JP2003275789A - Method for anaerobic digestion of organic waste liquid and anaerobic digestion device - Google Patents

Method for anaerobic digestion of organic waste liquid and anaerobic digestion device

Info

Publication number
JP2003275789A
JP2003275789A JP2002081159A JP2002081159A JP2003275789A JP 2003275789 A JP2003275789 A JP 2003275789A JP 2002081159 A JP2002081159 A JP 2002081159A JP 2002081159 A JP2002081159 A JP 2002081159A JP 2003275789 A JP2003275789 A JP 2003275789A
Authority
JP
Japan
Prior art keywords
sludge
anaerobic digestion
anaerobic
liquid
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002081159A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002081159A priority Critical patent/JP2003275789A/en
Publication of JP2003275789A publication Critical patent/JP2003275789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce the volume of anaerobic digestion sludge generating when an organic waste liquid is treated by methane fermentation in the presence of sludge containing anaerobic microorganisms. <P>SOLUTION: After the digestion sludge from an anaerobic digestion tank 1 is drawn and heated to ≥60°C in a sludge solubilizing tank 3 to preferentially solubilize the organic component, the sludge is subjected to solid liquid separation to obtain separated sludge with an increased proportion of the inorganic component, which is then discharged as an excess sludge to the outside of the system. The separated liquid is returned to the anaerobic digestion tank 1. Or, the organic waste water to be introduced into the anaerobic digestion tank 1 is preliminarily heated to ≥60°C in a raw water solubilizing tank. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機性排液の嫌気性
消化方法及び嫌気性消化装置に係り、特に、有機性汚
泥、し尿等の有機性排液を、嫌気性微生物を含む汚泥の
存在下でメタン発酵により処理するに当たり、発生する
嫌気性消化汚泥を効果的に減容化することができる嫌気
性消化方法及び嫌気性消化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic digestion method and apparatus for anaerobic digestion of organic effluent, and more particularly to the presence of sludge containing anaerobic microorganisms in organic effluent such as organic sludge and human waste. The present invention relates to an anaerobic digestion method and an anaerobic digester capable of effectively reducing the volume of anaerobic digested sludge generated during methane fermentation treatment.

【0002】[0002]

【従来の技術】有機性汚泥、し尿、食品排水等のスラリ
ー状の高濃度有機性排液を嫌気性微生物の存在下にメタ
ン発酵することにより処理する嫌気性処理方法は、嫌気
性消化法とも呼ばれ、古くから行われている方法であ
る。
2. Description of the Related Art An anaerobic digestion method for treating high-concentration organic waste liquid in the form of slurry such as organic sludge, human waste, food wastewater by methane fermentation in the presence of anaerobic microorganisms is known as an anaerobic digestion method. It is called and has been used for a long time.

【0003】このような嫌気性消化処理においては、未
分解物質及び嫌気性微生物を主体とする汚泥(嫌気性消
化汚泥。以下単に「消化汚泥」と称す場合がある。)が
生成する。従来、この消化汚泥は、機械脱水した後、焼
却、埋立等により処理されている。
In such an anaerobic digestion process, sludge (anaerobic digested sludge; hereinafter sometimes simply referred to as "digested sludge") mainly composed of undegraded substances and anaerobic microorganisms is produced. Conventionally, this digested sludge is processed by incineration, landfilling, etc. after mechanical dewatering.

【0004】嫌気性消化処理により生成する汚泥を減容
化する装置として、特開平9−206785号公報に
は、消化汚泥をオゾン処理により改質した後、この改質
液を嫌気性消化槽に返送する嫌気性処理装置が記載され
ている。この装置は、消化汚泥をオゾン処理して易生物
分解性に改質した後、嫌気性消化槽に戻して嫌気性微生
物の基質として更に分解するものであり、汚泥の減容化
に有効な装置である。
As a device for reducing the volume of sludge produced by anaerobic digestion treatment, Japanese Unexamined Patent Publication No. 9-206785 discloses that the digested sludge is reformed by ozone treatment and then this reformed solution is converted into an anaerobic digestion tank. An anaerobic treatment device for returning is described. This equipment is an equipment that is effective for reducing the volume of sludge, after digesting sludge to be easily biodegradable and reforming it into an anaerobic digestion tank for further decomposition as a substrate for anaerobic microorganisms. Is.

【0005】この装置では、有機性排液から嫌気性消化
により生じる汚泥の減容化効果を高めるために、嫌気性
消化槽での汚泥の滞留時間を保って嫌気性消化処理の効
率を低下させないようにしながら改質処理する汚泥量を
増加させる必要がある。そのためには、消化汚泥の一部
を固液分離し、分離液を処理水として排出すると共に分
離された高濃度汚泥(濃縮汚泥)を嫌気性消化槽に返送
するように構成し、固形物の系外流出を抑え、嫌気性消
化槽での汚泥保持量及び汚泥濃度を高く保つ必要があ
る。
In this device, in order to enhance the effect of reducing the volume of sludge produced by anaerobic digestion from organic waste liquid, the retention time of sludge in the anaerobic digestion tank is maintained and the efficiency of anaerobic digestion treatment is not reduced. Therefore, it is necessary to increase the amount of sludge to be modified. To this end, a part of the digested sludge is subjected to solid-liquid separation, the separated liquid is discharged as treated water, and the separated high-concentration sludge (concentrated sludge) is sent back to the anaerobic digestion tank. It is necessary to suppress outflow from the system and maintain a high sludge retention amount and sludge concentration in the anaerobic digestion tank.

【0006】[0006]

【発明が解決しようとする課題】しかし、この装置で汚
泥中の有機成分は著しく減容化されるのに対して、無機
成分は減量されないため、固液分離した濃縮汚泥を嫌気
性消化槽に返送することによって無機成分が嫌気性消化
槽内に蓄積する。無機成分の蓄積により嫌気性消化槽の
汚泥濃度が高くなると、槽内液の粘性が急激に増加する
ため、嫌気性消化槽内が充分に撹拌混合されなくなり、
嫌気性消化の効率が低下してしまう。そのため、嫌気性
消化槽の汚泥濃度をある範囲(一般的には5〜6%)で
維持するように消化汚泥を余剰汚泥として適宜引き抜く
必要がある。そして、この無機成分の蓄積を防ぐための
汚泥の引き抜きで、本来なら減量されるはずの有機成分
が引抜汚泥中に含まれて系外へ排出され、このために、
有機成分の減量が制限されるという問題があった。
However, while the organic components in sludge are significantly reduced in volume with this device, the inorganic components are not reduced, so that the solid-liquid separated concentrated sludge is stored in the anaerobic digestion tank. By returning, the inorganic components accumulate in the anaerobic digester. When the sludge concentration in the anaerobic digestion tank increases due to the accumulation of inorganic components, the viscosity of the liquid in the tank rapidly increases, so the inside of the anaerobic digestion tank cannot be sufficiently stirred and mixed,
The efficiency of anaerobic digestion decreases. Therefore, it is necessary to appropriately extract the digested sludge as excess sludge so as to maintain the sludge concentration in the anaerobic digestion tank within a certain range (generally 5 to 6%). Then, with the removal of the sludge to prevent the accumulation of this inorganic component, the organic component that would otherwise be reduced is contained in the extracted sludge and discharged to the outside of the system.
There is a problem that the weight loss of the organic component is limited.

【0007】本発明は、上記従来の問題点を解決し、嫌
気性消化処理系内に蓄積する汚泥中の無機成分を優先的
に引き抜くことによって、汚泥中の有機成分を大幅に減
量化することができる有機性排液の嫌気性消化方法及び
嫌気性消化装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and preferentially withdraws the inorganic components in the sludge accumulated in the anaerobic digestion treatment system, thereby significantly reducing the organic components in the sludge. It is an object of the present invention to provide an anaerobic digestion method and an anaerobic digester for an organic drainage capable of performing the above.

