JP2000070908A - Method for anaerobically digesting organic waste - Google Patents

Method for anaerobically digesting organic waste

Info

Publication number
JP2000070908A
JP2000070908A JP24422298A JP24422298A JP2000070908A JP 2000070908 A JP2000070908 A JP 2000070908A JP 24422298 A JP24422298 A JP 24422298A JP 24422298 A JP24422298 A JP 24422298A JP 2000070908 A JP2000070908 A JP 2000070908A
Authority
JP
Japan
Prior art keywords
organic waste
tank
digested sludge
concentration
digested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24422298A
Other languages
Japanese (ja)
Other versions
JP3556101B2 (en
Inventor
Shinichiro Wakahara
慎一郎 若原
Toshihiro Komatsu
敏宏 小松
Hideki Iwabe
秀樹 岩部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24422298A priority Critical patent/JP3556101B2/en
Publication of JP2000070908A publication Critical patent/JP2000070908A/en
Application granted granted Critical
Publication of JP3556101B2 publication Critical patent/JP3556101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the treatment of the org. waste contg. protein or lipid by controlling the water content of the digested sludge to a value at which a fermentation inhibitor does not exceed the upper-limit concn. SOLUTION: A garbage 1 as an easily decomposable org. matter is introduced into a fermentation tank 2, heated to about 55 deg.C and anaerobically digested, and the generation of a biogas 3 is measured. Since the garbage 1 contg. 90% water is anaerobically digested without any dilution, the water content of the digested sludge 4 in the fermentation tank 2 is increased to about 99%. Similarly, the garbage 1 is charged into the fermentation tank 2, heated to about 55 deg.C and anaerobically digested and the generation of the biogas 3 is measured. However, the digested sludge 4 in the fermentation tank 2 is sent to a membrane separator 5, soid is separated from liq. by an submerged membrane separator 6, the filtrate 7 is discharged, the digested sludge 4' concentrated thereby is returned into the fermentation tank 2, and the water content of the digested sludge 4 in the tank 2 is decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄化槽汚泥や下水
汚泥等の有機性汚泥、高濃度有機性廃液、厨芥、食品廃
棄物などの有機性廃棄物の嫌気性消化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anaerobic digestion of organic waste such as septic tank sludge and sewage sludge, high-concentration organic waste liquid, kitchen waste and food waste.

【0002】[0002]

【従来の技術】浄化槽汚泥や下水汚泥等の有機性汚泥、
高濃度有機性廃液、厨芥、食品廃棄物などの高濃度の有
機性廃棄物を嫌気性消化してメタンガスを回収する処理
方法が行われている。
2. Description of the Related Art Organic sludge such as septic tank sludge and sewage sludge,
2. Description of the Related Art Processing methods for anaerobic digestion of high-concentration organic waste such as high-concentration organic waste liquid, kitchen waste, and food waste to recover methane gas have been performed.

【0003】従来の発酵槽では汚泥濃度は成りゆきまか
せであったが、汚泥の一部を引き抜いて濃縮し、返送す
ることによって、嫌気性消化に関わる微生物群を高濃度
に保持するようにした例も見られ(特開平6−6359
8号)、高濃度であればあるほど分解率や分解速度の面
で有利であるとされていた。
[0003] In the conventional fermenter, the sludge concentration was gradually increased. However, an example in which microorganisms involved in anaerobic digestion were maintained at a high concentration by extracting a part of the sludge, concentrating the sludge and returning the sludge was returned. (Japanese Patent Laid-Open No. 6-6359)
No. 8), it was considered that the higher the concentration, the more advantageous in terms of the decomposition rate and decomposition rate.

【0004】その他、分解率を向上させる手段として、
投入基質をアルカリ剤や加温によって前もって可溶化さ
せる方法や、消化ガスよりCO2 を分離して酸発酵槽内
に吹き込むことでセルロースの可溶化を促進する方法な
どが採られている。
[0004] In addition, as means for improving the decomposition rate,
A method in which the input substrate is solubilized in advance by an alkali agent or heating, and a method in which CO 2 is separated from digested gas and then blown into an acid fermentation tank to promote solubilization of cellulose are adopted.

