JP2000074558A - Air liquefaction separating device and air liquefaction separating method - Google Patents

Air liquefaction separating device and air liquefaction separating method

Info

Publication number
JP2000074558A
JP2000074558A JP24418998A JP24418998A JP2000074558A JP 2000074558 A JP2000074558 A JP 2000074558A JP 24418998 A JP24418998 A JP 24418998A JP 24418998 A JP24418998 A JP 24418998A JP 2000074558 A JP2000074558 A JP 2000074558A
Authority
JP
Japan
Prior art keywords
air
tower
oxygen
column
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24418998A
Other languages
Japanese (ja)
Inventor
Masatoshi Narita
正敏 成田
Yoshiaki Matsuo
嘉昭 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITA SANSO CT KK
OOITA SANSO CENTER KK
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
OITA SANSO CT KK
OOITA SANSO CENTER KK
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITA SANSO CT KK, OOITA SANSO CENTER KK, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical OITA SANSO CT KK
Priority to JP24418998A priority Critical patent/JP2000074558A/en
Publication of JP2000074558A publication Critical patent/JP2000074558A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/0469Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser and an intermediate re-boiler/condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air liquefaction separating device and a method for operating this device in which a normal operating state can be reached within a short period of time when the device is restarted. SOLUTION: There is provided an air liquefaction separating device in which a lower tower 14, an upper tower 15, and a crude argon tower 17 are installed to liquefy air, rectify it and recover oxygen, nitrogen and argon or the like. There is provided a crude argon tower condenser bypassing passage 45 for connecting an oxygen enriched liquefied air feeding passage 30 for feeding out oxygen enriched liquefied air from the lower part of the lower tower 14 and feeding it into a condenser 33 in the crude argon tower 17 with a passage 43 for feeding either non-evaporated oxygen enriched liquefied air or evaporated oxygen enriched air fed out of the condenser 33 to the upper tower and then the crude argon tower condenser bypassing passage 45 is provided with a bypass valve 46.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気液化分離装置お
よびその停止・再起動方法に関し、詳しくはアルゴン採
集系統を備えた空気液化分離装置およびその停止・再起
動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction / separation apparatus and a method for stopping / restarting the apparatus, and more particularly to an air liquefaction / separation apparatus having an argon collection system and a method for stopping / restarting the apparatus.

【0002】[0002]

【従来の技術】空気を液化精留分離してその成分である
酸素、窒素、アルゴン等をガスまたは液製品として採取
する方法において、装置の運転を効率良く行う方法、ま
たは装置を一時停止して再起動を効率良く行う方法は、
各種の方式が提案されている。これらの通常の酸素、窒
素およびアルゴン採取を行う空気液化分離装置は、図
1、図3および図4に示すような構成になっている。な
お、ここに示す従来装置は、破線で示す経路は含まない
ものとする。
2. Description of the Related Art In a method of liquefying and separating air to collect oxygen, nitrogen, argon and the like as a gas or a liquid product, a method for efficiently operating the apparatus or temporarily stopping the apparatus. The efficient way to restart is
Various schemes have been proposed. The air liquefaction / separation apparatus for performing these ordinary oxygen, nitrogen and argon samplings has a configuration as shown in FIGS. 1, 3 and 4. Note that the conventional device shown here does not include the route indicated by the broken line.

【0003】図1に示す形式の装置では、その主要部は
原料空気を圧縮する原料空気圧縮機2と、空気中の水
分、炭酸ガス等を除去するモレキュラーシーブを充填し
たモレキュラーシーブ吸着器(MS吸着器)6と、圧縮
精製原料空気を冷却する主熱交換器8、該圧縮・精製・冷
却空気を粗分離する下部塔14と更に精留分離を重ねて
製品酸素および製品窒素を分離採取する上部塔15から
なる複精留塔(以下、主精留塔ということがある)13
から構成され、さらにアルゴン採取系統として該上部塔
中部よりアルゴン原料ガスを導出して粗アルゴン塔17
に導入し、粗アルゴンを採取する構成が付加されてい
る。
In the apparatus of the type shown in FIG. 1, the main parts are a raw material air compressor 2 for compressing raw material air and a molecular sieve adsorber (MS) filled with a molecular sieve for removing moisture, carbon dioxide and the like in the air. Adsorber) 6, a main heat exchanger 8 for cooling the compressed and purified raw air, a lower tower 14 for roughly separating the compressed / purified / cooled air, and a rectifying / separating layer for separating and collecting product oxygen and product nitrogen. Double rectification tower (hereinafter sometimes referred to as main rectification tower) 13 comprising upper tower 15
, And an argon source gas is led out from the upper central portion of the upper column as an argon collecting system to obtain a crude argon column 17.
To collect crude argon.

【0004】図3に示す形式の装置は、前記図1の装置
における前処理工程の吸着器と冷却工程の主熱交換器が
一体化したリバーシング熱交換器を使用した装置を示
す。リバーシング熱交換器(再生式熱交換器または可逆
式熱交換器ともいう)は精留塔よりの帰還ガスとの熱交
換により圧縮原料空気を冷却すると同時に、空気中の水
分、炭酸ガスをその流路に凝縮析出させて除去する方式
の熱交換器である。
An apparatus of the type shown in FIG. 3 is an apparatus using a reversing heat exchanger in which the adsorber in the pretreatment step and the main heat exchanger in the cooling step in the apparatus of FIG. 1 are integrated. A reversing heat exchanger (also called a regenerative heat exchanger or a reversible heat exchanger) cools the compressed raw material air by heat exchange with the return gas from the rectification column, and simultaneously removes moisture and carbon dioxide in the air. This is a heat exchanger of the type that is condensed and precipitated in the flow path and removed.

【0005】リバーシング熱交換器を用いたプロセスは
上記前処理用吸着器を用いた系統を有する従来の図1の
場合と上記リバーシング熱交換器に関連する部分のみが
異なる。
A process using a reversing heat exchanger differs from the conventional case of FIG. 1 having a system using the pretreatment adsorber only in a portion related to the reversing heat exchanger.

【0006】このリバーシング熱交換器(リベックス)
の原料空気流路と排ガス流路は、一定周期ごとに切り替
えられて相互に入れ替わり、前周期での原料空気流路は
次周期では排ガス流路となる。従って、1の周期で水
分、炭酸ガスを析出付着した原料空気流路は、次周期で
排ガス流路となり,前周期で析出付着した水分、炭酸ガ
スはこの周期に排ガス中に昇華して系外へ排出される。
排ガスにより清浄化された流路は次の周期で再び原料空
気流路となりこれを繰り返す。
The reversing heat exchanger (Rivex)
The raw material air flow path and the exhaust gas flow path are switched at regular intervals and exchanged with each other, and the raw material air flow path in the previous cycle becomes the exhaust gas flow path in the next cycle. Therefore, the raw material air flow path on which moisture and carbon dioxide gas are deposited and adhered in one cycle becomes an exhaust gas flow path in the next cycle, and the moisture and carbon dioxide gas deposited and deposited in the previous cycle are sublimated into the exhaust gas in this cycle to be out of the system. Is discharged to
The flow path cleaned by the exhaust gas becomes the raw air flow path again in the next cycle and repeats this.

【0007】またこのリバーシング熱交換器(リベック
ス)には再熱回路が設けられていて、一度ほぼ液化温度
迄冷却した原料空気の一部を、再度中間温度(約−10
0℃)程度まで昇温する流路が設けられている。該再熱
流路を流れた空気はこの温度でこのリベックスから導出
して膨張タービンに導入され、膨張降圧してほぼ前記上
部塔の圧となり、該上部塔の空気組成の段に導入され
る。これにより系全体の必要寒冷が供給される。
Further, the reversing heat exchanger (Rivex) is provided with a reheating circuit, in which a part of the raw material air once cooled almost to the liquefaction temperature is returned to the intermediate temperature (about -10).
A channel for raising the temperature to about 0 ° C.) is provided. At this temperature, the air flowing through the reheat flow path is led out of the ribex and introduced into the expansion turbine, where it expands and decompresses to approximately the pressure of the upper tower, and is introduced into the stage of the air composition of the upper tower. This provides the required refrigeration for the entire system.

【0008】また、上部塔上部から導出しリバーシング
熱交換器に導入される製品窒素ガスおよび排窒素ガス
(前記帰還ガス)は、まず過冷却器で下部塔からの前記
酸素富化液化空気および液化窒素と熱交換して−170
℃程度まで温度上昇し、しかる後リベックスに入る。こ
のリバーシング熱交換器(リベックス)はこのようにし
て、原料空気と帰還各ガスとの熱交換による空気の冷
却、空気中の不純物の除去という2つの機能を有するた
め、各流路の各部位における温度制御の厳しい精度が要
求されている。このため上記のような流路構成および過
冷却器による温度調節が行われている。
Further, the product nitrogen gas and the exhaust gas (the return gas) which are led out from the upper part of the upper tower and introduced into the reversing heat exchanger are first supplied to the oxygen-enriched liquefied air from the lower tower by the subcooler. Heat exchange with liquefied nitrogen -170
The temperature rises to about ° C, and then enters Libex. In this way, the reversing heat exchanger (Rivex) has two functions of cooling air by heat exchange between the raw air and each return gas, and removing impurities in the air. Strict precision of temperature control is required. For this reason, the temperature is controlled by the above-described flow path configuration and the supercooler.

【0009】この方式の空気分離装置におけるリバーシ
ング熱交換器以外の主要構成機器は、上記MS吸着器使
用の前処理装置を採用した空気分離装置と同様である。
即ち、原料空気を圧縮する原料空気圧縮機、下部塔およ
び上部塔よりなる複精留塔、粗アルゴンを採取する粗ア
ルゴン塔を主要構成機器とし、プロセスフローもほぼ同
様である。
The main components of the air separation device of this type other than the reversing heat exchanger are the same as those of the air separation device employing the pretreatment device using the MS adsorber.
That is, a raw material air compressor for compressing raw air, a double rectification column including a lower tower and an upper tower, and a crude argon column for collecting crude argon are main components, and the process flow is almost the same.

【0010】さらに、最近粗アルゴン塔の次に精留塔を
一塔設置して粗アルゴン中の酸素を1ppm以下まで精
製するプロセスが提案されている。このプロセスでは、
アルゴン精製系統の水素添加触媒精製工程を採用せず、
代わりに脱酸塔と称する段数が100段乃至140段の
脱酸素用精留塔を使用し、粗アルゴン塔より導出される
含有酸素1%程度の粗アルゴンを約1ppm以下まで精
製する方式である。特に最近は精留塔内の気液接触手段
として、従来のシーブトレイに代えて充填材を使用した
充填塔が採用されるようになって粗アルゴン塔との合計
相当段数を200段程度まで設定することにより酸素を
1ppb程度まで除去できるようになった。
Further, recently, a process has been proposed in which one rectification column is installed next to the crude argon column to purify oxygen in the crude argon to 1 ppm or less. In this process,
Without adopting the hydrogenation catalyst purification process of the argon purification system,
Instead, a deoxygenation column, which is a deoxygenation column with 100 to 140 stages, is used to purify crude argon containing about 1% oxygen derived from the crude argon column to about 1 ppm or less. . Particularly recently, as a gas-liquid contacting means in the rectification column, a packed column using a packing material is used instead of the conventional sieve tray, and the total equivalent number of stages with the crude argon column is set to about 200 stages. As a result, oxygen can be removed up to about 1 ppb.

【0011】図4にこの脱酸塔を用いたアルゴン精製系
統を備えた空気液化分離装置の例を示す。このプロセス
は上記脱酸塔を用いたアルゴン精製系統のみが従来の図
1と異なるので、これ以外の図1と共通の部分は同一符
号を使用して説明を省略する。
FIG. 4 shows an example of an air liquefaction / separation apparatus equipped with an argon purification system using this deoxidation tower. This process differs from the conventional one shown in FIG. 1 only in the argon purification system using the deoxidizing tower, and the other parts common to FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

【0012】この方式の空気分離装置において、粗アル
ゴン塔は従来のプロセス同様設けられており、その段数
も従来と同様50乃至60段か、あるいは充填塔を採用
している場合は70乃至80段も可能である。凝縮器は
通常、脱酸塔に設けられているので粗アルゴン塔には設
けられていない。
In this type of air separation apparatus, the crude argon column is provided in the same manner as in the conventional process, and the number of stages is 50 to 60 as in the conventional case, or 70 to 80 in the case of using a packed column. Is also possible. Since the condenser is usually provided in the deoxidizing tower, it is not provided in the crude argon column.