【0008】本発明は、また、有機性排液の嫌気性消化
処理により生じる汚泥を減少させて、嫌気性消化槽の汚
泥濃度を過度に高めることなく、嫌気性消化汚泥をオゾ
ン処理等の改質処理を行った後循環させることによっ
て、汚泥を大幅に減容化することができる有機性排液の
嫌気性消化方法及び嫌気性消化装置を提供することを目
的とする。
The present invention also reduces the sludge generated by the anaerobic digestion treatment of organic effluents and improves the anaerobic digestion sludge by ozone treatment or the like without excessively increasing the sludge concentration in the anaerobic digestion tank. It is an object of the present invention to provide an anaerobic digestion method and an anaerobic digester for an organic effluent capable of significantly reducing the volume of sludge by performing a quality treatment and then circulating the sludge.

【0009】[0009]

【課題を解決するための手段】請求項1の有機性排液の
嫌気性消化方法は、有機性排液を、嫌気性微生物を含む
汚泥の存在下にメタン発酵させる嫌気性消化工程と、該
嫌気性消化工程の流出液を汚泥と処理液とに固液分離す
る固液分離工程と、該固液分離工程の分離汚泥を前記嫌
気性消化工程に返送する汚泥返送工程とを含む有機性排
液の嫌気性消化方法において、該嫌気性消化工程におい
て生成する汚泥を引き抜いて60℃以上の温度で加熱処
理する汚泥熱処理工程と、該汚泥熱処理工程の加熱処理
汚泥を固液分離して分離汚泥を系外に排出する汚泥排出
工程と、該汚泥排出工程で分離された分離液を前記嫌気
性消化工程に返送する分離液返送工程を有することを特
徴とする。
The method for anaerobic digestion of organic waste liquid according to claim 1 comprises an anaerobic digestion step of subjecting the organic waste liquid to methane fermentation in the presence of sludge containing anaerobic microorganisms, Organic waste including a solid-liquid separation step of solid-liquid separating the effluent of the anaerobic digestion step into a sludge and a treatment liquid, and a sludge returning step of returning the separated sludge of the solid-liquid separation step to the anaerobic digestion step In the method for anaerobic digestion of liquid, a sludge heat treatment step in which sludge produced in the anaerobic digestion step is extracted and heat-treated at a temperature of 60 ° C. or higher, and a heat-treated sludge in the sludge heat treatment step is subjected to solid-liquid separation to separate sludge And a separated liquid returning step of returning the separated liquid separated in the sludge discharging step to the anaerobic digestion step.

【0010】請求項2の有機性排液の嫌気性消化装置
は、有機性排液を、嫌気性微生物を含む汚泥の存在下に
メタン発酵させる嫌気性消化手段と、該嫌気性消化手段
の流出液を汚泥と処理液とに固液分離する固液分離手段
と、該固液分離手段の分離汚泥を前記嫌気性消化手段に
返送する汚泥返送手段とを含む有機性排液の嫌気性消化
装置において、該嫌気性消化手段及び/又は前記固液分
離手段から汚泥を引き抜いて60℃以上の温度で加熱処
理する汚泥熱処理手段と、該汚泥熱処理手段の加熱処理
汚泥を固液分離して分離汚泥を系外に排出する汚泥排出
手段と、該汚泥排出手段で分離された分離液を前記嫌気
性消化手段に返送する分離液返送手段を有することを特
徴とする。
The anaerobic digester for organic waste liquid according to claim 2 comprises an anaerobic digester for methane fermenting the organic waste liquid in the presence of sludge containing anaerobic microorganisms, and an outflow of the anaerobic digester. Anaerobic digester for organic waste liquid, including solid-liquid separation means for separating liquid into sludge and treated liquid, and sludge returning means for returning the separated sludge of the solid-liquid separation means to the anaerobic digestion means. In, sludge heat treatment means for extracting sludge from the anaerobic digestion means and / or the solid-liquid separation means and heat-treating it at a temperature of 60 ° C. or higher, and solid-liquid separation of the heat-treated sludge of the sludge heat-treatment means to separate sludge Sludge discharging means for discharging the sludge to the outside of the system, and separated liquid returning means for returning the separated liquid separated by the sludge discharging means to the anaerobic digesting means.

【0011】消化汚泥を加熱処理することにより汚泥中
の有機成分を優先的に可溶化し、この加熱処理汚泥を固
液分離した分離汚泥を系外に引き抜くことによって無機
成分を優先的に引き抜き、これにより系内の無機成分の
蓄積を防止した上で、汚泥を大幅に減量化することがで
きると共に、消化ガス発生量を増加させることができ
る。
By heating the digested sludge, the organic components in the sludge are preferentially solubilized, and the separated sludge obtained by solid-liquid separation of the heat-treated sludge is drawn out of the system to preferentially extract the inorganic components, As a result, the amount of sludge can be significantly reduced and the amount of digestive gas generated can be increased while preventing the accumulation of inorganic components in the system.

【0012】請求項3の有機性排液の嫌気性消化方法
は、有機性排液を、嫌気性微生物を含む汚泥の存在下に
メタン発酵させる嫌気性消化工程と、該嫌気性消化工程
の流出液を汚泥と処理液とに固液分離する固液分離工程
と、該固液分離工程の分離汚泥を前記嫌気性消化工程に
返送する汚泥返送工程とを含む有機性排液の嫌気性消化
方法において、該嫌気性消化工程に送給する有機性排液
の少なくとも一部を、予め60℃以上の温度で加熱処理
する原水熱処理工程を有することを特徴とする。
An anaerobic digestion method of organic waste liquid according to claim 3 is an anaerobic digestion step of methane fermenting the organic waste fluid in the presence of sludge containing anaerobic microorganisms, and the outflow of the anaerobic digestion step. Anaerobic digestion method for organic waste liquid, comprising a solid-liquid separation step of separating a liquid into a sludge and a treatment liquid, and a sludge returning step of returning the separated sludge of the solid-liquid separation step to the anaerobic digestion step. In the above, there is a raw water heat treatment step in which at least a part of the organic waste liquid sent to the anaerobic digestion step is heat-treated in advance at a temperature of 60 ° C. or higher.

【0013】請求項5の有機性排液の嫌気性消化装置
は、有機性排液を、嫌気性微生物を含む汚泥の存在下に
メタン発酵させる嫌気性消化手段と、該嫌気性消化手段
において生成する汚泥を引き抜いて易生物分解性に改質
する改質手段と、該改質手段で改質された改質汚泥を前
記嫌気性消化手段に返送する改質汚泥返送手段とを含む
有機性排液の嫌気性消化装置において、該嫌気性消化手
段に送給する有機性排液の少なくとも一部を、予め60
℃以上の温度で加熱処理する原水熱処理手段を有するこ
とを特徴とする。
An anaerobic digester for organic waste liquid according to a fifth aspect of the present invention comprises an anaerobic digester for methane fermenting the organic waste liquid in the presence of sludge containing anaerobic microorganisms, and the anaerobic digester. Of organic sludge including reforming means for extracting the sludge to be reformed to be easily biodegradable, and reformed sludge returning means for returning the reformed sludge modified by the reforming means to the anaerobic digestion means. In the liquid anaerobic digester, at least a part of the organic waste liquid to be fed to the anaerobic digester is preliminarily 60
It is characterized by having a raw water heat treatment means for performing heat treatment at a temperature of ℃ or more.

【0014】嫌気性消化処理に供する有機性排液を予め
加熱処理して可溶化することにより、嫌気性消化処理効
率が向上し、嫌気性消化処理で発生する汚泥量を減少さ
せることができ、これにより嫌気性消化槽の汚泥濃度を
過度に高めることなく、嫌気性消化汚泥をオゾン処理等
の改質処理を行った後循環させることによって、汚泥を
大幅に減容化することができると共に、消化ガス発生量
を増加させることができる。
By preliminarily heating and solubilizing the organic waste liquid to be subjected to the anaerobic digestion treatment, the efficiency of the anaerobic digestion treatment is improved, and the amount of sludge generated in the anaerobic digestion treatment can be reduced. With this, without excessively increasing the sludge concentration in the anaerobic digestion tank, by circulating the anaerobic digestion sludge after performing a reforming treatment such as ozone treatment, it is possible to significantly reduce the volume of the sludge, The amount of digestive gas generated can be increased.