【0005】[0005]

【発明が解決しようとする課題】ところで、有機性廃棄
物を嫌気性消化する時には、常に酸敗に気を配る必要が
ある。易分解性の有機物の発酵過程では、酸生成速度が
酸消費速度(メタン生成速度)よりも卓越し、その差に
よって蓄積する酢酸、プロピオン酸などの有機酸の濃度
が高くなると、基質濃度阻害としてメタン生成段階に阻
害を及ぼすことが知られている。
When anaerobically digesting organic waste, it is necessary to always pay attention to rancidity. In the fermentation process of easily decomposable organic matter, the rate of acid generation is higher than the rate of acid consumption (methane generation rate). If the concentration of accumulated organic acids such as acetic acid and propionic acid increases due to the difference, the substrate concentration is inhibited. It is known to affect the methanation stage.

【0006】加えて、タンパク質あるいは脂質を高濃度
で含有する有機性廃棄物の嫌気性消化では、生成するア
ンモニアや硫化水素、あるいは脂質による吸着阻害など
によって嫌気性消化活性が低下、あるいは停止してしま
う。
In addition, in the anaerobic digestion of organic waste containing a high concentration of protein or lipid, the anaerobic digestion activity is reduced or stopped due to inhibition of adsorption by generated ammonia, hydrogen sulfide, or lipid. I will.

【0007】これらの問題は、発酵槽内の固形物濃度が
高いほど、すなわち含水率が低いほど顕著に現れる。つ
まり、分解率や分解速度の面で有利であると思われてい
た高濃度嫌気性消化が、低濃度嫌気性消化に比較して、
投入基質あるいは分解生成物による濃度阻害を受け易い
と言える。
[0007] These problems become more conspicuous as the solids concentration in the fermenter is higher, that is, as the water content is lower. In other words, high-concentration anaerobic digestion, which was considered to be advantageous in terms of decomposition rate and decomposition rate, is compared to low-concentration anaerobic digestion,
It can be said that it is susceptible to concentration inhibition by the input substrate or degradation product.

【0008】しかるに、このような発酵阻害に対して
は、pHの管理、あるいは発酵槽への基質投入を控える
しか対処方法はなく、タンパク質あるいは脂質を多量に
含んだ有機性廃棄物の処理は容易ではなかった。
[0008] However, to cope with such fermentation inhibition, there is no other way but to control the pH or to refrain from introducing the substrate into the fermenter, and it is easy to treat the organic waste containing a large amount of protein or lipid. Was not.

【0009】[0009]

【課題を解決するための手段】本発明者らは、投入基質
あるいは生成物による発酵阻害を低減すべく鋭意研究し
た結果、有機性廃棄物の嫌気性消化においては、発酵槽
内のTS濃度、つまりは汚泥含水率を制御することによ
って、阻害物質の影響を低減し、有機性廃棄物の分解率
および分解速度を増大できることを見出し、本発明を完
成したものである。
Means for Solving the Problems The present inventors have conducted intensive studies to reduce fermentation inhibition by input substrates or products. As a result, in the anaerobic digestion of organic waste, the TS concentration in the fermenter, In other words, they have found that by controlling the water content of sludge, the influence of inhibitors can be reduced, and the decomposition rate and decomposition rate of organic waste can be increased, and the present invention has been completed.

【0010】すなわち、本発明の有機性廃棄物の嫌気性
消化方法は、発酵槽の内部に有機性廃棄物を投入して嫌
気性条件下で消化し、メタンガスを回収するに際し、槽
内の消化汚泥の含水率を、槽内における発酵阻害物質が
上限濃度を越えない値に制御することを特徴とする。
That is, according to the method for anaerobic digestion of organic waste of the present invention, an organic waste is charged into a fermenter and digested under anaerobic conditions. The water content of the sludge is controlled to a value that does not exceed the upper limit concentration of the fermentation inhibitor in the tank.

