the ultrasonic inspection apparatus 10. However, the ultrasonic inspection apparatus 10 is provided with a drive device that drives the wheels 12, and the processing device 32 controls the drive device. The wheels 12 may be driven to move the ultrasonic inspection apparatus 10.

また、上記実施形態において、受信探触子2の受信結果として波高値の分布に基づいて欠陥の有無、位置及び深さを検出したが、振幅や音圧の分布に基づいて欠陥の有無、位置及び深さを検出してもよい。   Further, in the above embodiment, the presence / absence, position and depth of a defect are detected based on the distribution of peak values as the reception result of the reception probe 2, but the presence / absence of the defect and position based on the distribution of amplitude and sound pressure. And the depth may be detected.

また、上記実施形態において、被検体として鋼板4のコンクリート6で覆われた部分の腐食を検出したが、鋼板の地盤で覆われた部分の腐食や、鋼板の溶接ビードで覆われた部分の欠陥を検出することもできる。また、被検体は、鋼板4のような板状体以外に、波板や、筒状体や、箱状体等でもよい。被検体が波板である場合、波板の峰を含んで形成される面が主要面であり、この主要面と平行の方向に超音波検査装置10の送信探触子1及び受信探触子2を移動して被検体を走査すればよい。   Moreover, in the said embodiment, although the corrosion of the part covered with the concrete 6 of the steel plate 4 was detected as a test object, the corrosion of the part covered with the ground of the steel plate, or the defect of the part covered with the weld bead of the steel plate Can also be detected. Further, the subject may be a corrugated sheet, a cylindrical body, a box-shaped body, or the like other than the plate-shaped body such as the steel plate 4. When the object is a corrugated plate, the surface formed including the ridges of the corrugated plate is a main surface, and the transmission probe 1 and the reception probe of the ultrasonic inspection apparatus 10 are parallel to the main surface. The object may be scanned by moving 2.

1 送信探触子
2 受信探触子
4 鋼板
5 腐食部
6 コンクリート
10 超音波検査装置
11 ケーシング
12 車輪
13 ハンドル
15 水準器
17 リンク
18 被ガイド部
20 レール
21 固定部
25 保持枠
26 遮蔽壁
31 信号発生部
32 処理装置
33 入力部
34 アンプ
35 A/Dコンバータ
37 記憶装置
DESCRIPTION OF SYMBOLS 1 Transmission probe 2 Reception probe 4 Steel plate 5 Corrosion part 6 Concrete 10 Ultrasonic inspection apparatus 11 Casing 12 Wheel 13 Handle 15 Level 17 Link 18 Guided part 20 Rail 21 Fixing part 25 Holding frame 26 Shielding wall 31 Signal Generation unit 32 Processing device 33 Input unit 34 Amplifier 35 A / D converter 37 Storage device

Claims (8)