【0013】脱酸塔はその頂部に凝縮器を備え、寒冷源
は通常の粗アルゴン塔と同様下部塔下部よりの酸素富化
液化空気である。酸素富化液化空気は塔底液でも良い
が、塔底より1段乃至数段上の段より抜き出した液のほ
うが炭酸ガスまたは炭化水素の含有量が格段に減少して
いるので運転上、安全対策上好ましい。
The deoxidizing tower is provided with a condenser at the top, and the cooling source is oxygen-enriched liquefied air from the lower part of the lower tower as in the case of the ordinary crude argon tower. The oxygen-enriched liquefied air may be a liquid at the bottom of the column, but the liquid extracted from one to several stages above the bottom of the column is much safer for operation because the content of carbon dioxide or hydrocarbon is significantly reduced. It is preferable for measures.

【0014】また脱酸塔凝縮器の寒冷源の酸素富化液化
空気は、凝縮器に導入される前に、脱酸塔底部に設けら
れたリボイラーを経て、該塔底の液化粗アルゴンを気化
させてから膨張弁で膨張し、前記凝縮器へ入る。脱酸塔
底部に設けられたリボイラーは該底部の液粗アルゴンを
蒸発させて該脱酸塔の上昇ガス量を増加させ気液接触量
を増大させる。
Before being introduced into the condenser, the oxygen-enriched liquefied air of the cold source of the deoxidizing tower condenser passes through a reboiler provided at the bottom of the deoxidizing tower to vaporize the liquefied crude argon at the bottom of the deoxidizing tower. Then, it is expanded by the expansion valve and enters the condenser. A reboiler provided at the bottom of the deoxidization tower evaporates the liquid crude argon at the bottom to increase the amount of gas rising in the deoxidation tower and increase the gas-liquid contact amount.

【0015】[0015]

【発明が解決しようとする課題】しかし、空気液化分離
装置は、例えば製品酸素を高炉の吹き込み、転炉による
酸素精練等に使用する場合、製鋼、精練の炉の操業状態
により酸素の需要量は大幅に変動する。この製品酸素の
需要量の変動に対応して操業条件を変更でき供給酸素量
を調節するとともに、製品酸素、製品窒素の生産量を変
動し得る空気液化分離装置が種々提案されている。
However, in the air liquefaction / separation apparatus, for example, when product oxygen is blown into a blast furnace and used for oxygen scouring by a converter, the oxygen demand depends on the operating conditions of the steelmaking and scouring furnaces. It fluctuates greatly. Various air liquefaction / separation apparatuses have been proposed that can change the operating conditions in response to the fluctuations in the demand amount of product oxygen, adjust the supply oxygen amount, and change the production amounts of product oxygen and product nitrogen.

【0016】またこの需要変動対応型空気液化分離装置
ではない分離装置が複数基設置されている場合は、例え
ばその内の一装置を月1度乃至2度、操業を一時停止し
1乃至数日後再起動して製品ガスの供給を行うようにし
ている。
In the case where a plurality of separation apparatuses other than the demand-variation-type air liquefaction separation apparatus are installed, for example, one of them is suspended once or twice a month, and after one to several days, the operation is temporarily stopped. It restarts and supplies product gas.

【0017】上記のように空気液化分離装置を一時停止
した場合、各精留等の各精留段に保持されている液化ガ
スは、全て塔底に降下し貯留されることになる。即ち、
装置停止時下部塔では、塔内に保持されていた液が全て
塔底に降下することにより、塔底には通常運転時よりは
窒素濃度の濃い液体空気が貯留されることになる。上部
塔では同様の現象により通常運転時よりは酸素濃度の低
い液化酸素が塔底(主凝縮器)に貯留されることにな
る。
When the air liquefaction / separation device is temporarily stopped as described above, all the liquefied gas held in each rectification stage such as each rectification falls to the bottom of the column and is stored. That is,
In the lower tower when the apparatus is stopped, all the liquid held in the tower falls to the bottom of the tower, so that liquid air having a higher nitrogen concentration than in normal operation is stored in the bottom of the tower. In the upper tower, due to the same phenomenon, liquefied oxygen having a lower oxygen concentration than in the normal operation is stored at the bottom (main condenser).

【0018】特に、装置がアルゴン採取系統を付設して
いるときは、装置停止により、粗アルゴン塔中の液が粗
アルゴン塔塔底に降下して、原料アルゴンガスよりアル
ゴン濃度が高い組成となり、それがそのまま上部塔に戻
ることになる。そしてこの組成の液化ガスが上部塔の塔
底に貯留されることになる。即ち、この粗アルゴン塔か
らの液が上部塔塔底に戻ることにより、複精留塔主凝縮
器の液体酸素はアルゴンが富化され、純度が大幅に低下
した状態となる。従って、再起動を行った時、この主凝
縮器に貯留されている液体酸素の純度が定常運転の状態
に到達するのに長時間を要することになる。
In particular, when the apparatus is provided with an argon sampling system, the liquid in the crude argon column falls to the bottom of the crude argon column due to the stoppage of the apparatus, and the composition becomes higher in argon concentration than the raw argon gas. It will return to the upper tower as it is. Then, the liquefied gas having this composition is stored at the bottom of the upper tower. That is, when the liquid from the crude argon column returns to the bottom of the upper column, the liquid oxygen of the double rectification column main condenser is enriched with argon, and the purity is greatly reduced. Therefore, when the restart is performed, it takes a long time for the purity of the liquid oxygen stored in the main condenser to reach a steady operation state.

【0019】また、特に大型の空気液化分離装置におい
ては、この一時停止、再起動に要する時間が長時間とな
り、製品ガスの価格を上昇させる一因となっている。
In particular, in a large-sized air liquefaction / separation apparatus, the time required for the temporary stop and restart is long, which contributes to an increase in the price of product gas.

【0020】そこで本発明は、装置の一時停止、再起動
に際し、停止時に予めアルゴン精製系統の運転を実質上
停止した状態にして粗アルゴン塔中の液を上部塔に戻し
ながら暫時運転を継続して主凝縮器中の液化酸素の純度
をほぼ維持しつつ粗アルゴン塔中の液を排出し、排出し
終えた後しばらく主精留塔のみの運転を行なって上記酸
素純度が一定値以上であることを確認した時点で装置全
体の運転を停止することにより、次のスタート時に主精
留塔の状態を短時間で定常運転状態に到達させることが
できる空気液化分離装置およびその運転方法を提供する
ことを目的とする。また、リバーシング熱交換器を使用
した空気液化分離装置においては、このリバーシング熱
交換器の温度制御が容易になり、装置の運転が容易にな
る空気液化分離装置およびその方法を提供する。
Therefore, according to the present invention, when the apparatus is temporarily stopped and restarted, the operation of the argon purification system is substantially stopped in advance when the apparatus is stopped, and the operation in the crude argon column is returned to the upper column while the operation is continued for a while. The liquid in the crude argon column is discharged while almost maintaining the purity of the liquefied oxygen in the main condenser, and after the discharge is completed, the operation of the main rectification column alone is performed for a while, and the oxygen purity is equal to or higher than a certain value. The present invention provides an air liquefaction / separation apparatus and an operation method thereof, in which the operation of the entire apparatus is stopped at the time of confirming that the state of the main rectification tower can reach a steady operation state in a short time at the next start. The purpose is to: In addition, in an air liquefaction / separation device using a reversing heat exchanger, an air liquefaction / separation device and a method thereof that facilitate temperature control of the reversing heat exchanger and facilitate operation of the device are provided.

【0021】[0021]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の装置構成は、下部塔および上部塔、粗ア
ルゴン塔を備え、空気を液化精留して酸素、窒素および
アルゴン等を採取する空気液化分離装置において、前記
下部塔下部より酸素富化液体空気を導出して前記粗アル
ゴン塔凝縮器に導入する経路と、該粗アルゴン塔凝縮器
より導出する未蒸発の前記酸素富化液化空気あるいは蒸
発酸素富化空気を前記上部塔へ導入する経路または前記
下部塔下部より酸素富化液化空気を導出し上部塔上部へ
導入する経路とを結ぶ粗アルゴン塔凝縮器バイパス経路
を有し、該経路にバイパス弁を設けたことを特徴とする
空気液化分離装置である。また本発明の装置構成は、下
部塔および上部塔、粗アルゴン塔を備え、空気を液化精
留して酸素、窒素およびアルゴン等を採取する空気液化
分離装置において、前記下部塔下部より酸素富化液体空
気を導出して前記粗アルゴン塔凝縮器に導入する経路
と、該酸素富化液化空気導入経路を分岐して酸素富化液
化空気を上部塔上部へ導入する粗アルゴン塔凝縮器バイ
パス経路を有し、該バイパス経路にバイパス弁を設けた
ことを特徴とする空気液化分離装置である。
In order to achieve the above-mentioned object, an apparatus according to the present invention comprises a lower tower, an upper tower and a crude argon tower, and liquefies air to remove oxygen, nitrogen and argon. A path for extracting oxygen-enriched liquid air from the lower part of the lower column and introducing it to the crude argon column condenser; A coarse argon column condenser bypass path connecting a path for introducing liquefied air or vaporized oxygen-enriched air to the upper tower or a path for extracting oxygen-enriched liquefied air from the lower tower lower part and introducing it to the upper tower upper part; , An air liquefaction / separation apparatus characterized in that a bypass valve is provided in the path. Further, the apparatus configuration of the present invention is an air liquefaction / separation apparatus that includes a lower tower, an upper tower, and a crude argon tower, and liquefies air to collect oxygen, nitrogen, argon, and the like. A route for extracting liquid air and introducing it to the crude argon column condenser, and a crude argon column condenser bypass route for branching the oxygen-enriched liquefied air introduction route and introducing oxygen-enriched liquefied air to the upper column upper part. An air liquefaction / separation device having a bypass valve provided in the bypass path.

【0022】また本発明の装置構成は、下部塔および上
部塔、粗アルゴン塔及び脱酸塔を備え、空気を液化精留
して酸素、窒素およびアルゴン等を採取する空気液化分
離装置において、前記下部塔下部より酸素富化液体空気
を導出して前記脱酸塔凝縮器に導入する経路と、該脱酸
塔凝縮器より導出する未蒸発の前記酸素富化液化空気あ
るいは蒸発酸素富化空気を前記上部塔へ導入する経路ま
たは前記下部塔下部より酸素富化液化空気を導出し上部
塔上部へ導入する経路とを結ぶ脱酸塔凝縮器バイパス経
路を有し、該経路にバイパス弁を設けたことを特徴とす
る空気液化分離装置である。
The apparatus of the present invention is an air liquefaction / separation apparatus comprising a lower tower and an upper tower, a crude argon tower and a deoxidizing tower, wherein the air is liquefied and rectified to collect oxygen, nitrogen and argon. A path for drawing out the oxygen-enriched liquid air from the lower part of the lower tower and introducing it to the deoxidizing tower condenser, and for converting the unevaporated oxygen-enriched liquefied air or evaporated oxygen-enriched air derived from the deoxidizing tower condenser. A deoxidation tower condenser bypass path connecting a path for introduction to the upper tower or a path for extracting oxygen-enriched liquefied air from the lower part of the lower tower and introducing it to the upper part of the upper tower was provided, and a bypass valve was provided in the path. It is an air liquefaction separation device characterized by the above-mentioned.