【0011】発酵阻害物質としては、脂質、アンモニ
ア、有機酸、硫化水素、重金属類など、投入基質成分、
およびその分解生成物が挙げられる。図3〜図5を用い
て説明すると、 1)発酵槽内汚泥のTS濃度(固形物濃度)の増大に伴
って発酵槽容積当たりのメタン生成速度が増加したが、
TS濃度が10%を越えるとメタン生成速度の増加が緩
やかになった(図3参照)、 2)TS濃度の増大に伴って投入CODの分解率並びに
メタン生成速度が低下した(図4参照)、ことから、こ
の場合、TS濃度10%程度に管理するのが最適である
ことがわかる。つまり、メタン生成速度はTS濃度を管
理することで制御できる。
[0011] Fermentation inhibitors include input substrate components such as lipids, ammonia, organic acids, hydrogen sulfide, and heavy metals.
And its decomposition products. Referring to FIGS. 3 to 5, 1) Although the methane production rate per fermenter volume increased with an increase in the TS concentration (solid matter concentration) of the sludge in the fermenter,
When the TS concentration exceeded 10%, the increase in the methane production rate became slow (see FIG. 3). 2) With the increase in the TS concentration, the decomposition rate of the input COD and the methane production rate decreased (see FIG. 4). From this, it can be seen that in this case, it is optimal to control the TS concentration to about 10%. That is, the methane generation rate can be controlled by managing the TS concentration.

【0012】3)厨芥を基質として嫌気性発酵を行った
ところ、投入CODの80%分解に要する日数はTS濃
度の増大に伴って低下したが、TS濃度6%を境にして
増大に転じた(図5参照)、ことから、最適なTS濃度
が存在することがわかる。つまり、分解速度も、TS濃
度を管理することで制御できる。
3) When anaerobic fermentation was performed using kitchen waste as a substrate, the number of days required for 80% decomposition of the input COD decreased with an increase in the TS concentration, but started to increase after a TS concentration of 6%. (See FIG. 5) From this, it can be seen that an optimum TS concentration exists. That is, the decomposition rate can also be controlled by managing the TS concentration.

【0013】以上から、嫌気性消化における有機性廃棄
物の分解率および分解速度は、含水率を管理することに
よって制御できると言える。よって、上記したような実
験結果に基づいて、消化汚泥の含水率を、高い分解率お
よび分解速度を確保できる適当な値に制御することによ
って、槽内における発酵阻害物質の影響をできるだけ低
く、すなわち発酵阻害物質が上限濃度を越えないように
制御できる。
From the above, it can be said that the decomposition rate and decomposition rate of organic waste in anaerobic digestion can be controlled by controlling the water content. Therefore, based on the above experimental results, by controlling the water content of the digested sludge to an appropriate value that can ensure a high decomposition rate and decomposition rate, the effect of the fermentation inhibitor in the tank is as low as possible, The fermentation inhibitor can be controlled so as not to exceed the upper limit concentration.

【0014】上記したような実験を行わない場合は、槽
内における発酵阻害物質の濃度を、槽内に投入する有機
性廃棄物の組成から経験則として求めるか、あるいは槽
内の消化汚泥を実測して求める。そして、求めた濃度値
と所定の上限濃度値との比較に基いて、消化汚泥の含水
率を制御する。
If the above experiment is not performed, the concentration of the fermentation inhibitor in the tank is determined as an empirical rule from the composition of the organic waste to be charged into the tank, or the digested sludge in the tank is measured. Ask for it. Then, the water content of the digested sludge is controlled based on a comparison between the obtained concentration value and a predetermined upper limit concentration value.

【0015】上限濃度は、前実験で決めてもよいし、文
献等で周知の値を採用してもよい。発酵阻害物質の濃度
は、タンパク質あるいは脂質の有機性廃棄物中含有量に
基いて求めるのが好都合である。
The upper limit concentration may be determined in a previous experiment, or may be a value known in the literature. The concentration of the fermentation inhibitor is conveniently determined on the basis of the content of protein or lipid in the organic waste.