超音波の送信探触子と受信探触子を、被検体の表面の同じ側に、互いに同じ方向に傾斜させて配置する工程と、
上記送信探触子から上記被検体に空気を介して第1の周波数の超音波を入射させ、上記被検体に板波を発生させる工程と、
上記被検体からの超音波を、上記受信探触子により空気を介して受信する工程と、
上記受信探触子が受信した超音波に基づいて、上記被検体の欠陥の有無を判断する工程と、
上記被検体に欠陥が有ると判断されたとき、上記送信探触子から上記被検体に空気を介して第2の周波数の超音波を入射させ、上記被検体に表面波を発生させる工程と、
上記被検体からの超音波を、上記受信探触子により空気を介して受信する工程と、
上記受信探触子が受信した超音波に基づいて、上記被検体の欠陥の位置及び/又は深さを検出する工程と
を備えることを特徴とする超音波検査方法。
A step of arranging an ultrasonic transmission probe and a reception probe on the same side of the surface of the subject and being inclined in the same direction;
A step of causing an ultrasonic wave of a first frequency to be incident on the subject from the transmission probe to the subject to generate a plate wave on the subject;
Receiving ultrasonic waves from the subject through the air with the receiving probe;
Determining the presence or absence of a defect in the subject based on the ultrasound received by the reception probe; and
When it is determined that the subject has a defect, a step of causing a ultrasonic wave of a second frequency to enter the subject from the transmission probe to the subject via air, and generating a surface wave on the subject;
Receiving ultrasonic waves from the subject through the air with the receiving probe;
And a step of detecting a position and / or depth of a defect of the subject based on an ultrasonic wave received by the reception probe.
請求項1に記載の超音波検査方法において、
上記被検体が他の材料と接触する接触部を有し、この接触部に生じた欠陥を検出することを特徴とする超音波検査方法。
The ultrasonic inspection method according to claim 1,
An ultrasonic inspection method characterized in that the subject has a contact portion in contact with another material, and a defect generated in the contact portion is detected.
請求項1に記載の超音波検査方法において、
上記第1の周波数が300〜500kHzであり、上記第2の周波数が600〜1000kHzであることを特徴とする超音波検査方法。
The ultrasonic inspection method according to claim 1,
The ultrasonic inspection method, wherein the first frequency is 300 to 500 kHz, and the second frequency is 600 to 1000 kHz.
請求項1に記載の超音波検査方法において、
予め上記被検体と実質的に同じ材料に模擬欠陥を形成した試験体に板波を発生させたときの受信探触子の受信結果を収集しておき、この試験体の受信結果と、上記被検体に板波を発生させたときの受信探触子の受信結果とを比較することにより、上記被検体の欠陥の有無を推定することを特徴とする超音波検査方法。
The ultrasonic inspection method according to claim 1,
The reception results of the reception probe when a plate wave is generated in a test body in which a simulated defect is formed in substantially the same material as the object are collected in advance, and the reception result of the test object and the test object are collected. An ultrasonic inspection method, wherein the presence or absence of a defect in the subject is estimated by comparing a reception result of a reception probe when a plate wave is generated in the subject.
請求項1に記載の超音波検査方法において、
予め上記被検体と実質的に同じ材料に模擬欠陥を形成した試験体に表面波を発生させたときの受信探触子の受信結果を収集しておき、この試験体の受信結果と、上記被検体に表面波を発生させたときの受信探触子の受信結果とを比較することにより、上記被検体の欠陥の位置及び/又は深さを推定することを特徴とする超音波検査方法。
The ultrasonic inspection method according to claim 1,
The reception results of the reception probe when a surface wave is generated in a test body in which a simulated defect is formed in substantially the same material as the subject are collected in advance, and the reception result of the test body and the test object are collected. An ultrasonic inspection method characterized in that the position and / or depth of a defect of the subject is estimated by comparing a reception result of a receiving probe when a surface wave is generated on the subject.
請求項1に記載の超音波検査方法において、
上記送信探触子及び受信探触子を、上記被検体の主要面に沿って、この主要面の法線方向から観て上記送信探触子の超音波の送信方向と直角の方向に移動させ、移動途中の複数個所で順次超音波の送信と受信を行うことを特徴とする超音波検査方法。
The ultrasonic inspection method according to claim 1,
The transmission probe and the reception probe are moved along the main surface of the subject in a direction perpendicular to the ultrasonic transmission direction of the transmission probe as viewed from the normal direction of the main surface. An ultrasonic inspection method characterized by sequentially transmitting and receiving ultrasonic waves at a plurality of locations in the middle of movement.
被検体の地際部を検査するための超音波検査装置であって、
送信探触子を、被検体に対する傾斜角度を調節可能に保持すると共に、板波用の送信探触子と表面波用の送信探触子とを交換可能に保持する送信探触子保持体と、
受信探触子を、被検体に対する傾斜角度を調節可能に保持すると共に、板波用の受信探触子と表面波用の受信探触子とを交換可能に保持する受信探触子保持体と、
上記板波用の送信探触子と、上記表面波用の送信探触子のいずれも駆動可能であり、上記送信探触子を駆動するための矩形波のバースト信号を発生する信号発生部を有し、上記被検体に板波と表面波を選択的に発生させるように上記送信探触子を駆動する送信探触子駆動部と、
上記送信探触子保持体及び受信探触子保持体が取り付けられたケーシングと、
上記ケーシングを、上記被検体の主要面に沿って、この主要面の法線方向から観て上記送信探触子の超音波の送信方向と直角の方向に移動させる移動部と
を備えることを特徴とする超音波検査装置。
An ultrasonic inspection apparatus for inspecting the ground part of a subject ,
The transmission probe holds the adjustable capacity of the inclination angle with respect to the subject, transmitting probe holder to replaceably retain and transmit probe for transmitting probe and a surface wave for plate waves When,
The receiving probe holds the adjustable capacity of the inclination angle with respect to the subject, the receiving probe holder to replaceably retain and receiving probe for receiving probe and surface wave for plate waves When,
Both the plate wave transmission probe and the surface wave transmission probe can be driven, and a signal generator for generating a rectangular wave burst signal for driving the transmission probe is provided. a, a transmission probe driving unit for driving the transmission probe to selectively generate a plate wave and surface wave to the subject,
A casing to which the transmission probe holder and the reception probe holder are attached;
A moving unit that moves the casing in a direction perpendicular to the ultrasonic transmission direction of the transmission probe as viewed from the normal direction of the main surface along the main surface of the subject. Ultrasonic inspection equipment.
請求項7に記載の超音波検査装置において、The ultrasonic inspection apparatus according to claim 7,
上記移動部は、The moving part is
上記ケーシングの下端に設けられた車輪と、Wheels provided at the lower end of the casing;
被検体に磁力で固定される固定部と、A fixed part fixed to the subject by magnetic force,
上記固定部によって支持されるレールと、A rail supported by the fixed part;
上記レールに嵌合した状態でレールに沿ってガイドされる被ガイド部と、A guided portion that is guided along the rail while being fitted to the rail;
上記レールと直角を成す平面内にケーシングを揺動可能に上記被ガイド部とケーシングの上部の間を連結するリンクとA link connecting the guided part and the upper part of the casing so that the casing can swing in a plane perpendicular to the rail;
を有することを特徴とする超音波検査装置。An ultrasonic inspection apparatus characterized by comprising:
JP2017079669A 2017-04-13 2017-04-13 Ultrasonic inspection method and ultrasonic inspection apparatus Active JP6173636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017079669A JP6173636B1 (en) 2017-04-13 2017-04-13 Ultrasonic inspection method and ultrasonic inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079669A JP6173636B1 (en) 2017-04-13 2017-04-13 Ultrasonic inspection method and ultrasonic inspection apparatus