【0023】また本発明の装置構成は、下部塔および上
部塔、粗アルゴン塔、脱酸塔を備え、空気を液化精留し
て酸素、窒素およびアルゴン等を採取する空気液化分離
装置において、前記下部塔下部より酸素富化液体空気を
導出して前記脱酸塔凝縮器に導入する経路と、該酸素富
化液化空気導入経路を分岐して酸素富化液化空気を上部
塔上部へ導入する脱酸塔凝縮器バイパス経路を有し、該
バイパス経路にバイパス弁を設けたことを特徴とする空
気液化分離装置である。
The apparatus of the present invention is an air liquefaction / separation apparatus comprising a lower tower and an upper tower, a crude argon tower, and a deoxidizing tower, wherein the air is liquefied and rectified to collect oxygen, nitrogen, argon and the like. A path for leading out the oxygen-enriched liquid air from the lower part of the lower tower and introducing it to the deoxidizing tower condenser, and a path for branching the oxygen-enriched liquefied air introduction path and introducing the oxygen-enriched liquefied air to the upper part of the upper tower An air liquefaction / separation apparatus having an acid tower condenser bypass path and a bypass valve provided in the bypass path.

【0024】また本発明は、前記空気液化分離装置の主
熱交換器がリバーシング熱交換器(可逆式熱交換器)で
あることを特徴とする上記記載の空気液化分離装置であ
る。また本発明は、前記酸素富化液化空気導出経路のバ
イパス経路及びバイパス弁が該酸素富化液化空気導出経
路に設けられた過冷却器の低温側出口側に設けたことを
特徴とする上記記載の空気液化分離装置である。
Further, the present invention is the air liquefaction / separation apparatus described above, wherein the main heat exchanger of the air liquefaction / separation apparatus is a reversing heat exchanger (reversible heat exchanger). Further, the present invention is characterized in that a bypass path and a bypass valve of the oxygen-enriched liquefied air outlet path are provided on a low-temperature side outlet side of a supercooler provided in the oxygen-enriched liquefied air outlet path. Is an air liquefaction separation device.

【0025】また、前記空気液化分離装置が原料空気中
の水分及び炭酸ガス等を除去する前処理装置を備えてい
ることを特徴とする上記記載の空気液化分離装置であ
る。また、前記下部塔、上部塔、粗アルゴン塔等のう
ち、少なくとも一塔が充填塔であることを特徴とする上
記記載の空気液化分離装置である。また前記下部塔、上
部塔、粗アルゴン塔、脱酸素塔等のうち、少なくとも一
塔が充填塔であることを特徴とする上記記載の空気液化
分離装置である。また、前記酸素富化液体空気を導出す
る下部塔下部の位置が下部塔塔底であることを特徴とす
る上記記載の空気液化分離装置である。また、前記酸素
富化液体空気を導出する下部塔下部の位置が下部塔の塔
底より1段乃至数段上の段であることを特徴とする上記
記載の空気液化分離装置である。
Further, the air liquefaction / separation apparatus described above is characterized in that the air liquefaction / separation apparatus is provided with a pretreatment apparatus for removing water, carbon dioxide, and the like in the raw material air. Further, the air liquefaction / separation apparatus as described above, wherein at least one of the lower tower, the upper tower, the crude argon tower and the like is a packed tower. The air liquefaction / separation apparatus as described above, wherein at least one of the lower tower, the upper tower, the crude argon tower, the deoxygenation tower and the like is a packed tower. The air liquefaction / separation apparatus according to the above description, wherein the position of the lower part of the lower tower from which the oxygen-enriched liquid air is led out is the bottom of the lower tower. Further, the air liquefaction / separation apparatus according to the above, wherein the position of the lower portion of the lower tower from which the oxygen-enriched liquid air is led is one stage to several stages above the bottom of the lower column.

【0026】さらに本願発明は、空気を圧縮し、精製
し、冷却して複精留塔、粗アルゴン塔等に順次導入して
液化精留分離し、少なくとも酸素及びアルゴンを製品と
して採取する空気液化分離方法であって、複精留塔上部
塔中部より導出したアルゴン原料ガスを粗アルゴン塔下
部に導入し、複精留塔下部塔下部より導出した酸素富化
液化空気を粗アルゴン塔凝縮器へ導入してアルゴン精製
を行う空気液化分離方法において、該空気液化分離装置
を一時停止し、再起動するに際し、前記複精留塔下部塔
下部より導出した酸素富化液化空気を粗アルゴン塔凝縮
器へ導入する酸素富化液化空気の供給をまず停止し、複
精留塔のみで暫時運転した後、圧縮原料空気の供給を停
止し、再起動時に、上部塔底部に液化酸素が貯留された
状態から起動運転を開始することを特徴とする空気液化
分離方法である。
Further, the present invention is directed to an air liquefaction in which air is compressed, purified, cooled, and sequentially introduced into a double rectification column, a crude argon column, etc., and liquefied and rectified to separate at least oxygen and argon as products. A separation method, in which the argon raw material gas derived from the upper part of the double rectification tower is introduced into the lower part of the crude argon tower, and the oxygen-enriched liquefied air derived from the lower part of the lower part of the double rectification tower is supplied to the crude argon column condenser. In the air liquefaction and separation method for introducing and purifying argon, the air liquefaction and separation apparatus is temporarily stopped and, upon restarting, the oxygen-enriched liquefied air derived from the lower part of the lower column of the double rectification column is converted into a crude argon column condenser. First, supply of oxygen-enriched liquefied air to be introduced into the reactor is stopped, and after temporarily operating only the double rectification column, supply of compressed raw material air is stopped, and when restarting, liquefied oxygen is stored at the bottom of the upper tower Starting operation from A cryogenic air separation process, characterized in that the start.

【0027】さらに本願発明は、空気を圧縮し、精製
し、冷却して複精留塔、粗アルゴン塔、脱酸塔等に順次
導入して液化精留分離し、少なくとも酸素及びアルゴン
を製品として採取する空気液化分離方法であって、複精
留塔上部塔中部より導出したアルゴン原料ガスを粗アル
ゴン塔下部に導入し、複精留塔下部塔下部より導出した
酸素富化液化空気を脱酸素塔凝縮器へ導入してアルゴン
精製を行う空気液化分離方法において、該空気液化分離
装置を一時停止し、再起動するに際し、前記複精留塔下
部塔下部より導出した酸素富化液化空気を前記脱酸素塔
凝縮器へ導入する酸素富化液化空気の供給をまず停止す
るとともに、脱酸塔塔底部からの液粗アルゴンの送液を
停止し、複精留塔のみで暫時運転した後、圧縮原料空気
の供給を停止し、再起動時に、前記上部塔底部に低純度
液化酸素が貯留され、かつ前記脱酸素塔底部に液化粗ア
ルゴンが貯留された状態から起動運転を開始することを
特徴とする空気液化分離方法である。
Further, the invention of the present application is to compress, purify, cool and introduce air into a double rectification column, a crude argon column, a deoxidization column and the like in order to liquefy and separate, and to convert at least oxygen and argon as products. An air liquefaction separation method for sampling, in which the argon raw material gas derived from the middle part of the upper tower of the double rectification tower is introduced into the lower part of the crude argon tower, and the oxygen-enriched liquefied air derived from the lower part of the lower tower of the double rectification tower is deoxygenated. In the air liquefaction separation method of introducing argon into the column condenser and purifying argon, the air liquefaction separation device is temporarily stopped, and upon restarting, the oxygen-enriched liquefied air derived from the lower part of the double rectification column lower column is subjected to the First, the supply of oxygen-enriched liquefied air to be introduced into the deoxygenation tower condenser was stopped, and the supply of crude argon from the bottom of the deoxidation tower was stopped. Stop supply of raw air and restart During movement, the the upper column bottom impure liquid oxygen is stored, and the a cryogenic air separation process, characterized in that liquefied crude argon deoxygenated bottoms starts startup operation from a state that is stored.

【0028】また前記酸素富化液体空気を導出する下部
塔下部の位置が下部塔の塔底および/または塔底より1
段乃至数段上の段であることを特徴とする上記方法のう
ち何れかの空気液化分離方法である。
The position of the lower part of the lower tower from which the oxygen-enriched liquid air is led out is at least one column from the bottom of the lower tower and / or from the bottom.
The air liquefaction separation method according to any one of the above methods, wherein the air liquefaction separation method is a stage from a stage to several stages.

【0029】上記構成によれば、本発明の装置は、装置
の一時停止、再起動に際し、停止時に予めアルゴン精製
系統の運転を実質上停止した状態にして粗アルゴン塔中
の液を上部塔に戻しながら暫時運転を継続して主凝縮器
中の液化酸素の純度をほぼ維持しつつ粗アルゴン塔中の
液を排出し、排出し終え上記酸素濃度が所定値に達した
時点で装置全体の運転を停止することにより、次のスタ
ート時に主精留塔の状態を短時間で定常運転状態に到達
させることができる。
According to the above configuration, when the apparatus of the present invention is temporarily stopped and restarted, the operation of the argon purification system is substantially stopped in advance when the apparatus is stopped, and the liquid in the crude argon column is transferred to the upper column. The operation is continued for a while while returning, the liquid in the crude argon column is discharged while maintaining the purity of the liquefied oxygen in the main condenser substantially, and when the discharge is completed and the above oxygen concentration reaches a predetermined value, the operation of the entire apparatus is started. Is stopped, the state of the main rectification column can reach a steady operation state in a short time at the next start.

【0030】また、リバーシング熱交換器を使用した空
気液化分離装置においては、このリバーシング熱交換器
の温度制御が容易になり、装置の運転が容易になる。
Further, in the air liquefaction / separation apparatus using the reversing heat exchanger, the temperature control of the reversing heat exchanger is facilitated, and the operation of the apparatus is facilitated.

【0031】また、脱酸塔を備えたアルゴン精製系統を
有する空気液化分離装置においても、装置の一時停止
時、脱酸塔凝縮器への酸素富化液化空気の供給を上記と
同様にバイパス供給することにより粗アルゴン塔周りの
運転状態を上記と同様に行うとともに、脱酸塔から粗ア
ルゴン塔へ液粗アルゴンを返送する液ポンプを停止する
ことによりアルゴン採取系統を全て停止状態とすること
ができる。これによって主精留塔のみの運転を暫時行
い、主凝縮器の純度低下を最小限に抑えて装置全体の停
止を行うことができ、再起動時には単時間で定常運転状
態に到達することが出来る。
Also in an air liquefaction / separation apparatus having an argon purification system provided with a deoxidation tower, when the apparatus is temporarily stopped, the supply of oxygen-enriched liquefied air to the deoxidation tower condenser is similarly bypass-supplied. By doing so, the operation state around the crude argon column is performed in the same manner as described above, and all the argon sampling systems can be stopped by stopping the liquid pump that returns the liquid crude argon from the deoxidation column to the crude argon column. it can. As a result, the operation of only the main rectification column can be performed for a while, the reduction of the purity of the main condenser can be minimized, and the entire apparatus can be stopped. .

【0032】[0032]

【発明の実施の形態】上記本発明を実施するための空気
液化分離装置の典型的な形式3種類について以下に説明
する。以下の説明においては、従来技術の説明に用いた
図1乃至図4を利用するが、以下に説明する本発明の実
施形態の空気液化分離装置は、図中破線で示す経路のう
ち少なくとも1つを含むものとする。図1、図2がもっ
とも通常形式の装置であり、MS吸着器を使用して前処
理を行う。アルゴン精製系統は粗アルゴン塔までを示し
てある。図3の例は原料空気の不純物の除去と冷却を同
時に熱交換器で行うリバーシング熱交換器を使用した装
置の例である。図4は粗アルゴン塔の次に脱酸塔を設け
触媒水添工程を削除した方式の装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Three typical types of air liquefaction / separation apparatuses for carrying out the present invention will be described below. In the following description, FIGS. 1 to 4 used in the description of the related art will be used. However, the air liquefaction / separation apparatus according to the embodiment of the present invention described below has at least one of the paths indicated by broken lines in the figure. Shall be included. FIG. 1 and FIG. 2 show the most usual types of apparatuses, in which pretreatment is performed using an MS adsorber. The argon purification system is shown up to the crude argon column. The example of FIG. 3 is an example of an apparatus using a reversing heat exchanger that simultaneously removes and cools impurities in the raw air with a heat exchanger. FIG. 4 shows a system in which a deoxidizing column is provided next to the crude argon column, and the catalyst hydrogenation step is omitted.