【0016】ただし、含水率の制御値は、消化汚泥の攪
拌操作を容易に行えるという条件(TS濃度10%程
度)も満たす必要がある。また、微生物の馴養等によっ
て発酵条件が次第に変化してくるので、適宜に制御値を
再設定する必要がある。さらに、運転コスト等の条件も
加味する必要がある。
However, the control value of the water content must satisfy the condition that the stirring operation of the digested sludge can be easily performed (TS concentration about 10%). In addition, since the fermentation conditions gradually change due to the acclimation of microorganisms, it is necessary to appropriately reset the control values. Further, it is necessary to consider conditions such as operating costs.

【0017】発酵槽内の阻害物質濃度範囲と槽内TS濃
度との間には概ね、以下の表1のような関係がある。
The relationship between the inhibitory substance concentration range in the fermenter and the TS concentration in the tank generally has a relationship as shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】消化汚泥の含水率の増大は、有機性廃棄物
を濃縮してあるいは無希釈で投入することと、消化汚泥
の一部を固液分離手段により固液分離し、濾液を系外へ
引き抜くこととの少なくとも一方によって行うことがで
きる。
The increase in the water content of digested sludge can be achieved by concentrating the organic waste or feeding it in undiluted form, separating a portion of the digested sludge by solid-liquid separation means, and removing the filtrate from the system. It can be performed by at least one of withdrawing.

【0020】消化汚泥の含水率の低下は、消化汚泥の一
部を固液分離手段により固液分離し、濾液を系外へ引き
抜くとともに、当該発酵阻害物質を不含の希釈水を補給
することによって行うことができる。
The decrease in the water content of digested sludge can be caused by solid-liquid separation of a part of the digested sludge by solid-liquid separation means, withdrawing the filtrate to the outside of the system, and supplying diluting water not containing the fermentation inhibitor. Can be done by

【0021】固液分離手段としては、遠心分離機などを
使用してもよいし、発酵槽内に膜分離装置を設置しても
よいし、膜分離装置を設置した膜分離槽を発酵槽に併設
してもよい。膜分離槽内で固液分離する場合には、濾液
の引き抜きによって濃縮された消化汚泥の一部または全
量を発酵槽へ返送する。
As the solid-liquid separation means, a centrifugal separator or the like may be used, a membrane separation device may be installed in the fermentation tank, or a membrane separation tank provided with the membrane separation device may be used in the fermentation tank. It may be attached. In the case of solid-liquid separation in a membrane separation tank, a part or the whole amount of digested sludge concentrated by extracting a filtrate is returned to a fermentation tank.

【0022】希釈水としては、排出した濾液を生物処
理、アンモニアストリッピング法、アンモニア吸着剤な
どによって処理したもの、あるいは他の処理工程で発生
したプロセス水、あるいは清水などを使用できる。
As the diluting water, one obtained by subjecting the discharged filtrate to biological treatment, an ammonia stripping method, an ammonia adsorbent, or the like, process water generated in another treatment step, or fresh water can be used.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら説明する。 (実施例1)図1に示したような装置構成において、易
分解性有機物である厨芥1(低タンパク質:全有機物重
量中5%、低脂質:全有機物重量中1%)を発酵槽2の
内部に投入し、約55℃に加温する状態において嫌気性
消化しつつ、バイオガス3の発生量を測定した。厨芥1
の含水率は90%程度であり、これを無希釈で嫌気性消
化したため、発酵槽2内の消化汚泥4の含水率は99%
程度に収束した。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 In the apparatus configuration as shown in FIG. 1, kitchen waste 1 (low protein: 5% based on the total weight of organic matter, low lipid: 1% based on the total weight of organic matter), which is an easily decomposable organic substance, was added to the fermenter 2. The amount of biogas 3 generated was measured while anaerobic digestion was performed in a state where the mixture was charged into the inside and heated to about 55 ° C. Kitchen waste 1
Of the digested sludge 4 in the fermenter 2 was 99% because it was subjected to anaerobic digestion without dilution.
Converged to a degree.