【0015】[0015]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】まず、図1を参照して請求項1,2の有機
性排液の嫌気性消化方法及び嫌気性消化装置の実施の形
態を説明する。
First, referring to FIG. 1, an embodiment of the anaerobic digestion method and apparatus for anaerobic digestion of organic effluent according to claims 1 and 2 will be described.

【0017】図1は請求項1,2の有機性排液の嫌気性
消化方法及び嫌気性消化装置の実施の形態を示す系統図
である。
FIG. 1 is a system diagram showing an embodiment of an anaerobic digestion method and an anaerobic digestion apparatus for organic drainage according to claims 1 and 2.

【0018】この嫌気性消化装置は、嫌気性消化槽1
と、処理水取出手段としての遠心分離装置2と、汚泥熱
処理手段としての汚泥可溶化槽3と、汚泥排出手段とし
ての沈殿槽4とを備えている。1Aは撹拌機である。
This anaerobic digester comprises an anaerobic digester 1
And a centrifuge 2 as a treated water extraction means, a sludge solubilization tank 3 as a sludge heat treatment means, and a sedimentation tank 4 as a sludge discharge means. 1A is a stirrer.

【0019】この嫌気性消化装置では、嫌気性消化槽1
に原水路11から有機性排液を導入する。そして、返送
汚泥路12を通して遠心分離装置2から返送される返送
汚泥、分離液返送路14を通して返送される沈殿槽4の
分離液及び嫌気性消化槽1内の嫌気性微生物を含む汚泥
と該原水とを撹拌機1Aにより緩やかに攪拌混合しなが
ら嫌気性消化処理を行う。ここで行われる嫌気性消化処
理により、原水中の有機物の多くは酸生成菌及びメタン
生成菌により分解される。生成するメタンガスを含む消
化ガスは排ガス路15から排出される。
In this anaerobic digester, the anaerobic digester 1
The organic drainage liquid is introduced from the raw water channel 11. Then, the returned sludge returned from the centrifugal separator 2 through the returned sludge passage 12, the separated liquid in the settling tank 4 returned through the separated liquid returning passage 14, and the sludge containing the anaerobic microorganisms in the anaerobic digestion tank 1 and the raw water. The anaerobic digestion treatment is performed while gently stirring and mixing and with the stirrer 1A. Due to the anaerobic digestion process performed here, most of the organic substances in the raw water are decomposed by acid-producing bacteria and methanogenic bacteria. The digestion gas containing the produced methane gas is discharged from the exhaust gas passage 15.

【0020】嫌気性消化槽1の流出液(消化汚泥)は移
送路16から遠心分離装置2に導入される。遠心分離装
置2では、移送路16から導入された消化汚泥が固形分
(濃縮汚泥)と分離液とに固液分離され、分離液は処理
水として処理水路17から系外に排出される。固形分
(濃縮汚泥)は返送汚泥路12より嫌気性消化槽1に返
送される。固形分の一部は、移送路19より汚泥可溶化
槽3に送給してもよい。
The effluent (digested sludge) of the anaerobic digestion tank 1 is introduced into the centrifugal separator 2 from the transfer passage 16. In the centrifugal separator 2, the digested sludge introduced from the transfer passage 16 is subjected to solid-liquid separation into a solid content (concentrated sludge) and a separated liquid, and the separated liquid is discharged as treated water from the treated water passage 17 to the outside of the system. The solid content (concentrated sludge) is returned to the anaerobic digestion tank 1 through the return sludge passage 12. A part of the solid content may be sent to the sludge solubilization tank 3 from the transfer path 19.

【0021】嫌気性消化槽1からは引抜汚泥路18より
消化汚泥が引き抜かれ、汚泥可溶化槽3に送給される。
From the anaerobic digestion tank 1, digested sludge is extracted from the extraction sludge passage 18 and sent to the sludge solubilization tank 3.

【0022】汚泥可溶化槽3は、嫌気性消化槽1から引
き抜いた消化汚泥を60℃以上の温度で加熱することに
より可溶化させる槽であり、加熱処理によって、消化汚
泥中の有機成分が優先的に可溶化される。汚泥可溶化槽
3の加熱処理汚泥は、移送路21より沈殿槽4に送給さ
れて固液分離され、分離汚泥が余剰汚泥として排出汚泥
路22より系外へ排出され、分離液は分離液返送路14
より嫌気性消化槽1へ返送される。この分離液中には、
汚泥可溶化槽3で可溶化された有機成分が含まれている
ことから、これを嫌気性消化槽1で消化処理する。
The sludge solubilization tank 3 is a tank for solubilizing the digested sludge drawn from the anaerobic digestion tank 1 by heating it at a temperature of 60 ° C. or higher, and the organic components in the digested sludge are prioritized by the heat treatment. Is solubilized. The heat-treated sludge in the sludge solubilization tank 3 is sent from the transfer path 21 to the settling tank 4 for solid-liquid separation, the separated sludge is discharged as excess sludge from the discharge sludge path 22 to the outside of the system, and the separated liquid is separated liquid. Return route 14
It is returned to the anaerobic digestion tank 1. In this separated liquid,
Since the organic component solubilized in the sludge solubilization tank 3 is contained, it is digested in the anaerobic digestion tank 1.

【0023】汚泥熱処理工程即ち、汚泥可溶化槽3は、
嫌気性消化槽1から引き抜いた消化汚泥を60℃以上の
温度で加熱処理することにより可溶化させる工程であ
る。加熱処理によって消化汚泥中の有機成分が無機成分
に対し優先的に可溶化する。加熱処理温度は60℃以
上、好ましくは120〜180℃である。この加熱処理
時に、処理温度の飽和蒸気圧以上に加圧してから処理温
度に昇温して化学反応を起こさせることによって、可溶
化効率を向上させることができる。加熱処理時間は処理
温度にもよるが、例えば処理温度150℃の場合、0.
5〜1.0時間である。
The sludge heat treatment step, that is, the sludge solubilization tank 3,
This is a step of solubilizing the digested sludge drawn from the anaerobic digestion tank 1 by heating it at a temperature of 60 ° C. or higher. By the heat treatment, the organic components in the digested sludge are preferentially solubilized with respect to the inorganic components. The heat treatment temperature is 60 ° C or higher, preferably 120 to 180 ° C. At the time of this heat treatment, the solubilization efficiency can be improved by applying a pressure equal to or higher than the saturated vapor pressure of the treatment temperature and then raising the temperature to the treatment temperature to cause a chemical reaction. The heat treatment time depends on the treatment temperature, but is 0.
5 to 1.0 hours.

【0024】嫌気性消化槽1から引き抜いて加熱処理す
る消化汚泥の量は、嫌気性消化槽1へ導入される固形無
機成分量の1〜5倍、好ましくは1.5〜3倍に相当す
る量とするのが好ましい。また、一日当たりに加熱処理
する消化汚泥の量は嫌気性消化槽1の全保有汚泥量の1
/15以下特に1/20〜1/40に相当する量とする
のが好ましい。一日当たりの加熱処理量を前記の量にす
ることにより、嫌気性消化処理に必要な微生物量を嫌気
性消化槽1内に保持することができ、嫌気性消化処理の
効率を高く保つことができる。
The amount of digested sludge extracted from the anaerobic digestion tank 1 and heat-treated corresponds to 1 to 5 times, preferably 1.5 to 3 times, the amount of the solid inorganic components introduced into the anaerobic digestion tank 1. The amount is preferable. Also, the amount of digested sludge that is heat-treated per day is 1 of the total amount of sludge retained in the anaerobic digestion tank 1.
It is preferably not more than / 15 and particularly preferably an amount corresponding to 1/20 to 1/40. By setting the heat treatment amount per day to the above amount, the amount of microorganisms necessary for the anaerobic digestion treatment can be retained in the anaerobic digestion tank 1, and the efficiency of the anaerobic digestion treatment can be kept high. .