【0033】図1に示す形式の装置では、原料空気を圧
縮する原料空気圧縮機2、空気中の水分、炭酸ガスを除
去する前処理装置であるMS吸着器6、圧縮精製原料空
気を冷却する主熱交換器8、該圧縮・精製・冷却した空気
を粗分離する複精留塔13の下部塔14、更に精留分離
を重ねて製品酸素および製品窒素を分離採取する上部塔
15、該上部塔中部よりアルゴン原料ガスを取り出し粗
アルゴンを採取する粗アルゴン塔17を主要構成機器と
している。
In the apparatus of the type shown in FIG. 1, a raw material air compressor 2 for compressing raw air, an MS adsorber 6 which is a pretreatment device for removing moisture and carbon dioxide in the air, and a compressed and purified raw air are cooled. A main heat exchanger 8, a lower column 14 of a double rectification column 13 for roughly separating the compressed, purified and cooled air; an upper column 15 for separating and collecting product oxygen and product nitrogen by further rectification and separation; The main component is a crude argon column 17 which takes out an argon source gas from the center of the column and collects crude argon.

【0034】管1より導入された大気空気は空気圧縮機
2で圧力 0.7MPa に圧縮され導管3、アフタークーラー
4、導管5を経て吸着器6に導入される。切換え使用さ
れる対でなる吸着器6の一方6aに導入された圧縮空気
は、ここで含有する水分および二酸化炭素を吸着除去さ
れて、含有二酸化炭素 1ppm以下、水分は露点−70℃
以下に精製され、原料精製空気となって管7へ導出す
る。この時切り替え使用される他方の吸着器6bは再生
工程にある。
The atmospheric air introduced from the pipe 1 is compressed to a pressure of 0.7 MPa by the air compressor 2 and introduced into the adsorber 6 through the conduit 3, the after cooler 4, and the conduit 5. The compressed air introduced into one of the paired adsorbers 6a used for switching is adsorbed and removed from the water and carbon dioxide contained therein, and the carbon dioxide content is 1 ppm or less, and the dew point is -70 ° C.
It is purified as follows, and is supplied to the pipe 7 as purified air. At this time, the other adsorber 6b switched and used is in the regeneration step.

【0035】MS吸着器6で含有する炭酸ガス及び水分
を除去された圧縮精製空気は導管7より主熱交換器8に
入り、主精留塔13より帰還する酸素、窒素等のガスと
熱交換して冷却され、途中一部分岐するが、量的に大部
分は該主熱交換器8の冷端側よりその圧力におけるほぼ
液化温度(−172℃)で導出され、導管9より主精留
塔13の下部塔14下部に導入され塔内上昇ガスとな
る。
The compressed purified air from which the carbon dioxide gas and moisture contained in the MS adsorber 6 have been removed enters the main heat exchanger 8 through the conduit 7 and exchanges heat with oxygen, nitrogen and other gases returned from the main rectification column 13. The main heat exchanger 8 is cooled at a liquefaction temperature (−172 ° C.) at the pressure from the cold end side of the main heat exchanger 8, and the main rectification column is supplied through a conduit 9. 13 is introduced into the lower part of the lower tower 14 and becomes ascending gas in the tower.

【0036】主熱交換器8を中間温度で導管7より分岐
した上記一部は主熱交換器8から導管10へ導出され、
膨張タービン11に入り断熱膨張して0.04MPa 程度
まで降圧降温し、導管12より上部塔15の空気組成の
個所へ導入される。
The part of the main heat exchanger 8 branched from the conduit 7 at the intermediate temperature is led out from the main heat exchanger 8 to the conduit 10,
The gas enters the expansion turbine 11 and is adiabatically expanded to reduce the pressure and temperature down to about 0.04 MPa.

【0037】下部塔14へ導入された原料空気は該塔内
を上昇し、塔頂から降下してくる還流液と向流気液接触
して精留を行い、塔上部に窒素を分離するとともに該下
部塔塔底部には酸素富化液化空気が留出する。
The raw material air introduced into the lower tower 14 rises in the tower, comes into contact with the reflux liquid descending from the top of the tower in a countercurrent gas-liquid manner to perform rectification, and separates nitrogen into the upper part of the tower. At the bottom of the lower column, oxygen-enriched liquefied air distills.

【0038】下部塔14の塔頂に分離した窒素ガスは導
管18を経て連設する上部塔底部の液化酸素と熱交換す
る主凝縮蒸発器16に入り、上部塔15の塔底に留出し
た液化酸素と熱交換し、これにより凝縮して液化窒素と
なり導管19へ導出して三分し、三分した一は導管20
より再度下部塔14の塔頂部に導入され、下部塔14の
還流液となり塔内を流下し、前記塔内上昇ガスと気液接
触が行われて精留が進行する。さらに三分した二番目の
液化窒素は流路21より膨張弁22で膨張降圧後、上部
塔15の塔頂部へ導入され、上部塔15の還流液とな
り、該塔内を流下する。分岐した三番目は流路23を経
て前記液化窒素貯槽24へ導入され貯留される。
The nitrogen gas separated at the top of the lower tower 14 enters a main condensing evaporator 16 which exchanges heat with liquefied oxygen at the bottom of the upper tower via a conduit 18 and is distilled at the bottom of the upper tower 15. It exchanges heat with liquefied oxygen, thereby condensing into liquefied nitrogen to be led out to conduit 19 and divided into three parts.
Further, it is again introduced into the top of the lower tower 14 and becomes a reflux liquid of the lower tower 14 and flows down in the tower. The gas rising in the tower is brought into gas-liquid contact and rectification proceeds. Further, the second liquefied nitrogen, which has been divided into three, is expanded and depressurized by the expansion valve 22 through the flow path 21, and then introduced into the top of the upper tower 15, becomes a reflux liquid of the upper tower 15, and flows down in the tower. The third branch is introduced into the liquefied nitrogen storage tank 24 via the flow path 23 and stored therein.

【0039】下部塔14の塔頂に分離した窒素ガスは、
その一部が製品ガスとして取り出され、前記主熱交換器
8を経て寒冷を回収して常温で系外へ導出される場合も
ある。
The nitrogen gas separated at the top of the lower tower 14 is
In some cases, part of the gas is taken out as product gas, the cold is recovered through the main heat exchanger 8, and is led out of the system at room temperature.

【0040】下部塔14の塔底に留出した前記酸素富化
液化空気は流路(管)25より導出して過冷却器26で
過冷却され、膨張弁27で膨張降圧して約0.04MPaと
なった後、導管28を経、上部塔15の中間部へ導入さ
れ該塔内で精留に供される。
The oxygen-enriched liquefied air distilled at the bottom of the lower tower 14 is drawn out from a flow path (tube) 25, is supercooled by a supercooler 26, is expanded and depressurized by an expansion valve 27, and has a pressure of about 0.1 mm. After the pressure reaches 04 MPa, the gas is introduced into the middle part of the upper column 15 through a conduit 28 and is subjected to rectification in the column.

【0041】上部塔15においては、前記主凝縮蒸発器
16で蒸発した酸素ガスが上部塔15内を上昇し、前記
塔13頂部に導入された液化窒素の還流液、中間部に導
入された酸素富化液化空気の下降液と気液接触を行って
精留が進行し、塔頂部に高純度窒素ガス、塔底部に酸素
ガスおよび液化酸素を分離する。また廃ガスは経路8
7、88より導出され、主熱交換器7で熱回収を行って
経路90より系外へ導出される。
In the upper tower 15, the oxygen gas evaporated in the main condensing evaporator 16 rises in the upper tower 15, and the liquefied nitrogen reflux liquid introduced to the top of the tower 13, and the oxygen gas introduced to the middle section The rectification proceeds by making gas-liquid contact with the descending liquid of the enriched liquefied air to separate high-purity nitrogen gas at the top of the column and oxygen gas and liquefied oxygen at the bottom of the column. Waste gas is route 8
7 and 88, heat is recovered in the main heat exchanger 7, and is drawn out of the system through a route 90.

【0042】上部塔15の塔頂部に分離した窒素ガスは
導管60より導出され、前記過冷却器26で向流する管
25内の前記酸素富化液化空気、及び管21内の液化窒
素を過冷却し、自身は昇温して導管61を経て前記主熱
交換器8に入り前記原料空気と熱交換してほぼ常温とな
り導管62より製品窒素ガスとして取り出され、圧送用
ブロア(図示せず)で昇圧して使用先へ送られる。また
上部塔中上部よりとりだされた排ガスは、上記製品窒素
ガスとほぼ同じ経路(図示せず)より導出され、主熱交
換器8で熱回収を行って系外へ導出される。
The nitrogen gas separated at the top of the upper tower 15 is led out from the conduit 60 and passes through the oxygen-enriched liquefied air in the pipe 25 flowing countercurrently in the supercooler 26 and the liquefied nitrogen in the pipe 21. After cooling, the temperature rises itself, enters the main heat exchanger 8 via a conduit 61, and exchanges heat with the raw material air to become almost normal temperature, is taken out as a product nitrogen gas from a conduit 62, and is blown under pressure (not shown). And then sent to the destination. Further, the exhaust gas taken out from the upper part in the upper tower is led out through almost the same path (not shown) as the above product nitrogen gas, heat is recovered in the main heat exchanger 8, and is drawn out of the system.

【0043】上部塔15の塔底部に分離した酸素ガスは
同様、導管63より導出し、前記主熱交換器8を経て寒
冷を回収され、流路64より、製品酸素ガスとして取り
出され使用先へ送られる。また製品液化酸素は流路65
を経て液化酸素貯槽66へ導入、貯蔵される。
Similarly, the oxygen gas separated at the bottom of the upper tower 15 is led out from the conduit 63, the cold is recovered through the main heat exchanger 8, and is taken out as the product oxygen gas from the flow path 64 to the destination. Sent. The product liquefied oxygen is supplied to the flow path 65
Through the liquefied oxygen storage tank 66 and stored.

【0044】次に前記上部塔15中下部のアルゴン濃度
の最も高い段の付近から、アルゴン原料ガス(フィード
アルゴン)が導管34に導出されて、粗アルゴン塔17
の下部に導入され、ここでアルゴン/酸素の精留分離が
行われる。即ち、粗アルゴン塔17の下部に導入された
フィードアルゴンは該塔内を上昇するにつれて精留によ
りアルゴン濃度が上昇し、塔頂付近でアルゴン濃度98
乃至99%になり導管36より前記粗アルゴン凝縮器3
3へ導入される。
Next, an argon raw material gas (feed argon) is led to a conduit 34 from the vicinity of the stage having the highest argon concentration in the lower part of the upper column 15 and the crude argon column 17
Where argon / oxygen rectification takes place. That is, as the feed argon introduced into the lower part of the crude argon column 17 rises in the column, the argon concentration increases due to rectification, and the argon concentration near the top of the column is 98%.
From the conduit 36 to the crude argon condenser 3
3 is introduced.

【0045】該粗アルゴン凝縮器33で前記酸素富化液
化空気との熱交換が行われ凝縮した粗アルゴンは導管3
7に導出されその一部が導管38より、粗アルゴン塔1
7の頂部へ還流液として再度導入される。導管37から
分岐した一部は粗アルゴンとして導管39より次工程の
脱酸素工程へ送られる。
The crude argon condensed by heat exchange with the oxygen-enriched liquefied air in the crude argon condenser 33 is supplied to the conduit 3.
7, a part of which is supplied from the conduit 38 to the crude argon column 1
At the top of 7 is introduced again as reflux. A part branched from the conduit 37 is sent as crude argon from the conduit 39 to the next deoxygenation step.

【0046】粗アルゴン塔17内を流下した液は塔底部
より導管35を経て前記上部塔15中下部へ戻される。
The liquid flowing down in the crude argon column 17 is returned from the bottom of the column to the lower portion of the upper column 15 via a conduit 35.

【0047】前記下部塔塔底より導出した酸素富化液化
空気はまた粗アルゴン塔の還流液生成のための寒冷源と
して粗アルゴン塔凝縮器に供給される。即ち、導管25
を分岐した導管30か、または前記下部塔14の塔底よ
り1段乃至数段上の段より導管40(図2)に導出さ
れ、膨張弁31で膨張降圧後、粗アルゴン凝縮器33に
導入される。
The oxygen-enriched liquefied air discharged from the bottom of the lower column is also supplied to a crude argon column condenser as a refrigeration source for producing a reflux liquid of the crude argon column. That is, the conduit 25
Into the conduit 30 (FIG. 2) from one or several stages above the bottom of the lower tower 14 and into the crude argon condenser 33 after expansion and pressure reduction by the expansion valve 31. Is done.