【0024】同様にして、厨芥1を発酵槽2の内部に投
入し、約55℃に加温する状態において嫌気性消化しつ
つ、バイオガス3の発生量を測定した。ただし、発酵槽
2内の消化汚泥4を膜分離槽5に送り、浸漬型膜分離装
置6により固液分離して濾液7を導出し、それにより濃
縮された消化汚泥4’を発酵槽2内に返送することによ
り、発酵槽2内の消化汚泥4の含水率を低下させた。含
水率を低下させるにあたっては、発酵槽2内の消化汚泥
4のNH4 −N濃度が3000mg/L以下になるよう
に濾液7を引き抜いた。
Similarly, the garbage 1 was put into the fermenter 2 and the amount of biogas 3 generated was measured while being anaerobically digested at a temperature of about 55 ° C. However, the digested sludge 4 in the fermentation tank 2 is sent to the membrane separation tank 5, and the filtrate 7 is separated by solid-liquid separation by the immersion type membrane separation device 6. , The moisture content of the digested sludge 4 in the fermenter 2 was reduced. In reducing the water content, the filtrate 7 was withdrawn so that the NH 4 —N concentration of the digested sludge 4 in the fermenter 2 was 3000 mg / L or less.

【0025】結果は表1に示した通りであり、含水率制
御時には非制御時と比較して、最大負荷、容積あたりの
ガス発生量が4倍に増加した。(槽内滞留時間:HRT
10日、SRT30日)
The results are as shown in Table 1. At the time of controlling the water content, the maximum load and the amount of gas generated per volume increased four times as compared with the time of non-control. (Residence time in tank: HRT
(10 days, SRT 30 days)

【0026】[0026]

【表2】 [Table 2]

【0027】この結果から、上記したような本発明の方
法を実施することにより、含水率を制御しない従来の方
法に比べて、発酵槽を小型化できるとともに、余分な水
分を加熱する必要がない分、発酵槽の加温に使用するメ
タンガス量を低減することができ、系外で回収可能なエ
ネルギーが飛躍的に増加することがわかる。 (実施例2)実施例1と同様にして、タンパク質含有量
が多い厨芥1(タンパク質:全有機物重量中30%)を
制御状態と非制御状態とにおいてそれぞれ、嫌気性消化
した。ただし、制御状態では、希釈水8としての無NH
4 −N水を加えて濾液7を引き抜くことで、消化汚泥4
のNH4 −N濃度を3000mg/L以下に低下させ
た。
From these results, it is possible to reduce the size of the fermentation tank and eliminate the need to heat excess water by implementing the method of the present invention as described above, as compared with the conventional method in which the water content is not controlled. It can be seen that the amount of methane gas used for heating the fermenter can be reduced, and the energy that can be recovered outside the system increases dramatically. (Example 2) In the same manner as in Example 1, garbage 1 having a high protein content (protein: 30% of the total organic matter weight) was anaerobically digested in a controlled state and an uncontrolled state, respectively. However, in the control state, the non-NH
By adding 4- N water and extracting the filtrate 7, digested sludge 4
The NH 4 -N concentration of reduced below 3000 mg / L.

【0028】結果は表2に示した通りであり、制御時に
は非制御時と比較して、分解率、ガス発生量とも上昇し
ており、高タンパクな厨芥をも効率よく分解できた。
(制御状態では、槽内滞留時間:HRT6.5日、SR
T30日)
The results are as shown in Table 2. The decomposition rate and the amount of gas generated during control were higher than those without control, and high-protein garbage could be decomposed efficiently.
(In the control state, the residence time in the tank: HRT 6.5 days, SR
T30)

【0029】[0029]

【表3】 [Table 3]

【0030】この結果から、膜分離槽5(すなわち膜分
離装置6)を併用することにより、阻害物質濃度を低下
させながら、有機物負荷を高く維持することができ、高
タンパクな厨芥をも、負荷を落とすことなく処理できる
ことがわかる。このような高タンパクな厨芥は、基質を
希釈して投入し引き抜くだけの従来の方法では、処理で
きるものの、処理量が大幅に減少する。
From these results, by using the membrane separation tank 5 (that is, the membrane separation device 6) together, it is possible to keep the load of organic substances high while lowering the concentration of inhibitory substances, and to reduce the load of high-protein garbage. It can be seen that the processing can be performed without dropping. Such a high-protein garbage can be processed by the conventional method of merely diluting the substrate, throwing it in and pulling it out, but the amount of processing is greatly reduced.