Publications (2)

Publication Number Publication Date
JP6173636B1 true JP6173636B1 (en) 2017-08-02
JP2018179751A JP2018179751A (en) 2018-11-15

Family

ID=59505256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079669A Active JP6173636B1 (en) 2017-04-13 2017-04-13 Ultrasonic inspection method and ultrasonic inspection apparatus

Country Status (1)

Country Link
JP (1) JP6173636B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744809B (en) 2019-02-28 2021-11-01 日商Ihi股份有限公司 Ultrasonic flaw detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594897A (en) * 1984-01-27 1986-06-17 Bethlehem Steel Corporation Inspection of the internal portion of objects using ultrasonics
JP2005055197A (en) * 2003-08-05 2005-03-03 Natl Space Development Agency Of Japan Ultrasonic inspection device and inspection method using the same
JP2007010638A (en) * 2005-07-04 2007-01-18 Japan Aerospace Exploration Agency Ultrasonic testing method and ultrasonic tester using it
JP3973603B2 (en) * 2003-06-06 2007-09-12 株式会社ニチゾウテック Defect evaluation apparatus for soil structure, defect evaluation method, and program for causing computer to execute defect evaluation method
JP2008128965A (en) * 2006-11-24 2008-06-05 Japan Probe Kk Airborne ultrasonic flaw detection system
JP2009063372A (en) * 2007-09-05 2009-03-26 Kyushu Electric Power Co Inc Aerial ultrasonic flaw detector and detection method
JP6096851B1 (en) * 2015-09-07 2017-03-15 東芝プラントシステム株式会社 Nondestructive inspection equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594897A (en) * 1984-01-27 1986-06-17 Bethlehem Steel Corporation Inspection of the internal portion of objects using ultrasonics
JP3973603B2 (en) * 2003-06-06 2007-09-12 株式会社ニチゾウテック Defect evaluation apparatus for soil structure, defect evaluation method, and program for causing computer to execute defect evaluation method
JP2005055197A (en) * 2003-08-05 2005-03-03 Natl Space Development Agency Of Japan Ultrasonic inspection device and inspection method using the same
JP2007010638A (en) * 2005-07-04 2007-01-18 Japan Aerospace Exploration Agency Ultrasonic testing method and ultrasonic tester using it
JP2008128965A (en) * 2006-11-24 2008-06-05 Japan Probe Kk Airborne ultrasonic flaw detection system
JP2009063372A (en) * 2007-09-05 2009-03-26 Kyushu Electric Power Co Inc Aerial ultrasonic flaw detector and detection method
JP6096851B1 (en) * 2015-09-07 2017-03-15 東芝プラントシステム株式会社 Nondestructive inspection equipment

Also Published As

Publication number Publication date
JP2018179751A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5309198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
JP5590249B2 (en) Defect detection apparatus, defect detection method, program, and storage medium
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
CN105699492A (en) An ultrasonographic method used for weld seam detection
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP6069123B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
JP2013156104A (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welded part
KR101830461B1 (en) Method and device for determining an orientation of a defect present within a mechanical component
JP4595117B2 (en) Ultrasound propagation imaging method and apparatus
RU2480741C1 (en) Method of nondestructive check of units in railway car trolleys and device for its realisation
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JP6173636B1 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP4410037B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4357265B2 (en) Ultrasonic flaw detector and ultrasonic flaw detector method
JP4564183B2 (en) Ultrasonic flaw detection method
JP2007071755A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2009014513A (en) Ultrasonic flaw detection method
JP3497984B2 (en) Ultrasonic flaw detector
JP3932694B2 (en) Ultrasonic flaw detection
JPH11316215A (en) Ultrasonic flaw detection apparatus and method
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6173636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250