【0025】加熱処理汚泥の固液分離工程は、加熱処理
汚泥を固液分離し、分離液を嫌気性消化工程に返送する
と共に、分離汚泥を系外に排出する工程である。この工
程では、嫌気性消化槽1へ導入される無機成分と同量の
無機成分を含有する量の分離汚泥を余剰汚泥として系外
に排出することによって、嫌気性消化槽1における無機
成分の蓄積を防ぐことができる。加熱処理によって消化
汚泥中の有機成分が優先的に可溶化されているため、分
離汚泥はもとの消化汚泥に比べ無機成分の比率が高くな
っている。この無機成分の比率の高い分離汚泥を系外に
排出し、可溶化した有機成分を含む分離液を嫌気性消化
工程に返送することによって、有機成分の引き抜き量を
減少させ、系内で滞留させることにより、有機成分の減
量化効果を高めることができる。加熱処理汚泥の固液分
離には、図1に示す沈殿槽の他、遠心分離装置、浮上分
離装置、膜分離装置などの固液分離装置を用いることが
できる。分離汚泥は余剰汚泥としてそのまま脱水し、焼
却、埋め立て等を行っても良いし、好気性又は嫌気性生
物処理を行った後、脱水、焼却、埋め立て等を行っても
良い。この加熱処理汚泥は消化汚泥に比べ脱水性が改善
されており、脱水したときの嵩を著しく減らすことがで
きる。また、嫌気性消化工程に返送される分離液には加
熱処理により生成した易分解性成分が多く含まれてお
り、これらは嫌気性消化工程で速やかに分解され、処理
系から生じる余剰汚泥を更に減量化することができる。
The solid-liquid separation step of the heat-treated sludge is a step of solid-liquid separating the heat-treated sludge, returning the separated liquid to the anaerobic digestion step, and discharging the separated sludge out of the system. In this step, the amount of separated sludge containing the same amount of inorganic components as the inorganic components introduced into the anaerobic digester 1 is discharged out of the system as excess sludge, thereby accumulating the inorganic components in the anaerobic digester 1. Can be prevented. Since the organic components in the digested sludge are preferentially solubilized by the heat treatment, the separated sludge has a higher ratio of inorganic components than the original digested sludge. This separated sludge with a high ratio of inorganic components is discharged to the outside of the system, and the separated liquid containing the solubilized organic components is returned to the anaerobic digestion process, so that the amount of organic components withdrawn is reduced and retained in the system. As a result, the effect of reducing the amount of organic components can be enhanced. For solid-liquid separation of the heat-treated sludge, a solid-liquid separator such as a centrifugal separator, a flotation separator, or a membrane separator can be used in addition to the settling tank shown in FIG. The separated sludge may be dehydrated as surplus sludge as it is and subjected to incineration, land reclamation or the like, or may be subjected to aerobic or anaerobic biological treatment and then dehydrated, incinerated, land reclamation or the like. This heat-treated sludge has improved dewatering properties as compared with digested sludge, and the bulk when dehydrated can be significantly reduced. Further, the separated liquid returned to the anaerobic digestion step contains a large amount of easily decomposable components produced by the heat treatment, and these are rapidly decomposed in the anaerobic digestion step to further remove excess sludge generated from the treatment system. It can be reduced.

【0026】次に図2を参照して請求項3〜6の有機性
排液の嫌気性消化方法及び嫌気性消化装置の実施の形態
を説明する。
Next, with reference to FIG. 2, an embodiment of the anaerobic digestion method and apparatus for anaerobic digestion of organic waste liquid according to claims 3 to 6 will be described.

【0027】図2は請求項3〜6の有機性排液の嫌気性
消化方法及び嫌気性消化装置の実施の形態を示す系統図
である。図2において、図1に示す部材と同一機能を奏
する部材には同一符号を付してある。
FIG. 2 is a system diagram showing an embodiment of an anaerobic digestion method and an anaerobic digester for organic waste liquid according to claims 3 to 6. 2, members having the same functions as those shown in FIG. 1 are designated by the same reference numerals.

【0028】この嫌気性消化装置は、有機性排液の原水
熱処理手段としての原水可溶化槽1と、嫌気性消化槽1
と、処理水取出手段としての遠心分離装置2と、改質手
段としてのオゾン処理槽5と、該オゾン処理槽5にオゾ
ンを供給するオゾン発生器6等を備えている。1A,5
Aは撹拌機である。
This anaerobic digester comprises a raw water solubilization tank 1 as a raw water heat treatment means for organic waste liquid, and an anaerobic digestion tank 1.
A centrifugal separator 2 as a treated water extracting means, an ozone treatment tank 5 as a reforming means, an ozone generator 6 for supplying ozone to the ozone treatment tank 5, and the like. 1A, 5
A is a stirrer.

【0029】この嫌気性消化装置では、原水可溶化槽7
に原水路10から有機性排液を導入して60℃以上の温
度に加熱処理した後移送路11から嫌気性消化槽1に導
入する。嫌気性消化槽1では、返送汚泥路12を通して
遠心分離装置2から返送される返送汚泥、オゾン処理槽
5から改質汚泥返送路13を通して返送される改質汚泥
及び嫌気性消化槽1内の嫌気性微生物を含む汚泥と該原
水とを撹拌機1Aにより緩やかに攪拌混合しながら嫌気
性消化処理を行う。ここで行われる嫌気性消化処理によ
り、原水中の有機物の多くは酸生成菌及びメタン生成菌
により分解される。生成するメタンガスを含む消化ガス
は排ガス路15から排出される。
In this anaerobic digester, the raw water solubilization tank 7
Into the anaerobic digestion tank 1 is introduced from the raw water channel 10 to the anaerobic digester tank 1 after being heated to a temperature of 60 ° C. or higher. In the anaerobic digestion tank 1, the return sludge returned from the centrifugal separator 2 through the return sludge passage 12, the reformed sludge returned from the ozone treatment tank 5 through the reformed sludge return passage 13, and the anaerobic gas in the anaerobic digestion tank 1. An anaerobic digestion treatment is performed while gently stirring and mixing the sludge containing the sex microorganisms and the raw water with the stirrer 1A. Due to the anaerobic digestion process performed here, most of the organic substances in the raw water are decomposed by acid-producing bacteria and methanogenic bacteria. The digestion gas containing the produced methane gas is discharged from the exhaust gas passage 15.

【0030】嫌気性消化槽1の流出液(消化汚泥)は移
送路16から遠心分離装置2に導入される。遠心分離装
置2では、移送路16から導入された消化汚泥が固形分
(濃縮汚泥)と分離液とに固液分離され、分離液は処理
水として処理水路17から系外に排出される。固形分
(濃縮汚泥)は必要に応じて一部を余剰汚泥として余剰
汚泥取出路22から系外に排出し、残部を返送汚泥路1
2より嫌気性消化槽1に返送する。
The effluent (digested sludge) of the anaerobic digestion tank 1 is introduced into the centrifugal separator 2 from the transfer passage 16. In the centrifugal separator 2, the digested sludge introduced from the transfer passage 16 is subjected to solid-liquid separation into a solid content (concentrated sludge) and a separated liquid, and the separated liquid is discharged as treated water from the treated water passage 17 to the outside of the system. If necessary, a part of the solid content (concentrated sludge) is discharged as excess sludge from the excess sludge extraction passage 22 to the outside of the system, and the rest is returned to the sludge passage 1
Return from 2 to anaerobic digester 1.