【0031】なお、上記した各実施例では、NH4 −N
が所定の上限濃度以下になるように含水率を制御した
が、発酵対象物の組成に応じて、NH4 −N、脂質、有
機酸などの阻害物質を指標として含水率を制御する。た
だし、たとえば有機酸の場合には、蓄積による阻害に加
え、易分解性物質の即時分解による瞬間的なVFA濃度
が阻害を及ぼさないように、発酵槽内の含水率を制御す
る必要がある。
In each of the above embodiments, NH 4 —N
Is controlled so as to be equal to or lower than a predetermined upper limit concentration, but the water content is controlled using an inhibitor such as NH 4 —N, lipid, organic acid as an index according to the composition of the fermentation target. However, in the case of an organic acid, for example, it is necessary to control the water content in the fermenter so that the instantaneous VFA concentration due to the immediate decomposition of the easily decomposable substance does not inhibit the inhibition in addition to the accumulation.

【0032】図2に示したように、発酵槽2の内部に設
置した膜分離装置6によって、消化汚泥4の固液分離お
よび濾液7の引き抜きを行ってもよい。
As shown in FIG. 2, solid-liquid separation of the digested sludge 4 and extraction of the filtrate 7 may be performed by a membrane separation device 6 installed inside the fermenter 2.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、発酵槽
内の消化汚泥の含水率を、槽内における発酵阻害物質が
上限濃度を越えない値に制御することにより、投入基質
の分解効率を向上できるとともに、安定した運転を行う
ことができ、エネルギー回収を重視した運転、分解率
(安定性)を重視した運転のいずれかの選択も可能であ
る。
As described above, according to the present invention, by controlling the moisture content of the digested sludge in the fermentation tank to a value that does not exceed the upper limit concentration of the fermentation inhibitor in the tank, the decomposition of the input substrate is performed. Efficiency can be improved, and stable operation can be performed. It is possible to select either operation that emphasizes energy recovery or operation that emphasizes decomposition rate (stability).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性廃棄物の嫌気性消化方法を実施
する装置であって、発酵槽に、膜分離装置を内設した膜
分離槽を併設したものを示した説明図である。
FIG. 1 is an explanatory view showing an apparatus for carrying out the method for anaerobic digestion of organic waste of the present invention, wherein a fermentation tank is provided with a membrane separation tank provided with a membrane separation apparatus.

【図2】本発明の有機性廃棄物の嫌気性消化方法を実施
する装置であって、発酵槽の内部に膜分離装置を設置し
たものを示した説明図である。
FIG. 2 is an explanatory view showing an apparatus for performing the anaerobic digestion method of organic waste of the present invention, in which a membrane separation device is installed inside a fermenter.

【図3】消化汚泥の含水率を制御する根拠としての、発
酵槽容積当たりのメタン生成速度に及ぼすTS濃度の影
響を示したグラフである。
FIG. 3 is a graph showing the effect of TS concentration on the methane production rate per fermenter volume as a basis for controlling the water content of digested sludge.

【図4】消化汚泥の含水率を制御する根拠としての、メ
タン生成速度およびCOD分解率に及ぼすTS濃度の影
響を示したグラフである。
FIG. 4 is a graph showing the effect of TS concentration on methane production rate and COD decomposition rate as a basis for controlling the water content of digested sludge.

【図5】消化汚泥の含水率を制御する根拠としての、有
機性廃棄物の80%分解に要する日数とTS濃度との関
係を示したグラフである。
FIG. 5 is a graph showing the relationship between the number of days required for 80% decomposition of organic waste and TS concentration as a basis for controlling the water content of digested sludge.