【0048】粗アルゴン凝縮器33に導入された酸素富
化液化空気はここで粗アルゴン塔17内を上昇してきて
アルゴンが濃縮した粗アルゴンと熱交換して寒冷を与
え、自身は蒸発して導管42より上部塔15中上部へ導
入される。この際蒸発しなかった過剰部分は導管43よ
り同様に上部塔15の中上部へ導入される。
The oxygen-enriched liquefied air introduced into the crude argon condenser 33 here rises in the crude argon column 17 and exchanges heat with the crude argon in which the argon is concentrated, thereby providing cooling, and evaporates itself to form a conduit. From 42, it is introduced into the upper part of the upper tower 15. At this time, the excess portion that has not evaporated is introduced into the middle and upper part of the upper tower 15 through the conduit 43 in the same manner.

【0049】以上が通常の主精留塔および粗アルゴン塔
のプロセスであるが、本発明はこの主精留塔と粗アルゴ
ン塔を有機的に連結している経路をさらに有機的に連結
して、再起動時間の短縮またはリベックスの温度制御を
容易にするものである。即ち、粗アルゴン塔凝縮器へ酸
素富化液化空気を供給する経路にバイパスを設け、該経
路に設けたバイパス弁を適時操作する。
The above is a general process of the main rectification column and the crude argon column. The present invention further organically connects the route for organically connecting the main rectification column and the crude argon column. , Shortening the restart time or facilitating the temperature control of REVEX. That is, a bypass is provided in a path for supplying the oxygen-enriched liquefied air to the crude argon column condenser, and a bypass valve provided in the path is appropriately operated.

【0050】即ち、前記下部塔14底部より導出した酸
素富化液化空気を粗アルゴン塔凝縮器33に導入する導
管30と該粗アルゴン凝縮器33を導出した酸素富化液
化空気を上部塔15に導入する導管43を結ぶバイパス
経路45および該経路45にバイパス弁46を設けたも
のである。これにより酸素富化液化酸素を粗アルゴン塔
17の凝縮器33をバイパスして上部塔15へ供給する
ことができるようになり、粗アルゴン塔17の運転を停
止して主精留塔13のみの運転を行うことが出来る。
That is, the conduit 30 for introducing the oxygen-enriched liquefied air derived from the bottom of the lower column 14 into the crude argon column condenser 33 and the oxygen-enriched liquefied air derived from the crude argon condenser 33 are supplied to the upper column 15. A bypass path 45 connecting the introduction conduit 43 and a bypass valve 46 are provided in the path 45. This makes it possible to supply the oxygen-enriched liquefied oxygen to the upper column 15 by bypassing the condenser 33 of the crude argon column 17. You can drive.

【0051】即ち、空気液化分離装置全体の運転を停止
するに際し、先ず完全に閉じられていた上記バイパス弁
46を開とする。同時に酸素富化液化空気の粗アルゴン
塔凝縮器33への導入経路に設けられた膨張弁31を徐
々に閉じる。これにより粗アルゴン塔17凝縮器33の
冷却機能が停止状態となり、粗アルゴンガスの凝縮が停
止して、上部塔15から導管34を経て粗アルゴン塔1
7に吸入されるアルゴン原料ガスの供給が止まる。
That is, when the operation of the entire air liquefaction / separation apparatus is stopped, first, the bypass valve 46 that has been completely closed is opened. At the same time, the expansion valve 31 provided on the path for introducing the oxygen-enriched liquefied air into the crude argon column condenser 33 is gradually closed. Thereby, the cooling function of the crude argon tower 17 condenser 33 is stopped, the condensation of the crude argon gas is stopped, and the crude argon tower 1 is passed from the upper tower 15 via the conduit 34.
The supply of the argon source gas sucked into 7 stops.

【0052】同時にシーブトレイ式粗アルゴン塔の場
合、塔内の各段のトレイ上に保留されていた液が塔内を
流下し、塔底の液溜めを経て導管35を通って上部塔1
5のアルゴン原料ガスの抜きだし部とほぼ同じ位置へ戻
る。粗アルゴン塔17が充填塔の場合も充填材表面に保
持されていた液が全て塔内を流下し同様の挙動をとる。
上部塔15の運転は定常運転とほぼ同じ状態で運転が継
続されるが、上部塔15底部の主凝縮蒸発器16に溜ま
る液化酸素の純度が低下し、かつ排ガス中のアルゴン濃
度が少し上昇した状態でしばらく運転を継続する。やが
て液化酸素の濃度が所定値に達し平衡状態になる。
At the same time, in the case of the sieve tray type crude argon column, the liquid retained on the trays at each stage in the column flows down the column, passes through the liquid reservoir at the bottom of the column, passes through the conduit 35, and passes through the upper column 1
It returns to a position almost the same as that of the extraction part of the argon source gas of No. 5. Even when the crude argon column 17 is a packed column, all the liquid held on the surface of the packed material flows down in the column and behaves similarly.
The operation of the upper tower 15 is continued in almost the same state as the steady operation, but the purity of the liquefied oxygen accumulated in the main condensing evaporator 16 at the bottom of the upper tower 15 decreases, and the argon concentration in the exhaust gas slightly increases. Continue driving for a while in the state. Eventually, the concentration of liquefied oxygen reaches a predetermined value, and an equilibrium state is established.

【0053】この状態になったところで原料空気圧縮機
の送圧を停止する。主精留塔13の運転が停止すると上
部塔15、下部塔14それぞれの棚段に保留されていた
液が全て流下して各塔の塔底に溜まる。この時上部塔1
5塔底に溜まった液の組成は、粗アルゴン塔17塔底か
らの液の流入が無いので、粗アルゴン塔17の付設され
ていない空気液化分離装置の停止時、塔底部に溜まる液
とほぼ同組成である。この際停止前に前記経路21、2
5の弁22、27を閉として暫く運転を継続することに
より液化酸素の濃度を短時間に所定値に到達させること
ができる。また下部塔14の塔底に溜まる液は粗アルゴ
ン塔の有無に関わらず同一組成となる。
When this state is reached, the feed pressure of the raw material air compressor is stopped. When the operation of the main rectification column 13 is stopped, all the liquid held in the trays of the upper tower 15 and the lower tower 14 flows down and accumulates at the bottom of each tower. At this time, the upper tower 1
5 The composition of the liquid collected at the bottom of the column is almost the same as the liquid stored at the bottom of the column when the air liquefaction / separation apparatus without the coarse argon column 17 is stopped because there is no inflow of liquid from the bottom of the crude argon column 17. It has the same composition. At this time, before the stop, the route 21, 2
By closing the valves 22 and 27 of No. 5 and continuing the operation for a while, the concentration of liquefied oxygen can reach the predetermined value in a short time. The liquid collected at the bottom of the lower column 14 has the same composition regardless of the presence or absence of the crude argon column.

【0054】従って、再起動に際して上部塔15の塔底
には定常運転時の貯留液に近い組成の液が貯留された状
態から運転開始が可能となり、起動運転期間は装置規模
にもよるが空気量10万Nm3/hの装置で4〜5時間短
縮される。また、アルゴン採取系統を停止して主精留塔
のみの運転を行うことにより酸素、窒素の採取量の増減
操作が容易になるとともに、減量幅が拡大できる。
Therefore, at the time of restarting, the operation can be started from a state in which a liquid having a composition close to the stored liquid at the time of steady operation is stored at the bottom of the upper tower 15. With a device of 100,000 Nm 3 / h, the time is reduced by 4 to 5 hours. In addition, by stopping the argon collection system and operating only the main rectification column, it is easy to increase or decrease the amount of oxygen and nitrogen to be collected, and the amount of reduction can be increased.

【0055】前記バイパス経路45およびバイパス弁4
6と同一の機能を果たす経路および弁を他の経路に設け
ることが出来る。即ち、酸素富化液化空気の経路30と
気化酸素富化空気の経路42の間にバイパス経路47お
よびバイパス弁48を設けたことにより上記の場合と同
一の機能を得ることが出来る。また図2に示すように酸
素富化液化空気の導管40にバイパス経路49およびバ
イパス弁50を設け、粗アルゴン凝縮器33をバイパス
して酸素富化液化空気を直接上部塔15に導入すること
により、上記バイパス経路45およびバイパス弁46と
同一の機能が得られる。経路40のバイパス経路49を
直接上部塔15に導入する経路とせずに他の酸素富化液
化空気導入経路25、28へ合流させ(バイパス弁5
0'を有する経路49')ても良い。また前記経路40、
30のバイパス経路49を直接上部塔15に導入する経
路とせずに、図1と同様酸素富化液化空気流路43また
は気化空気流路42と連結しても同様の結果が得られ本
発明の範囲である。
The bypass path 45 and the bypass valve 4
Paths and valves that perform the same function as 6 can be provided in other paths. That is, by providing the bypass path 47 and the bypass valve 48 between the path 30 for oxygen-enriched liquefied air and the path 42 for vaporized oxygen-enriched air, the same function as in the above case can be obtained. Also, as shown in FIG. 2, a bypass path 49 and a bypass valve 50 are provided in the conduit 40 of the oxygen-enriched liquefied air, and the oxygen-enriched liquefied air is directly introduced into the upper column 15 by bypassing the crude argon condenser 33. Thus, the same functions as those of the bypass path 45 and the bypass valve 46 are obtained. The bypass path 49 of the path 40 is not directly introduced into the upper tower 15 but is joined to the other oxygen-enriched liquefied air introduction paths 25 and 28 (bypass valve 5).
A route 49 ′) having 0 ′ may be used. The route 40,
The same result can be obtained by connecting the bypass passage 49 of 30 to the oxygen-enriched liquefied air passage 43 or the vaporized air passage 42 as in FIG. Range.

【0056】図2の例においては、酸素富化液化空気の
取出口(経路40)を下部塔底部とせずに下部塔底部よ
り1乃至数段上の位置に設定してある。この理由は前記
酸素富化液化空気の中に混入し濃縮している微量の二酸
化炭素および炭化水素類の含有量の低減である。即ち塔
底から上の段より前記液化空気を抜出すことにより上記
微量不純物の含有量を飛躍的に減少させることが出来、
粗アルゴン塔凝縮器において更に濃縮し析出して危険に
至る可能性を未然に防ぐことが出来るためである。
In the example of FIG. 2, the outlet (path 40) for the oxygen-enriched liquefied air is not located at the bottom of the lower tower, but is set at a position one to several steps above the bottom of the lower tower. The reason for this is to reduce the contents of trace amounts of carbon dioxide and hydrocarbons which are mixed and concentrated in the oxygen-enriched liquefied air. That is, by extracting the liquefied air from the upper stage from the bottom of the column, the content of the trace impurities can be significantly reduced,
This is because the possibility of further concentration and precipitation in the crude argon column condenser to cause danger can be prevented.

【0057】次に図3に基づき第2の形態例を説明す
る。前記のごとく主熱交換器は上記図1、図2に示す形
式とは異なるリバーシング熱交換器8'が用いられてい
る。導管5よりの圧縮空気は4方切り替え弁70を経て
切り替え使用される流路81aと81bの一方81aに導
入され、隣接する流路81c,81dを流れる精留塔より
の帰還ガス、即ち製品窒素ガス、製品酸素ガスと熱交換
を行い冷却される。同時に流路81aの壁面に含有する
水分および二酸化炭素を析出して除去され冷端部より導
出し、戻止弁82を経て導管9より下部塔14下部へ導
入される。
Next, a second embodiment will be described with reference to FIG. As described above, a reversing heat exchanger 8 'different from the type shown in FIGS. 1 and 2 is used as the main heat exchanger. The compressed air from the conduit 5 is introduced through the four-way switching valve 70 into one of the flow paths 81a and 81b that are used for switching, and is returned gas from the rectification tower flowing through the adjacent flow paths 81c and 81d, ie, product nitrogen. It exchanges heat with gas and product oxygen gas and is cooled. At the same time, moisture and carbon dioxide contained in the wall surface of the flow path 81a are precipitated and removed, and are led out from the cold end, and are introduced into the lower part of the lower tower 14 through the conduit 9 via the return valve 82.