【0031】嫌気性消化槽1からは引抜汚泥路18より
消化汚泥が引き抜かれ、オゾン処理槽5へ送給される。
From the anaerobic digestion tank 1, digested sludge is extracted from the extraction sludge passage 18 and sent to the ozone treatment tank 5.

【0032】オゾン処理槽5は、嫌気性消化槽1からの
消化汚泥に、オゾン注入管23よりオゾン発生器6のオ
ゾンを吹き込んで接触させてオゾン処理するように構成
されている。ここで行われるオゾン処理により、消化汚
泥中の有機物は易生物分解性に改質される。改質汚泥は
改質汚泥返送路13から嫌気性消化槽1に送られる。こ
の改質汚泥中にはオゾン処理槽5で改質された易生物分
解性の固形分が含まれているため、この固形分が嫌気性
消化槽1で消化され、処理系から生じる余剰汚泥量が減
容化される。
The ozone treatment tank 5 is constructed so that ozone of the ozone generator 6 is blown into contact with the digested sludge from the anaerobic digestion tank 1 through the ozone injection pipe 23 to bring it into contact with the digested sludge. By the ozone treatment performed here, the organic matter in the digested sludge is easily biodegradable. The modified sludge is sent from the modified sludge return path 13 to the anaerobic digestion tank 1. This modified sludge contains easily biodegradable solids that have been modified in the ozone treatment tank 5, so this solid content is digested in the anaerobic digestion tank 1 and the amount of excess sludge generated from the treatment system is increased. Is reduced in volume.

【0033】原水可溶化槽7等における有機性排液の加
熱処理工程は、有機性排液を嫌気性消化処理するに先立
って60℃以上の温度で加熱処理することにより可溶化
させる工程である。この加熱処理により、後段の嫌気性
消化の効率が向上して、嫌気性消化処理で生じる汚泥量
を減少させることができる。この加熱処理温度は60℃
以上、好ましくは120〜180℃である。加熱処理時
に、処理温度の飽和蒸気圧以上に加圧してから処理温度
に昇温し、化学反応を起こさせることによって、可溶化
効率を向上させることができる。加熱処理時間は処理温
度にもよるが、例えば処理温度150℃の場合、0.5
〜1.0時間である。
The heat treatment step of the organic waste liquid in the raw water solubilization tank 7 or the like is a step of solubilizing the organic waste liquid by heating it at a temperature of 60 ° C. or higher prior to the anaerobic digestion treatment. . By this heat treatment, the efficiency of anaerobic digestion in the latter stage is improved, and the amount of sludge generated in the anaerobic digestion treatment can be reduced. This heat treatment temperature is 60 ℃
As described above, the temperature is preferably 120 to 180 ° C. During the heat treatment, the solubilization efficiency can be improved by applying a pressure equal to or higher than the saturated vapor pressure of the treatment temperature and then raising the temperature to the treatment temperature to cause a chemical reaction. Although the heat treatment time depends on the treatment temperature, for example, when the treatment temperature is 150 ° C., 0.5
~ 1.0 hours.

【0034】このような加熱処理を行う有機性排液量
は、嫌気性消化槽1に導入する有機性排液の全量である
ことが好ましいが、有機性排液の一部のみを加熱処理し
残部はそのまま嫌気性消化槽1に導入しても良い。
The amount of the organic drainage liquid to be subjected to such heat treatment is preferably the total amount of the organic drainage liquid introduced into the anaerobic digestion tank 1, but only a part of the organic drainage liquid is subjected to the heat treatment. The rest may be directly introduced into the anaerobic digestion tank 1.

【0035】本発明において処理対象となる有機性排液
は、嫌気性処理によって処理される有機物を含有する排
液(汚泥を含む)であり、固形分を含むスラリー状のも
のでも、固形分を含まない液状のものでもよい。また、
難生物分解性の有機物、無機物、セルロース、紙、綿、
ウール、布、し尿中の固形物などが含有されていてもよ
い。このような有機性排液としては下水、下水初沈汚
泥、し尿、浄化槽汚泥、家畜糞尿、食品工場排水、ビー
ル廃酵母、その他の産業排液、これらの排液を処理した
際に生じる余剰汚泥等の汚泥が挙げられる。
The organic waste liquid to be treated in the present invention is a waste liquid (including sludge) containing an organic substance to be treated by an anaerobic treatment. It may be a liquid that does not contain it. Also,
Biodegradable organic substances, inorganic substances, cellulose, paper, cotton,
Wool, cloth, solid matter in human waste, etc. may be contained. Such organic effluents include sewage, sewage first settled sludge, human waste, septic tank sludge, livestock excrement, food factory wastewater, beer waste yeast, other industrial effluents, and excess sludge generated when these effluents are treated. The sludge etc. are mentioned.

【0036】本発明における嫌気性消化工程、即ち、嫌
気性消化槽1は、嫌気性微生物を含む汚泥の存在下に、
このような有機性排液をメタン発酵させる工程である。
嫌気性微生物を含む汚泥は酸生成菌とメタン生成菌を含
み、嫌気性消化槽1において、有機成分は嫌気性微生物
により液化→低分子化→有機酸生成→メタン生成のステ
ップによりメタンガスに転換される。
The anaerobic digestion step in the present invention, that is, the anaerobic digester 1 is operated in the presence of sludge containing anaerobic microorganisms.
This is a step of methane-fermenting such an organic waste liquid.
Sludge containing anaerobic microorganisms contains acid-producing bacteria and methanogenic bacteria, and in the anaerobic digestion tank 1, organic components are converted to methane gas by the steps of liquefaction → low molecular weight → organic acid generation → methanogenesis by anaerobic microorganisms. It

【0037】嫌気性消化工程におけるメタン発酵の条件
としては、35℃付近に最適温度がある中温メタン生成
菌、及び55℃付近に最適温度を有する高温メタン生成
菌が増殖するいずれの温度条件も採用可能である。中温
メタン生成菌は増殖が遅いため嫌気性消化槽1の滞留時
間(SRT)を長くする、即ち、嫌気性消化槽1の容量
を大きくする必要があるが、比較的低温での処理が可能
なため加温及び保温のための設備が簡単になる。これに
対し高温メタン生成菌の場合は加温及び保温の設備が必
要になるが、増殖が速いため滞留時間が短くてよく、嫌
気性消化槽1の容量を小さくすることができるという利
点がある。
As the conditions for methane fermentation in the anaerobic digestion step, any temperature condition in which a mesophilic methanogen having an optimum temperature near 35 ° C. and a high temperature methanogen having an optimum temperature near 55 ° C. grow are adopted. It is possible. Since the mesophilic methanogen grows slowly, it is necessary to lengthen the residence time (SRT) of the anaerobic digester 1, that is, to increase the capacity of the anaerobic digester 1, but it is possible to treat at a relatively low temperature. Therefore, the equipment for heating and keeping warm becomes simple. On the other hand, in the case of the high temperature methanogen, a heating and heat retaining facility is required, but since the growth is fast, the residence time may be short and there is an advantage that the capacity of the anaerobic digester 1 can be reduced. .

【0038】中温メタン生成菌を主体とする場合は嫌気
性消化槽で汚泥の滞留時間は10日以上、好ましくは1
5〜30日程度必要である。これに対して高温メタン生
成菌を主体とする場合は上記範囲よりも短い滞留時間
(例えば2日以上)とすることが可能である。
When the mesophilic methanogens are mainly used, the retention time of sludge in the anaerobic digester is 10 days or more, preferably 1
It takes about 5 to 30 days. On the other hand, when the high temperature methanogen is mainly used, the residence time (for example, 2 days or more) shorter than the above range can be set.

【0039】嫌気性消化工程の有機物負荷は0.5〜
2.0kg−TVS/m・日、嫌気性消化槽1内のT
S濃度は5,000〜100,000mg/L、好まし
くは20,000〜60,000mg/L、温度は30
〜38℃又は45〜60℃の条件とすることが好まし
い。
The organic matter load in the anaerobic digestion process is 0.5 to
2.0 kg-TVS / m 3 · day, T in anaerobic digester 1
S concentration is 5,000 to 100,000 mg / L, preferably 20,000 to 60,000 mg / L, and temperature is 30.
It is preferable to set the conditions to 38 ° C or 45 to 60 ° C.