【符号の説明】[Explanation of symbols]

1 厨芥(有機性廃棄物) 2 発酵槽 3 バイオガス(メタンガス) 4,4’消化汚泥 6 膜分離装置 7 濾液 8 希釈水 Reference Signs List 1 kitchen waste (organic waste) 2 fermenter 3 biogas (methane gas) 4,4 'digested sludge 6 membrane separation device 7 filtrate 8 dilution water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩部 秀樹 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 Fターム(参考) 4D059 AA02 AA03 AA07 AA08 BA12 BA25 BA56 BE38 BE42 BF15 CA21 CA22 CA23 CA30 CC03 EA20 EB01 EB20  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hideki Iwabe 2-47, Shizitsuhigashi, Namiwa-ku, Osaka-shi, Osaka F-term in Kubota Corporation (Reference) 4D059 AA02 AA03 AA07 AA08 BA12 BA25 BA56 BE38 BE42 BF15 CA21 CA22 CA23 CA30 CC03 EA20 EB01 EB20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発酵槽の内部に有機性廃棄物を投入して
嫌気性条件下で消化し、メタンガスを回収するに際し、
槽内の消化汚泥の含水率を、槽内における発酵阻害物質
が上限濃度を越えない値に制御することを特徴とする有
機性廃棄物の嫌気性消化方法。
Claims 1. An organic waste is charged into a fermenter and digested under anaerobic conditions to recover methane gas.
An anaerobic digestion method for organic waste, comprising controlling the water content of digested sludge in a tank to a value that does not exceed an upper limit concentration of a fermentation inhibitor in the tank.
【請求項2】 槽内における発酵阻害物質の濃度を、槽
内に投入する有機性廃棄物の組成から経験則として求め
るか、あるいは槽内の消化汚泥を実測して求めることを
特徴とする請求項1記載の有機性廃棄物の嫌気性消化方
法。
2. The method according to claim 1, wherein the concentration of the fermentation-inhibiting substance in the tank is determined as an empirical rule from the composition of the organic waste put into the tank, or is determined by actually measuring digested sludge in the tank. Item 4. The method for anaerobic digestion of organic waste according to Item 1.
【請求項3】 消化汚泥の含水率の増大は、有機性廃棄
物を濃縮してあるいは無希釈で投入することと、消化汚
泥の一部を固液分離手段により固液分離し、濾液を系外
へ引き抜くこととの少なくとも一方によって行うことを
特徴とする請求項1または請求項2のいずれか1項記載
の有機性廃棄物の嫌気性消化方法。
3. Increasing the water content of the digested sludge can be achieved by concentrating the organic waste or adding it without dilution, by solid-liquid separation of a part of the digested sludge by solid-liquid separation means, The method for anaerobic digestion of organic waste according to any one of claims 1 and 2, wherein the method is performed by at least one of withdrawing the organic waste to the outside.
【請求項4】 消化汚泥の含水率の低下は、消化汚泥の
一部を固液分離手段により固液分離し、濾液を系外へ引
き抜くとともに、当該発酵阻害物質を不含の希釈水を補
給することによって行うことを特徴とする請求項1また
は請求項2のいずれか1項記載の有機性廃棄物の嫌気性
消化方法。
4. The decrease in the water content of the digested sludge is caused by solid-liquid separation of a part of the digested sludge by a solid-liquid separating means, withdrawing the filtrate out of the system, and supplying diluting water free of the fermentation inhibitor. The method for anaerobic digestion of organic waste according to any one of claims 1 and 2, wherein the method is performed.
【請求項5】 槽内における発酵阻害物質の濃度を、タ
ンパク質あるいは脂質の有機性廃棄物中含有量に基いて
求めることを特徴とする請求項2記載の有機性廃棄物の
嫌気性消化方法。
5. The method for anaerobic digestion of organic waste according to claim 2, wherein the concentration of the fermentation inhibitor in the tank is determined based on the content of protein or lipid in the organic waste.
JP24422298A 1998-08-31 1998-08-31 Anaerobic digestion of organic waste Expired - Lifetime JP3556101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24422298A JP3556101B2 (en) 1998-08-31 1998-08-31 Anaerobic digestion of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24422298A JP3556101B2 (en) 1998-08-31 1998-08-31 Anaerobic digestion of organic waste

Publications (2)

Publication Number Publication Date
JP2000070908A true JP2000070908A (en) 2000-03-07
JP3556101B2 JP3556101B2 (en) 2004-08-18

Family

ID=17115572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24422298A Expired - Lifetime JP3556101B2 (en) 1998-08-31 1998-08-31 Anaerobic digestion of organic waste