【0058】戻止弁82を経た空気の一部は導管84よ
り弁85を経て、前記リバーシング熱交換器8'の再熱
流路86を遡流して中間温度に昇温して導出し、膨張タ
ービン11へ導入され、膨張降圧しほぼ液化温度にまで
降温して上部塔15に導入される。
A part of the air passing through the return valve 82 flows from the conduit 84 through the valve 85 through the reheating passage 86 of the reversing heat exchanger 8 ', and is heated to the intermediate temperature to be extracted. It is introduced into the turbine 11, expanded and depressurized, cooled down to almost the liquefaction temperature, and introduced into the upper tower 15.

【0059】上部塔15中上部より導出した窒素98%
程度の廃ガスは導管87、過冷却器26、導管88、戻
止弁83、導管88'を経てリバーシング熱交換器8'の
流路81bに入り、前記流路81aの原料空気と熱交換し
て昇温しつつ、前周期で流路81bの壁面に付着した水
分、二酸化炭素を揮発させこれを同伴して導管89より
系外へ導出する。
98% of nitrogen derived from the upper part of the upper tower 15
Waste gas enters the flow passage 81b of the reversing heat exchanger 8 'through the conduit 87, the subcooler 26, the conduit 88, the check valve 83, and the conduit 88', and exchanges heat with the raw air in the flow passage 81a. As the temperature rises, the water and carbon dioxide adhering to the wall surface of the flow path 81b in the previous cycle are volatilized, and the vaporized water and carbon dioxide are led out of the system through the conduit 89.

【0060】このリバーシング熱交換器8'の各流路は
上記のごとく熱交換と不純物除去の両方の機能を果たし
ているため、運転中は該流路の温度分布の制御の精度が
厳しく要求されている。該排窒素ガスは前記過冷却器2
6を経て寒冷を前記酸素富化液化空気に与えたのち、リ
バーシング熱交換器8'に導入されているためこれら各
流体の流量のバランスは上記温度バランスに直接影響す
る。従って、これら流体の各流量、温度は装置運転中常
時安定していることが必須である。
Since the respective channels of the reversing heat exchanger 8 'perform both the functions of heat exchange and the removal of impurities as described above, precision in controlling the temperature distribution in the channels during operation is strictly required. ing. The exhausted nitrogen gas is supplied to the subcooler 2
After applying the refrigeration to the oxygen-enriched liquefied air via 6 and being introduced into the reversing heat exchanger 8 ', the balance of the flow rates of these fluids directly affects the temperature balance. Therefore, it is essential that the flow rates and temperatures of these fluids are always stable during operation of the apparatus.

【0061】粗アルゴン塔17の運転は、製出される粗
アルゴンの純度を監視しつつ運転が行われ、供給される
酸素富化液化空気の量を弁31により調節している。ま
た前記のように装置を一時停止し、再起動する際、粗ア
ルゴン塔17の運転を先ず停止するためにこの酸素富化
液化空気の供給を停止すると、前記過冷却器26、リバ
ーシング熱交換器8'の温度バランスが崩れ装置全体の
安定運転が困難になる。
The operation of the crude argon column 17 is performed while monitoring the purity of the produced crude argon, and the amount of the oxygen-enriched liquefied air supplied is adjusted by the valve 31. When the apparatus is temporarily stopped and restarted as described above, when the supply of the oxygen-enriched liquefied air is stopped in order to first stop the operation of the crude argon column 17, the supercooler 26, the reversing heat exchange The temperature balance of the vessel 8 'is lost, and it becomes difficult to operate the whole apparatus stably.

【0062】そこでこの形式の空気分離装置において
も、形態例1と同様にバイパス経路およびバイパス弁を
設けることにより上記不都合点を改善することが可能で
ある。即ち、粗アルゴン凝縮器33への酸素富化液化空
気の流路30と上部塔15への導管28を結ぶバイパス
流路45aおよびバイパス弁46a、または粗アルゴン凝
縮器33への酸素富化液化空気の流路30と該粗アルゴ
ン凝縮器33を導出した未蒸発の酸素富化液化空気の流
路43へのバイパス45a'とバイパス弁46a'または気
化酸素富化液化空気の流路42へのバイパス流路47a
とバイパス弁48aである。さらにまた前記酸素富化液
化空気の流路30から直接上部塔15へのバイパス流路
49aとそのバイパス弁50aである。
Therefore, also in this type of air separation device, it is possible to improve the above disadvantages by providing the bypass path and the bypass valve as in the first embodiment. That is, a bypass flow path 45a and a bypass valve 46a connecting the flow path 30 of the oxygen-enriched liquefied air to the crude argon condenser 33 and the conduit 28 to the upper tower 15, or the oxygen-enriched liquefied air to the crude argon condenser 33 Of the unvaporized oxygen-enriched liquefied air from the crude argon condenser 33 to the flow path 43 and the bypass valve 46a 'or the bypass to the flow path 42 of the vaporized oxygen-enriched liquefied air. Channel 47a
And the bypass valve 48a. Furthermore, a bypass flow path 49a and a bypass valve 50a from the oxygen-enriched liquefied air flow path 30 directly to the upper tower 15 are provided.

【0063】これらのバイパス経路およびバイパス弁の
いずれか一つを設けることにより、装置の一時停止時粗
アルゴン凝縮器への酸素富化液化空気の供給を停止して
も過冷却器の機能をほぼ同じ状態に維持でき、リバーシ
ング熱交換器8'の温度バランスの維持、装置の一時停
止再起動時間の短縮を達成することができる。
By providing any one of these bypass paths and bypass valves, even when the supply of oxygen-enriched liquefied air to the crude argon condenser is stopped when the apparatus is temporarily stopped, the function of the subcooler is substantially reduced. The same state can be maintained, and the maintenance of the temperature balance of the reversing heat exchanger 8 'and the reduction of the time required for the apparatus to temporarily stop and restart can be achieved.

【0064】次に図4に基づき脱酸塔を備えたアルゴン
精製系統を有する空気液化分離装置に本発明を適用した
第3の形態例を説明する。主精留塔13から粗アルゴン
塔17までのプロセスは前記図1と同様である。粗アル
ゴン塔17は凝縮器を有せず脱酸塔90塔底よりの液粗
アルゴンが還流液として塔頂より流下し気液接触が行わ
れる。
Next, a third embodiment in which the present invention is applied to an air liquefaction / separation apparatus having an argon purification system provided with a deacidification tower will be described with reference to FIG. The processes from the main rectification column 13 to the crude argon column 17 are the same as those in FIG. The crude argon column 17 has no condenser, and the liquid crude argon from the bottom of the deoxidizing column 90 flows down from the top of the column as a reflux liquid and gas-liquid contact is performed.

【0065】粗アルゴン塔17の塔頂より経路97を経
てアルゴン98%乃至99%の粗アルゴンが脱酸塔90
の塔下部へ導入される。脱酸塔90の塔内を降下液と気
液接触して精留しつつ上昇したアルゴンガスは塔頂に至
り含有酸素が1ppm程度から1ppb程度まで減少す
る。塔頂から導管98へ出た脱酸素アルゴンは凝縮器9
4へ入り液化して導管99へ導出し2分し、一方は導管
100より次工程の高純アルゴン塔(図示せず)へ送ら
れる。2分した他方は導管101より再度脱酸塔90へ
入り還流液となって塔内を降下する。塔底まで降下した
液はリボイラー91で蒸発して前記導管97よりの粗ア
ルゴンガスとともに塔内を上昇する。塔底の液粗アルゴ
ンは導管102より導出し液ポンプ103により導管1
04を経て粗アルゴン塔17の頂部へ送られ、前記の通
り粗アルゴン塔17の還流液となる。
From the top of the crude argon column 17, 98% to 99% of argon is supplied to the deoxidizing column 90 through a path 97.
At the bottom of the tower. The argon gas that has risen while rectifying the gas in the deoxidation tower 90 by gas-liquid contact with the descending liquid reaches the top of the tower and the oxygen content decreases from about 1 ppm to about 1 ppb. The deoxygenated argon flowing from the top to the conduit 98 is supplied to the condenser 9
4, liquefied and led out to a conduit 99 to be divided into two parts, one of which is sent from a conduit 100 to a high-purity argon column (not shown) in the next step. The other of the two parts enters the deoxidation tower 90 again through the conduit 101, becomes a reflux liquid, and descends in the tower. The liquid that has descended to the bottom of the column is evaporated in the reboiler 91 and rises in the column together with the crude argon gas from the conduit 97. The liquid crude argon at the bottom of the column is led out from the conduit 102 and is supplied to the conduit 1 by the liquid pump 103.
The liquid is sent to the top of the crude argon column 17 via the liquid crystal 04 and becomes a reflux liquid of the crude argon column 17 as described above.

【0066】脱酸塔90の凝縮器94の寒冷源は、下部
塔14の塔底または塔底より1段乃至数段目より導管4
0または40’を経て導出した酸素富化液化空気であ
る。この液化空気は脱酸塔90の塔底に設けられたリボ
イラー91へ入り該脱酸塔90の塔底液と熱交換して過
冷状態となり導管92へ導出する。次いで弁93で膨張
し温度降下して凝縮器94へ導入され、前記脱酸塔頂部
の脱酸アルゴンと熱交換し、自身は気化して導管95へ
導出し上部塔の中上部へ導入される。
The cooling source of the condenser 94 of the deoxidizing tower 90 is connected to the bottom of the lower tower 14 or the first through several stages from the bottom of the conduit 4.
Oxygen-enriched liquefied air derived via 0 or 40 '. The liquefied air enters a reboiler 91 provided at the bottom of the deoxidizing tower 90, exchanges heat with the bottom liquid of the deoxidizing tower 90, becomes a supercooled state, and is led to a conduit 92. Next, the gas is expanded by the valve 93, and the temperature is lowered and introduced into the condenser 94, which exchanges heat with the deoxidized argon at the top of the deoxidizing column, vaporizes and leads to the conduit 95, and is introduced into the upper part of the upper column. .

【0067】この形式の空気分離装置においても、形態
例1と同様に凝縮器94をバイパスする経路およびバイ
パス弁を設けることにより前記不都合点を改善すること
が可能である。即ち、凝縮器94への酸素富化液化空気
の導管40、40’と上部塔15への導管28を結ぶバ
イパス経路45bおよびバイパス弁46bを設けることが
できる。また、脱酸塔凝縮器94への酸素富化液化空気
の導管40と、該脱酸塔凝縮器94から導出した未蒸発
の酸素富化液化空気の流路96とを結ぶバイパス経路4
5b'およびバイパス弁46b'を設けることもできる。さ
らには、導管40と、気化酸素富化液化空気の流路95
とを結ぶバイパス経路47bおよびバイパス弁48bを
設けることもできる。さらにまた前記酸素富化液化空気
の導管40から直接上部塔15へのバイパス経路49b
とそのバイパス弁50bを設けることもできる。
Also in this type of air separation device, it is possible to improve the above disadvantages by providing a path for bypassing the condenser 94 and a bypass valve as in the first embodiment. That is, a bypass path 45b and a bypass valve 46b connecting the conduits 40 and 40 'of the oxygen-enriched liquefied air to the condenser 94 and the conduit 28 to the upper tower 15 can be provided. Further, a bypass passage 4 connecting the conduit 40 of the oxygen-enriched liquefied air to the deoxidizing tower condenser 94 and the flow path 96 of the non-evaporated oxygen-enriched liquefied air derived from the deoxidizing tower condenser 94.
5b 'and a bypass valve 46b' can also be provided. Further, the conduit 40 and the flow path 95 of the vaporized oxygen-enriched liquefied air
A bypass path 47b and a bypass valve 48b may be provided. Furthermore, a bypass path 49b from the conduit 40 for the oxygen-enriched liquefied air directly to the upper tower 15
And its bypass valve 50b.