【0040】嫌気性消化工程では、図1,2に示す如く
嫌気性消化汚泥の一部を固液分離し、分離液を処理水と
して排出するとともに濃縮汚泥を嫌気性消化工程に返送
するように構成するのが好ましく、このようにすること
により、固形物の系外流出を抑え、嫌気性消化工程での
汚泥保持量を高く保つことにより汚泥の減量効果を高め
ることができる。嫌気性消化汚泥の固液分離には、図
1,2に示す遠心分離装置の他、浮上分離装置、膜分離
装置、沈殿槽などの固液分離装置を用いることができ
る。固液分離した分離液は処理水としてそのまま下水等
へ放流することができるが、好気性生物処理その他の後
処理を行った後放流してもよい。
In the anaerobic digestion process, as shown in FIGS. 1 and 2, a part of the anaerobic digestion sludge is solid-liquid separated, the separated liquid is discharged as treated water, and the concentrated sludge is returned to the anaerobic digestion process. It is preferable to configure it, and by doing so, it is possible to suppress the outflow of the solid matter out of the system and to maintain a high sludge retention amount in the anaerobic digestion step, thereby enhancing the sludge weight reduction effect. For the solid-liquid separation of the anaerobic digestion sludge, a solid-liquid separation device such as a flotation separation device, a membrane separation device or a precipitation tank can be used in addition to the centrifugal separation device shown in FIGS. The separated liquid obtained by solid-liquid separation can be directly discharged as sewage to sewage or the like, but may be discharged after performing aerobic biological treatment and other post-treatments.

【0041】この消化汚泥の固液分離に当っては、凝集
剤を添加して消化汚泥を凝集させることによって、良好
な固液分離が行われ、清澄な分離水が得られると共に、
固形分の系外流出を抑えて、汚泥の減容化効果を高める
ことができる。
In the solid-liquid separation of this digested sludge, a coagulant is added to coagulate the digested sludge, whereby good solid-liquid separation is performed and clear separated water is obtained.
It is possible to suppress the outflow of solids from the system and enhance the volume reduction effect of sludge.

【0042】凝集剤としては、有機系、無機系のいずれ
のものを用いてもよいが、添加量が少なくてよいことか
ら有機高分子凝集剤、特に両性有機高分子凝集剤(両性
ポリマー)が好ましい。
As the aggregating agent, either an organic type or an inorganic type may be used, but an organic polymer aggregating agent, particularly an amphoteric organic polymer aggregating agent (amphoteric polymer), may be used because the addition amount may be small. preferable.

【0043】両性ポリマーであれば、カチオン部とアニ
オン部が共存しており、カチオン部が汚泥粘質物の荷電
中和を行い、アニオン部はカチオン部と反応して見掛け
の高分子鎖を大きくして汚泥粒子を結びつける働きを強
化するため、消化汚泥のように無機成分の多い汚泥に特
に有効に働き、良好な固液分離が行われる。
In the case of an amphoteric polymer, the cation part and the anion part coexist, the cation part performs charge neutralization of the sludge mucilage, and the anion part reacts with the cation part to enlarge the apparent polymer chain. Since it strengthens the action of binding sludge particles with each other, it works particularly effectively for sludge containing a large amount of inorganic components such as digested sludge, and good solid-liquid separation is performed.

【0044】使用する両性ポリマーは、カチオン性モノ
マーとアニオン性モノマーとの共重合により、或いは、
必要に応じて、更にノニオン性モノマーを共重合させる
ことにより製造することができる。
The amphoteric polymer used may be a copolymer of a cationic monomer and an anionic monomer, or
If necessary, it can be produced by further copolymerizing a nonionic monomer.

【0045】ここで、カチオン性モノマーとしては、例
えばジメチルアミノメチルアクリレート又はメタクリレ
ート、ジメチルアミノエチルアクリレート又はメタクリ
レート、ジメチルアミノプロピルアクリレート又はメタ
クリレート、ジメチルアミノ−2−ヒドロキシプロピル
アクリレート又はメタクリレート、ジエチルアミノメチ
ルアクリレート又はメタクリレート、ジエチルアミノエ
チルアクリレート又はメタクリレート、ジエチルアミノ
プロピルアクリレート又はメタクリレート、ジエチルア
ミノ−2−ヒドロキシアクリレート又はメタクリレー
ト、ジメチルアミノメチルアクリルアミド又はメタクリ
ルアミド、ジメチルアミノエチルアクリルアミド又はメ
タクリルアミド、ジメチルアミノプロピルアクリルアミ
ド又はメタクリルアミド、ジメチルアミノ−2−ヒドロ
キシプロピルアクリルアミド又はメタクリルアミド、ジ
エチルアミノメチルアクリルアミド又はメタクリルアミ
ド、ジエチルアミノエチルアクリルアミド又はメタクリ
ルアミド、ジエチルアミノプロピルアクリルアミド又は
メタクリルアミド、ジエチルアミノ−2−ヒドロキシプ
ロピルアクリルアミド又はメタクリルアミドなどの第三
級塩や四級化物などが挙げられる。第三級塩に用いられ
る酸としては、例えば塩酸、硫酸、硝酸、ギ酸、酢酸な
どが挙げられ、一方、四級化剤としては、例えば塩化メ
チル、ヨウ化メチル、塩化ベンジル、ジメチル硫酸、ジ
エチル硫酸、塩化エチル、ヨウ化エチルなどが挙げられ
る。これらのカチオン性モノマーは1種を用いてもよい
し、2種以上を組み合わせて用いてもよい。
Here, as the cationic monomer, for example, dimethylaminomethyl acrylate or methacrylate, dimethylaminoethyl acrylate or methacrylate, dimethylaminopropyl acrylate or methacrylate, dimethylamino-2-hydroxypropyl acrylate or methacrylate, diethylaminomethyl acrylate or methacrylate. , Diethylaminoethyl acrylate or methacrylate, diethylaminopropyl acrylate or methacrylate, diethylamino-2-hydroxy acrylate or methacrylate, dimethylaminomethyl acrylamide or methacrylamide, dimethylaminoethyl acrylamide or methacrylamide, dimethylaminopropyl acrylamide or methacrylamide Tertiary such as amide, dimethylamino-2-hydroxypropylacrylamide or methacrylamide, diethylaminomethylacrylamide or methacrylamide, diethylaminoethylacrylamide or methacrylamide, diethylaminopropylacrylamide or methacrylamide, diethylamino-2-hydroxypropylacrylamide or methacrylamide. Examples include salts and quaternary compounds. Examples of the acid used for the tertiary salt include hydrochloric acid, sulfuric acid, nitric acid, formic acid, acetic acid and the like, while examples of the quaternizing agent include methyl chloride, methyl iodide, benzyl chloride, dimethylsulfate and diethyl. Examples thereof include sulfuric acid, ethyl chloride and ethyl iodide. These cationic monomers may be used alone or in combination of two or more.

【0046】また、アニオン性モノマーとしては、例え
ばアクリル酸、メタクリル酸、エタクリル酸(α−エチ
ルアクリル酸)などの不飽和カルボン酸及びそれらのナ
トリウム塩、カリウム塩、アンモニウム塩、さらにはビ
ニルスルホン酸、2−アクリルアミド−2−メチルプロ
パンスルホン酸及びそのナトリウム塩、カリウム塩、ア
ンモニウム塩などが挙げられる。これらのアニオン性モ
ノマーは1種を用いてもよいし、2種以上を組み合わせ
て用いてもよい。
Examples of the anionic monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid and ethacrylic acid (α-ethylacrylic acid) and their sodium salts, potassium salts, ammonium salts, and vinyl sulfonic acid. , 2-acrylamido-2-methylpropanesulfonic acid and its sodium salt, potassium salt, ammonium salt and the like. These anionic monomers may be used alone or in combination of two or more.