Country Status (1)

Country Link
JP (1) JP3556101B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
KR100390524B1 (en) * 2000-10-20 2003-07-07 주식회사 세정하이테크 Apparatus for treating wastewater by using submerged membrain saparation anaerobic digester
JP2007098228A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Method and apparatus for treatment of organic waste
JP2007190489A (en) * 2006-01-19 2007-08-02 Kobelco Eco-Solutions Co Ltd Waste treatment method and waste treatment system
JP2007268471A (en) * 2006-03-31 2007-10-18 Ebara Corp Method for evaluating and controlling activity and methanation ability of anaerobic microbe in methane fermentation system
JP2010234203A (en) * 2009-03-30 2010-10-21 Meiji Milk Prod Co Ltd Methane fermentation method and methane fermentation apparatus
US10781119B2 (en) 2013-02-22 2020-09-22 Bl Technologies, Inc. Membrane assembly for supporting a biofilm
WO2023223549A1 (en) * 2022-05-20 2023-11-23 株式会社クボタ Organic waste treatment method
US11850554B2 (en) 2014-03-20 2023-12-26 Bl Technologies, Inc. Wastewater treatment with primary treatment and MBR or MABR-IFAS reactor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390524B1 (en) * 2000-10-20 2003-07-07 주식회사 세정하이테크 Apparatus for treating wastewater by using submerged membrain saparation anaerobic digester
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
JP2007098228A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Method and apparatus for treatment of organic waste
JP2007190489A (en) * 2006-01-19 2007-08-02 Kobelco Eco-Solutions Co Ltd Waste treatment method and waste treatment system
JP2007268471A (en) * 2006-03-31 2007-10-18 Ebara Corp Method for evaluating and controlling activity and methanation ability of anaerobic microbe in methane fermentation system
JP2010234203A (en) * 2009-03-30 2010-10-21 Meiji Milk Prod Co Ltd Methane fermentation method and methane fermentation apparatus
US10781119B2 (en) 2013-02-22 2020-09-22 Bl Technologies, Inc. Membrane assembly for supporting a biofilm
US11724947B2 (en) 2013-02-22 2023-08-15 Bl Technologies, Inc. Membrane assembly for supporting a biofilm
US11850554B2 (en) 2014-03-20 2023-12-26 Bl Technologies, Inc. Wastewater treatment with primary treatment and MBR or MABR-IFAS reactor
WO2023223549A1 (en) * 2022-05-20 2023-11-23 株式会社クボタ Organic waste treatment method

Also Published As

Publication number Publication date
JP3556101B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US6113789A (en) Pasteurization process
JP4875864B2 (en) Biomass processing system
JP3556101B2 (en) Anaerobic digestion of organic waste
JP2003275789A (en) Method for anaerobic digestion of organic waste liquid and anaerobic digestion device
JP2004358391A (en) Treatment method and treatment apparatus of organic waste
JP4907123B2 (en) Organic waste processing method and processing system
JP2000153259A (en) Methane fermentation method of easily degradable organic waste
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JPH05138192A (en) Anaerobic treatment of high-concentration organic waste water containing organic suspended solid and equipment thereof
JPH0739895A (en) Treating method and device for waste liquid containing organic solid content
JP2017148777A (en) Method and device for methane fermentation
JPH11221548A (en) Treatment of organic waste
JP2003225697A (en) Anaerobic fermentation system of organic waste
JP2001179288A (en) Method and apparatus for anaerobically treating starch- containing liquid
JP2009011993A (en) Method for starting up anaerobic digestion system
WO2007083456A1 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JP2003164840A (en) Method and apparatus for treating organic matter
JPS5845796A (en) Anaerobic digestion of highly-concentrated organic waste water
JP2004174288A (en) Methane fermentation treatment apparatus and methane fermentation processing method for garbage
JP2006281087A (en) Processing method of organic waste
JPH05253594A (en) Anaerobic treatment of waste water
JP5235643B2 (en) Method and apparatus for treating organic waste by combined methane fermentation
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JPH0490897A (en) Anaerobic treatment of high concentration organic waste water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

EXPY Cancellation because of completion of term