【0068】これらのバイパス経路およびバイパス弁の
いずれか一つを設けることにより前記図1第1形態例の
場合と全く同様の効果が得られる。即ち、装置全体の一
時停止/再起動に際し、再起動時間を大幅に短縮でき
る。
By providing any one of these bypass paths and bypass valves, exactly the same effects as in the case of the first embodiment shown in FIG. 1 can be obtained. That is, when suspending / restarting the entire apparatus, the restarting time can be significantly reduced.

【0069】実施例1 形態例1のプロセス(図1、バイパス経路45、バイパ
ス弁46を設けたもの)を採用した空気量185,00
0Nm3/hの装置において、装置全体を一時停止し再起動
するに際し、バイパス弁46を開け、徐々に弁31を閉
じて2時間運転を行った後、原料空気圧縮機2を停止し
て装置全体を停止した。8乃至24時間後装置の再起動
を開始し、定常運転状態に達するまでの時間即ち定格純
度(99.6%)の製品酸素が定格量発生するまでの時
間は約1時間であった。これは本発明による上記バイパ
ス弁を使用した停止法を行わない通常装置での一時停止
/再起動に要する時間に対し約5分の1に相当するもの
であり、約4時間の短縮が可能となった。
Embodiment 1 The air amount 185,00 employing the process of Embodiment 1 (FIG. 1, provided with a bypass route 45 and a bypass valve 46).
In the apparatus of 0 Nm 3 / h, when the whole apparatus is temporarily stopped and restarted, the bypass valve 46 is opened, the valve 31 is gradually closed, and the operation is performed for 2 hours. Stopped the whole. After 8 to 24 hours, restarting of the apparatus was started, and the time required to reach a steady state of operation, that is, the time required to generate the rated amount of product oxygen having the rated purity (99.6%) was about 1 hour. This is equivalent to about one-fifth of the time required for the temporary stop / restart in the normal device that does not perform the stopping method using the above-described bypass valve according to the present invention. became.

【0070】実施例2 形態例2のプロセス(図3、バイパス経路45a、バイ
パス弁46aを設けたもの)を採用した空気量185,
000Nm3/hの装置において、装置全体を一時停止し再
起動するに際し、バイパス弁46aを開け、弁31を閉
じて2時間運転を行った後、原料空気圧縮機2を停止し
て装置全体を停止した。7日後装置の再起動を開始し、
定常運転状態に達するまでの時間は(前記と同様製品酸
素の定格純度、定格量発生までの時間)は約2時間であ
った。これは本発明による上記バイパス弁を使用した停
止法を行わない通常装置での一時停止/再起動に要する
時間に対し約3分の1に相当するものであり、約4時間
の短縮が可能となった。
Embodiment 2 The air amount 185 employing the process of Embodiment 2 (FIG. 3, provided with a bypass passage 45a and a bypass valve 46a)
In the apparatus of 000 Nm 3 / h, when the whole apparatus is temporarily stopped and restarted, the bypass valve 46 a is opened, the valve 31 is closed, and the operation is performed for 2 hours. Stopped. After 7 days, restart the device,
The time required to reach the steady operating state (the time required to generate the rated purity of product oxygen and the rated amount, as described above) was about 2 hours. This is equivalent to about one third of the time required for the temporary stop / restart in the normal device that does not perform the stop method using the above-described bypass valve according to the present invention. became.

【0071】実施例3 形態例3のプロセス(図4、バイパス経路45b、バイ
パス弁46bを設けたもの)において上部塔および粗ア
ルゴン塔に充填塔を採用した空気量185,000Nm3/
hの装置において、装置全体を一時停止し再起動するに
際し、バイパス弁46bを開け、弁93を徐々に閉じ、
液粗アルゴンポンプ103を停止して2時間運転を行っ
た後、原料空気圧縮機2を停止して装置全体を停止し
た。約24時間後装置の再起動を開始し、主精留塔が定
常運転状態に達するまでの時間(前記と同様製品酸素の
定格純度、定格量発生までの時間)は約3時間であっ
た。これは本発明による上記バイパス弁を使用した停止
法を行わない上記充填塔使用装置での一時停止/再起動
に要する時間の約5分の3乃至4に相当するものであ
る。
[0071] Example 3 embodiment 3 of a process air volume employing a packed column to the upper column and the crude argon column (Fig. 4, the bypass passage 45b, and that a bypass valve 46b) 185,000Nm 3 /
In the apparatus of h, when the entire apparatus is temporarily stopped and restarted, the bypass valve 46b is opened and the valve 93 is gradually closed,
After the operation of the liquid crude argon pump 103 was stopped and the operation was performed for 2 hours, the raw air compressor 2 was stopped to stop the entire apparatus. After about 24 hours, restarting of the apparatus was started, and the time required for the main rectification column to reach a steady operation state (the time until the rated purity of product oxygen and the time until the generation of the rated amount as described above) was about 3 hours. This corresponds to about three-fifths to four-fourths of the time required for the suspension / restart in the apparatus using the packed tower that does not perform the stopping method using the bypass valve according to the present invention.

【0072】[0072]

【発明の効果】以上説明したように、本発明は粗アルゴ
ン塔凝縮器または脱酸塔凝縮器へ供給する酸素富化液化
空気をバイパスして上部塔へ送る事が出来るようにした
ので、一時停止/再起動に要する時間を短縮することが
できる。またアルゴン精製系統を運転停止して主精留塔
のみの運転を容易に行うことができ、かつ増減量運転が
容易、増減量幅が大となる。また、リバーシング熱交換
器を使用した装置においては、このアルゴン採取系統の
運転操作と主精留塔廻りの運転操作、特にリバーシング
熱交換器の温度制御を、互いの影響なしに行えるように
なる。
As described above, according to the present invention, the oxygen-enriched liquefied air supplied to the crude argon column condenser or the deoxidation column condenser can be bypassed and sent to the upper column. The time required for stop / restart can be reduced. In addition, the operation of the main rectification column alone can be easily performed by stopping the operation of the argon purification system, and the increase / decrease amount operation is easy and the increase / decrease amount width is large. In the apparatus using the reversing heat exchanger, the operation of the argon collection system and the operation of the main rectification column, particularly the temperature control of the reversing heat exchanger, can be performed without mutual influence. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法を実施するためのバイパス経路及
びバイパス弁を設けた空気液化分離装置の形態例の系統
図である。
FIG. 1 is a system diagram of an embodiment of an air liquefaction / separation apparatus provided with a bypass path and a bypass valve for carrying out the method of the present invention.

【図2】 本発明方法を実施するためのバイパス経路及
びバイパス弁を設けた空気液化分離装置の他の形態例の
系統図である。
FIG. 2 is a system diagram of another embodiment of the air liquefaction / separation apparatus provided with a bypass path and a bypass valve for carrying out the method of the present invention.

【図3】 本発明方法を実施するためのバイパス経路及
びバイパス弁を設けた空気液化分離装置の他の形態例の
系統図である。
FIG. 3 is a system diagram of another embodiment of the air liquefaction / separation apparatus provided with a bypass path and a bypass valve for carrying out the method of the present invention.

【図4】 本発明方法を実施するためのバイパス経路及
びバイパス弁を設けた空気液化分離装置の他の形態例の
系統図である。
FIG. 4 is a system diagram of another embodiment of an air liquefaction / separation apparatus provided with a bypass path and a bypass valve for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

2…空気圧縮機 4…アフタークーラー 6…MS吸着
器(前処理装置) 8…主熱交換器 8’…可逆式熱交
換器 13…主精留塔(複精留塔) 14…下部塔 1
5…上部塔 17…粗アルゴン塔 90…脱酸塔 33
…粗アルゴン凝縮器 94…脱酸塔凝縮器 91…脱酸
塔リボイラー 11…膨張タービン 16…主凝縮蒸発
器 26…過冷却器 24…液化窒素貯槽 66…液化
酸素貯槽103…液化粗アルゴンポンプ 22、27、
31、93…膨張弁 45、45a、45a'、45b、4
5b'、47、47a、47b、49、49a、49b …バ
イパス経路 46、46a、46a'、46b、46b'、4
8、48a、48b、50、50a、50b…バイパス弁
1、3、5、7、9、10、12、18、19、20、
21、23、25、28、30、32、36、37、3
8、39、40、42、43、60、61、62、6
3、64、65、87、84、87、88、88'、8
9、92、95、96、97、98、99、100、1
01、102、104、…導管
2 ... air compressor 4 ... aftercooler 6 ... MS adsorber (pretreatment device) 8 ... main heat exchanger 8 '... reversible heat exchanger 13 ... main rectification tower (double rectification tower) 14 ... lower tower 1
5: Upper tower 17: Crude argon tower 90: Deoxidizer tower 33
... crude argon condenser 94 ... deoxidation tower condenser 91 ... deoxidation tower reboiler 11 ... expansion turbine 16 ... main condensing evaporator 26 ... supercooler 24 ... liquefied nitrogen storage tank 66 ... liquefied oxygen storage tank 103 ... liquefied crude argon pump 22 , 27,
31, 93 ... expansion valves 45, 45a, 45a ', 45b, 4
5b ', 47, 47a, 47b, 49, 49a, 49b ... bypass paths 46, 46a, 46a', 46b, 46b ', 4
8, 48a, 48b, 50, 50a, 50b ... bypass valve
1, 3, 5, 7, 9, 10, 12, 18, 19, 20,
21, 23, 25, 28, 30, 32, 36, 37, 3,
8, 39, 40, 42, 43, 60, 61, 62, 6
3, 64, 65, 87, 84, 87, 88, 88 ', 8
9, 92, 95, 96, 97, 98, 99, 100, 1
01, 102, 104, ... conduit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 嘉昭 大分県大分市大字西ノ洲1 新日本製鉄株 式会社大分製鉄所内株式会社大分サンソセ ンター内 Fターム(参考) 4D047 AA08 AB01 AB02 AB04 BB01 BB03 DA06 DA12 EA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiaki Matsuo 1 Nishinosu, Oita, Oita City, Nippon Steel Corporation Oita Steel Works Co., Ltd. Oita Sanso Center Co., Ltd. F term (reference) 4D047 AA08 AB01 AB02 AB04 BB01 BB03 DA06 DA12 EA01