【0047】また、ノニオン性モノマーとしては、例え
ば、アクリルアミド、メタクリルアミド、ジメチルアク
リルアミド、ジメチルメタクリルアミドなどのビニル基
含有アミド類、アクリロニトリルやメタクリロニトリル
などのシアン化ビニル系化合物、アクリル酸メチル、ア
クリル酸エチル、メタクリル酸メチル、メタクリル酸エ
チルなどの(メタ)アクリル酸のアルキルエステル類、
酢酸ビニルなどのカルボン酸のビニルエステル類、スチ
レン、α−メチルスチレン、p−メチルスチレンなどの
芳香族ビニル化合物などが挙げられる。これらのノニオ
ン性モノマーは1種を用いてもよいし、2種以上を組み
合わせて用いてもよい。
Examples of the nonionic monomer include vinyl group-containing amides such as acrylamide, methacrylamide, dimethylacrylamide and dimethylmethacrylamide, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, methyl acrylate and acryl. Alkyl esters of (meth) acrylic acid such as ethyl acidate, methyl methacrylate, and ethyl methacrylate,
Examples thereof include vinyl esters of carboxylic acids such as vinyl acetate, aromatic vinyl compounds such as styrene, α-methylstyrene and p-methylstyrene. These nonionic monomers may be used alone or in combination of two or more.

【0048】有機高分子凝集剤は0.05〜0.3重量
%、特に0.1重量%程度の濃度に溶解して添加するの
が好ましく、その添加量は、嫌気性消化槽1からの消化
汚泥のSSに対して、0.2〜1.5重量%、特に0.
4〜1.0重量%とするのが好ましい。
The organic polymer flocculant is preferably added by dissolving it in a concentration of 0.05 to 0.3% by weight, particularly about 0.1% by weight, and the amount of addition is from the anaerobic digestion tank 1. 0.2 to 1.5% by weight, especially 0.
It is preferably 4 to 1.0% by weight.

【0049】有機高分子凝集剤は、嫌気性消化槽1から
遠心分離装置2に消化汚泥を移送する移送路16に供給
して混合してもよく、遠心分離装置2その他の固液分離
手段に供給して装置内部で混合しても良い。また、嫌気
性消化槽1と遠心分離装置2等の固液分離手段との間に
消化汚泥と凝集剤とを混合して凝集させる混合槽を設け
ても良い。
The organic polymer flocculant may be supplied to the transfer passage 16 for transferring digested sludge from the anaerobic digestion tank 1 to the centrifugal separator 2 and mixed therewith, and may be mixed in the centrifugal separator 2 and other solid-liquid separation means. It may be supplied and mixed inside the apparatus. Further, a mixing tank may be provided between the anaerobic digestion tank 1 and the solid-liquid separating means such as the centrifugal separator 2 for mixing the digested sludge and the coagulant to coagulate them.

【0050】改質工程、即ち、オゾン処理槽5は、嫌気
性消化槽1から引き抜いた消化汚泥をオゾン処理によっ
て改質する工程である。オゾン処理はこの消化汚泥をオ
ゾンと接触させることにより行う。
The reforming step, that is, the ozone treatment tank 5 is a step of reforming the digested sludge drawn from the anaerobic digestion tank 1 by ozone treatment. Ozone treatment is performed by contacting this digested sludge with ozone.

【0051】オゾンとの接触方法としては、オゾン処理
槽5に消化汚泥を導入してオゾンを吹き込む方法、機械
攪拌による方法、充填層を利用する方法などが採用でき
る。
As a method of contacting with ozone, a method of introducing digested sludge into the ozone treatment tank 5 and blowing in ozone, a method of mechanical stirring, a method of utilizing a packed bed and the like can be adopted.

【0052】オゾンとしてはオゾン含有ガスの他、オゾ
ン含有水などが使用でき、オゾンの使用量は通常0.0
1〜0.08g−O/g−TVS、好ましくは0.0
2〜0.05g−O/g−TVSである。
As ozone, not only ozone-containing gas but also ozone-containing water can be used, and the amount of ozone used is usually 0.0
1~0.08g-O 3 / g-TVS , preferably 0.0
Is a 2~0.05g-O 3 / g-TVS .

【0053】このようなオゾン処理を行うことにより、
消化汚泥中の菌体は死滅し、その他の有機物と共に易生
物分解性に改質される。従って、このオゾン処理槽5で
改質された改質汚泥を嫌気性消化槽1に返送することに
より、改質汚泥中の易生物分解性成分が嫌気性消化槽1
で分解され、処理系から生じる余剰汚泥が減量化する。
By performing such ozone treatment,
The microbial cells in the digested sludge are killed and are easily biodegradable along with other organic substances. Therefore, by returning the modified sludge modified in the ozone treatment tank 5 to the anaerobic digestion tank 1, the easily biodegradable components in the modified sludge are converted into the anaerobic digestion tank 1.
The excess sludge generated from the treatment system is reduced.

【0054】嫌気性消化槽1から引き抜いてオゾン処理
する消化汚泥の量は、汚泥の減容効果を十分に確保する
ため、引き抜いた消化汚泥中に含まれる固形物(TV
S)の量として、嫌気性消化槽1へ導入される固形物
(TVS)量の1/3〜5倍、好ましくは1/2〜3倍
に相当する量とするのが好ましい。また、一日当たりに
オゾン処理する消化汚泥の量は嫌気性消化槽1の全保有
汚泥量の1/5〜1/50に相当する量とするのが好ま
しい。一日当たりのオゾン処理量を上記の量にすること
により、嫌気性消化処理に必要な微生物量を嫌気性消化
槽1内に保持することができ、嫌気性消化処理の効率を
高く保つことができる。
The amount of digested sludge extracted from the anaerobic digestion tank 1 and subjected to ozone treatment is adjusted so that the solid matter (TV) contained in the extracted digested sludge is sufficient to ensure a sufficient volume reduction effect of the sludge.
The amount of S) is preferably 1/3 to 5 times, preferably 1/2 to 3 times, the amount of solids (TVS) introduced into the anaerobic digestion tank 1. Further, the amount of digested sludge to be ozone-treated per day is preferably an amount corresponding to 1/5 to 1/50 of the total amount of sludge retained in the anaerobic digestion tank 1. By setting the ozone treatment amount per day to the above amount, the amount of microorganisms required for the anaerobic digestion treatment can be retained in the anaerobic digestion tank 1, and the efficiency of the anaerobic digestion treatment can be kept high. .

【0055】なお、消化汚泥の改質手段としては、オゾ
ン処理槽の他、過酸化水素等の酸化力の強い酸化剤や、
酸、アルカリなどによる化学的処理、ミルによる磨砕の
ような物理的処理、熱的処理のいずれであっても良い。
As a means for reforming digested sludge, in addition to an ozone treatment tank, an oxidizing agent having a strong oxidizing power such as hydrogen peroxide,
It may be a chemical treatment with an acid or an alkali, a physical treatment such as grinding with a mill, or a thermal treatment.

【0056】図2に示す請求項3〜6の有機性排液の嫌
気性消化方法及び嫌気性消化装置においても、図1に示
す如く、嫌気性消化槽1の消化汚泥を引き抜いて、これ
を60℃以上の温度で加熱することにより、消化汚泥中
の有機成分を優先的に可溶化し、加熱処理汚泥を固液分
離して、分離汚泥を余剰汚泥として系外に排出すると共
に、分離液を嫌気性消化槽1に返送するようにしても良
い。このようにすることにより、無機成分の比率の多い
汚泥を系外に排出し、系内での無機成分の蓄積を防止し
た上で、良好な汚泥の減量化を図ることができる。
In the method and apparatus for anaerobic digestion of organic effluent according to claims 3 to 6 shown in FIG. 2, the digested sludge in the anaerobic digestion tank 1 is extracted as shown in FIG. By heating at a temperature of 60 ° C or higher, the organic components in the digested sludge are preferentially solubilized, the heat-treated sludge is subjected to solid-liquid separation, and the separated sludge is discharged to the outside of the system as excess sludge and the separated liquid May be returned to the anaerobic digestion tank 1. By doing so, it is possible to discharge sludge having a high ratio of inorganic components to the outside of the system, prevent accumulation of inorganic components in the system, and to achieve favorable reduction of sludge.