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 下部塔および上部塔、粗アルゴン塔を備
え、空気を液化精留して酸素、窒素およびアルゴン等を
採取する空気液化分離装置において、 前記下部塔下部より酸素富化液体空気を導出して前記粗
アルゴン塔凝縮器に導入する酸素富化液化空気導入経路
と、 該粗アルゴン塔凝縮器より導出する未蒸発の前記酸素富
化液化空気あるいは蒸発酸素富化空気を前記上部塔へ導
入する経路または前記下部塔下部より酸素富化液化空気
を導出し上部塔上部へ導入する経路とを結ぶ粗アルゴン
塔凝縮器バイパス経路を有し、該経路にバイパス弁を設
けたことを特徴とする空気液化分離装置。
1. An air liquefaction / separation apparatus comprising a lower tower, an upper tower, and a crude argon tower, wherein the air is liquefied and rectified to collect oxygen, nitrogen, argon and the like. An oxygen-enriched liquefied air introduction path to be led out and introduced into the crude argon column condenser; and the unevaporated oxygen-enriched liquefied air or evaporated oxygen-enriched air derived from the crude argon column condenser to the upper tower. A coarse argon column condenser bypass path connecting an introduction path or a path for extracting oxygen-enriched liquefied air from the lower tower lower part and introducing the oxygen-enriched liquefied air to the upper tower upper part, wherein a bypass valve is provided in the path. Air liquefaction separator.
【請求項2】 下部塔および上部塔、粗アルゴン塔を備
え、空気を液化精留して酸素、窒素およびアルゴン等を
採取する空気液化分離装置において、前記下部塔下部よ
り酸素富化液体空気を導出して前記粗アルゴン塔凝縮器
に導入する経路と、 該酸素富化液化空気導入経路を分岐して酸素富化液化空
気を上部塔上部へ導入する粗アルゴン塔凝縮器バイパス
経路を有し、該経路にバイパス弁を設けたことを特徴と
する空気液化分離装置。
2. An air liquefaction / separation apparatus comprising a lower tower, an upper tower, and a crude argon tower, wherein the air is liquefied and rectified to collect oxygen, nitrogen, argon and the like. A route for leading out and introducing the crude argon column condenser, a crude argon column condenser bypass route for branching the oxygen-enriched liquefied air introduction route and introducing the oxygen-enriched liquefied air to the upper column upper part, An air liquefaction / separation device, wherein a bypass valve is provided in the path.
【請求項3】 下部塔および上部塔、粗アルゴン塔及び
脱酸塔を備え、空気を液化精留して酸素、窒素およびア
ルゴン等を採取する空気液化分離装置において、 前記下部塔下部より酸素富化液体空気を導出して前記脱
酸塔凝縮器に導入する酸素富化液化空気導入経路と、 該脱酸塔凝縮器より導出する未蒸発の前記酸素富化液化
空気あるいは蒸発酸素富化空気を前記上部塔へ導入する
経路または前記下部塔下部より酸素富化液化空気を導出
し上部塔上部へ導入する経路とを結ぶ脱酸塔凝縮器バイ
パス経路を有し、該経路にバイパス弁を設けたことを特
徴とする空気液化分離装置。
3. An air liquefaction / separation apparatus comprising a lower tower and an upper tower, a crude argon tower and a deoxidizing tower, which liquefies air to collect oxygen, nitrogen, argon and the like. An oxygen-enriched liquefied air introduction path for deriving the deoxidizing liquid air and introducing it to the deoxidizing tower condenser; and converting the unevaporated oxygen-enriched liquefied air or evaporated oxygen enriched air derived from the deoxidizing tower condenser. A deoxidation tower condenser bypass path connecting a path for introduction to the upper tower or a path for extracting oxygen-enriched liquefied air from the lower part of the lower tower and introducing it to the upper part of the upper tower was provided, and a bypass valve was provided in the path. An air liquefaction separation device characterized by the above-mentioned.
【請求項4】 下部塔および上部塔、粗アルゴン塔、脱
酸塔を備え、空気を液化精留して酸素、窒素およびアル
ゴン等を採取する空気液化分離装置において、 前記下部塔下部より酸素富化液体空気を導出して前記脱
酸塔凝縮器に導入する経路と、 該酸素富化液化空気導入経路を分岐して酸素富化液化空
気を上部塔上部へ導入する脱酸塔凝縮器バイパス経路を
有し、該バイパス経路にバイパス弁を設けたことを特徴
とする空気液化分離装置。
4. An air liquefaction / separation apparatus comprising a lower tower and an upper tower, a crude argon tower, and a deoxidizing tower, wherein the air is liquefied and rectified to collect oxygen, nitrogen, argon and the like. A deoxygenator condenser bypass path for branching off the oxygen-enriched liquefied air introduction path and introducing oxygen-enriched liquefied air to the upper part of the upper tower; And a bypass valve is provided in the bypass path.
【請求項5】 前記空気液化分離装置の主熱交換器がリ
バーシング熱交換器(可逆式熱交換器)であることを特
徴とする請求項1乃至請求項4のいずれか1項に記載の
空気液化分離装置。
5. The air liquefaction / separation apparatus according to claim 1, wherein the main heat exchanger is a reversing heat exchanger (reversible heat exchanger). Air liquefaction separator.
【請求項6】 前記酸素富化液化空気導出経路のバイパ
ス経路及びバイパス弁が該酸素富化液化空気導出経路に
設けた過冷却器の低温側出口側に設けられていることを
特徴とする請求項5記載の空気液化分離装置。
6. A low-temperature outlet side of a supercooler provided in the oxygen-enriched liquefied air outlet path, wherein a bypass path and a bypass valve for the oxygen-enriched liquefied air outlet path are provided. Item 6. The air liquefaction separation device according to Item 5.
【請求項7】 前記空気液化分離装置が原料空気中の水
分及び炭酸ガス等を除去する前処理装置を備えているこ
とを特徴とする請求項1乃至請求項4のいずれか1項に
記載の空気液化分離装置。
7. The air liquefaction / separation apparatus according to claim 1, further comprising a pretreatment apparatus for removing water, carbon dioxide, and the like in the raw air. Air liquefaction separator.
【請求項8】 前記下部塔、上部塔、粗アルゴン塔等の
うち、少なくとも一塔が充填塔であることを特徴とする
請求項1または2記載の空気液化分離装置。
8. The air liquefaction / separation apparatus according to claim 1, wherein at least one of the lower tower, the upper tower, the crude argon tower and the like is a packed tower.
【請求項9】 前記下部塔、上部塔、粗アルゴン塔、脱
酸素塔等のうち、少なくとも一塔が充填塔であることを
特徴とする請求項3または4記載の空気液化分離装置。
9. The air liquefaction / separation apparatus according to claim 3, wherein at least one of the lower tower, the upper tower, the crude argon tower, the deoxygenation tower and the like is a packed tower.
【請求項10】 前記酸素富化液体空気を導出する下部
塔下部の位置が下部塔塔底であることを特徴とする請求
項1乃至4項のいずれか1項記載の空気液化分離装置。
10. The air liquefaction / separation apparatus according to claim 1, wherein a position of a lower portion of the lower column from which the oxygen-enriched liquid air is led is a bottom of the lower column.
【請求項11】 前記酸素富化液体空気を導出する下部
塔下部の位置が下部塔の塔底より1段乃至数段上の段で
あることを特徴とする請求項1乃至4項のいずれか1項
記載の空気液化分離装置。
11. The lower tower from which the oxygen-enriched liquid air is led out is located one to several stages above the bottom of the lower tower. 2. The air liquefaction separation device according to claim 1.
【請求項12】 空気を圧縮し、精製し、冷却して複精
留塔、粗アルゴン塔等に順次導入して液化精留分離し、
少なくとも酸素及びアルゴンを製品として採取する空気
液化分離方法であって、複精留塔上部塔中部より導出し
たアルゴン原料ガスを粗アルゴン塔下部に導入し、複精
留塔下部塔下部より導出した酸素富化液化空気を粗アル
ゴン塔凝縮器へ導入してアルゴン精製を行う空気液化分
離方法において、 該空気液化分離装置を一時停止し、再起動するに際し、
前記複精留塔下部塔下部より導出した酸素富化液化空気
を粗アルゴン塔凝縮器へ導入する酸素富化液化空気の供
給をまず停止し、複精留塔のみで暫時運転した後、圧縮
原料空気の供給を停止し、 再起動時に、上部塔底部に液化酸素が貯留された状態か
ら起動運転を開始することを特徴とする空気液化分離方
法。
12. Air is compressed, purified, cooled, and sequentially introduced into a double rectification column, a crude argon column, etc., for liquefied rectification and separation.
An air liquefaction separation method of collecting at least oxygen and argon as products, wherein an argon raw material gas derived from the middle part of the upper column of the double rectification column is introduced into the lower portion of the crude argon column, and the oxygen derived from the lower portion of the lower column of the double rectification column. In an air liquefaction method for purifying argon by introducing enriched liquefied air into a crude argon column condenser, the air liquefaction and separation apparatus is temporarily stopped and restarted.
The supply of oxygen-enriched liquefied air introduced into the crude argon column condenser with oxygen-enriched liquefied air derived from the lower part of the double rectification column is first stopped, and after temporarily operating only with the double rectification column, the compressed raw material An air liquefaction / separation method, wherein the supply of air is stopped, and a restarting operation is started from a state in which liquefied oxygen is stored at the bottom of the upper tower when restarting.
【請求項13】 空気を圧縮し、精製し、冷却して複精
留塔、粗アルゴン塔、脱酸塔等に順次導入して液化精留
分離し、少なくとも酸素及びアルゴンを製品として採取
する空気液化分離方法であって、複精留塔上部塔中部よ
り導出したアルゴン原料ガスを粗アルゴン塔下部に導入
し、複精留塔下部塔下部より導出した酸素富化液化空気
を脱酸素塔凝縮器へ導入してアルゴン精製を行う空気液
化分離方法において、 該空気液化分離装置を一時停止し、再起動するに際し、 前記複精留塔下部塔下部より導出した酸素富化液化空気
を前記脱酸素塔凝縮器へ導入する酸素富化液化空気の供
給をまず停止するとともに、脱酸塔塔底部からの液粗ア
ルゴンの送液を停止し、 複精留塔のみで暫時運転した後、圧縮原料空気の供給を
停止し、 再起動時に、前記上部塔底部に液化酸素が貯留され、か
つ前記脱酸素塔底部に液化粗アルゴンが貯流された状態
から起動運転を開始することを特徴とする空気液化分離
方法。
13. Air which compresses, purifies, cools, introduces air into a double rectification column, a crude argon column, a deoxidization column, etc., sequentially performs liquefaction rectification and collects at least oxygen and argon as products. A liquefaction separation method, in which the argon raw material gas derived from the upper part of the double rectification tower is introduced into the lower part of the crude argon column, and the oxygen-enriched liquefied air derived from the lower part of the double rectification tower is removed from the deoxygenation tower condenser. In the air liquefaction separation method of purifying with argon by introducing to the deliquefaction tower, when the air liquefaction separation apparatus is temporarily stopped and restarted, First, the supply of oxygen-enriched liquefied air to be introduced into the condenser was stopped, and the supply of liquid crude argon from the bottom of the deoxidation tower was stopped. Stop supply and restart Liquefied oxygen stored in the upper column bottom, and the air liquefaction separation method characterized by liquefying crude argon deoxygenated bottoms starts startup operation from a state of being 貯流.
【請求項14】 前記酸素富化液体空気を導出する下部
塔下部の位置が下部塔の塔底より1段乃至数段上の段で
あることを特徴とする請求項12または13の何れか1
項記載の空気液化分離方法。
14. The method according to claim 12, wherein a position of a lower portion of the lower tower from which the oxygen-enriched liquid air is led is a stage one to several stages higher than a bottom of the lower tower.
The air liquefaction separation method according to the above paragraph.
JP24418998A 1998-08-28 1998-08-28 Air liquefaction separating device and air liquefaction separating method Withdrawn JP2000074558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24418998A JP2000074558A (en) 1998-08-28 1998-08-28 Air liquefaction separating device and air liquefaction separating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24418998A JP2000074558A (en) 1998-08-28 1998-08-28 Air liquefaction separating device and air liquefaction separating method

Publications (1)

Publication Number Publication Date
JP2000074558A true JP2000074558A (en) 2000-03-14

Family

ID=17115105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24418998A Withdrawn JP2000074558A (en) 1998-08-28 1998-08-28 Air liquefaction separating device and air liquefaction separating method

Country Status (1)

Country Link
JP (1) JP2000074558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185512A (en) * 2010-03-08 2011-09-22 Jfe Steel Corp Cold standby method for air separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185512A (en) * 2010-03-08 2011-09-22 Jfe Steel Corp Cold standby method for air separator

Similar Documents

Publication Publication Date Title
WO1986004979A1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
JP2003165712A (en) Method and apparatus for producing krypton and/or xenon by low-temperature air separation
JP2004028572A (en) Air fractionation process and air fractionation installation provided with mixing column and krypton and/or xenon recovery device
JPH0731004B2 (en) Air distillation method and plant
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JPS6148072B2 (en)
EP0798524A2 (en) Ultra high purity nitrogen and oxygen generator unit
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JP2636949B2 (en) Improved nitrogen generator
JPH0842962A (en) Method and equipment for separating air at low temperature
JPH10132458A (en) Method and equipment for producing oxygen gas
US20140165648A1 (en) Purification of inert gases to remove trace impurities
JPH07133982A (en) Method and apparatus for preparing high purity argon
JP2000074558A (en) Air liquefaction separating device and air liquefaction separating method
JPH1072612A (en) Oxygen steelmaking method
JP2008057804A (en) Manufacturing method of refined argon
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JPH0399190A (en) Method of manufacturing oxygen
JP2001033155A (en) Air separator
JP3720863B2 (en) Air liquefaction separation method
JPH07127971A (en) Argon separator
JP2000258054A (en) Method and apparatus for manufacturing low purity oxygen
CA2597328A1 (en) Method for separating trace components from a nitrogen-rich stream

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101