【0057】この場合の消化汚泥の加熱条件、加熱処理
のための消化汚泥の引き抜き量は前述の通りである。
The heating conditions of the digested sludge and the amount of the digested sludge drawn out for the heat treatment in this case are as described above.

【0058】なお、このようにして消化汚泥の加熱処理
及び固液分離を行った場合は、この分離汚泥を余剰汚泥
として排出し、前述の遠心分離装置2の濃縮汚泥は全量
を嫌気性消化槽1に返送することが好ましい。
When the digestion sludge is subjected to the heat treatment and the solid-liquid separation in this manner, the separated sludge is discharged as an excess sludge, and the concentrated sludge of the centrifugal separator 2 is entirely anaerobic digester. It is preferable to return to 1.

【0059】嫌気性消化工程において発生した消化ガス
は、発電のエネルギー源として用い電力を得ると共に、
発電に伴って生じた蒸気及び又は温水を、前記有機性排
液の加熱処理や上記消化汚泥の加熱処理及び嫌気性消化
工程の加温の熱源として用いることもできる。
The digestion gas generated in the anaerobic digestion process is used as an energy source for power generation to obtain electric power,
Steam and / or hot water generated by power generation can also be used as a heat source for heating the organic waste solution, the digestive sludge, and the anaerobic digestion step.

【0060】[0060]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0061】実施例1 下水処理場より採取した混合生汚泥(TS濃度2%,T
VS濃度1.6%)を原水として、図1の嫌気性消化装
置により80L/dayの処理量で処理を行った。 [嫌気性消化槽の処理条件] 嫌気性消化槽容量:2m 有機物負荷量:0.64kg−TVS/m・日 水理学的滞留時間:25日 温度:35℃
Example 1 Mixed raw sludge collected from a sewage treatment plant (TS concentration 2%, T
VS concentration 1.6%) as raw water, and anaerobic digester of Fig. 1
The processing amount was 80 L / day. [Treatment conditions for anaerobic digester] Anaerobic digester capacity: 2mThree Organic matter load: 0.64 kg-TVS / mThree·Day Hydraulic retention time: 25 days Temperature: 35 ° C

【0062】また、原水の投入に先立ち、嫌気性消化槽
から嫌気性消化汚泥200Lを引き抜き、そのうち50
Lをオートクレーブにて121℃で30分加熱処理した
後、30分重力沈降させた沈澱物10Lを余剰汚泥とし
て系外へ引き抜き、残部は嫌気性消化槽に返送した。こ
の加熱処理に供した消化汚泥量は、嫌気性消化槽の全汚
泥保有量の1/20に相当する。また、引き抜いた嫌気
性消化汚泥の残り150Lを遠心濃縮機(2,100
G)で固液分離して分離液100Lを処理水として系外
に排出し、濃縮汚泥は嫌気性消化槽に返送した。なお、
遠心濃縮機には、0.2%に溶解した有機高分子凝集剤
を汚泥1Lあたり0.2L添加した。この操作により、
嫌気性消化槽の汚泥濃度を5%に維持することができ
た。
Prior to the input of raw water, 200 L of anaerobic digested sludge was drawn out from the anaerobic digestion tank, 50 of which was extracted.
L was heat-treated in an autoclave at 121 ° C. for 30 minutes, then 10 L of the precipitate gravity-precipitated for 30 minutes was drawn out of the system as excess sludge, and the rest was returned to the anaerobic digestion tank. The amount of digested sludge subjected to this heat treatment corresponds to 1/20 of the total amount of sludge retained in the anaerobic digestion tank. In addition, the remaining 150 L of the extracted anaerobic digested sludge was centrifuged (2,100
Solid-liquid separation was performed in G), and 100 L of the separated liquid was discharged to the outside of the system as treated water, and the concentrated sludge was returned to the anaerobic digestion tank. In addition,
To the centrifugal concentrator, 0.2 L of an organic polymer coagulant dissolved in 0.2% was added per 1 L of sludge. By this operation,
The sludge concentration in the anaerobic digester could be maintained at 5%.

【0063】このときの全余剰汚泥発生量(余剰汚泥と
して系外へ排出したTS量と処理水として系外に排出し
た固液分離液中に含まれるTS量との合計)と、汚泥減
量率及び嫌気性消化槽からの消化ガス発生量と処理水水
質を調べ、結果を表1に示した。
At this time, the total amount of excess sludge generated (total of the amount of TS discharged to the outside as excess sludge and the amount of TS contained in the solid-liquid separated liquid discharged to the outside as treated water) and the sludge reduction rate The amount of digested gas generated from the anaerobic digestion tank and the quality of treated water were examined, and the results are shown in Table 1.

【0064】比較例1 実施例1において、原水の投入に先立ち、消化汚泥の加
熱処理は行わず、嫌気性消化槽から嫌気性消化汚泥16
8Lを引き抜き、そのうち18Lを余剰汚泥として系外
へ引き抜き、残り150Lを遠心濃縮機(2,100
G)で固液分離して分離液100Lを処理水として系外
に排出し、濃縮汚泥は嫌気性消化槽に返送したこと以外
は同様にして嫌気性消化処理を行った。この操作によ
り、嫌気性消化槽の汚泥濃度を5%に維持することがで
きた。
Comparative Example 1 In Example 1, the digestion sludge was not heat-treated prior to the addition of the raw water, and the anaerobic digestion sludge 16 was removed from the anaerobic digestion tank.
8 L was drawn, 18 L of which was drawn out of the system as excess sludge, and the remaining 150 L was centrifugal concentrator (2,100
The anaerobic digestion treatment was performed in the same manner except that solid-liquid separation was performed in G), 100 L of the separated liquid was discharged out of the system as treated water, and the concentrated sludge was returned to the anaerobic digestion tank. By this operation, the sludge concentration in the anaerobic digestion tank could be maintained at 5%.

【0065】このときの全余剰汚泥発生量と、汚泥減量
率及び消化ガス発生量と処理水水質を調べ、結果を表1
に示した。
At this time, the total excess sludge generation amount, the sludge reduction rate, the digestion gas generation amount and the treated water quality were examined, and the results are shown in Table 1.
It was shown to.

【0066】[0066]

【表1】 [Table 1]

【0067】表1より明かなように、消化汚泥を加熱処
理した後固液分離し、分離汚泥を余剰汚泥として系外へ
排出した実施例1では、比較例1に対して、全余剰汚泥
発生量が低減され、汚泥減量率は16%の向上が達成さ
れ、消化ガス発生量は1.4倍に増加した。
As is clear from Table 1, in Example 1 in which the digested sludge was subjected to heat treatment, solid-liquid separation was performed, and the separated sludge was discharged out of the system as excess sludge, in comparison with Comparative Example 1, total excess sludge was generated. The amount was reduced, the sludge reduction rate was improved by 16%, and the digestion gas generation amount was increased by 1.4 times.

【0068】なお、前記実施例1において、嫌気性消化
汚泥と、これを加熱処理した加熱処理汚泥と、この加熱
処理汚泥を固液分離して得られた分離汚泥、即ち余剰汚
泥として系外へ排出した汚泥について、汚泥性状を調べ
たところ、表2に示す通り加熱処理により固形分中の有
機分が優先的に可溶化し、加熱処理汚泥を沈降分離した
余剰汚泥では、TVS/TSが低減されることを確認す
ることができた。
In Example 1, the anaerobic digested sludge, the heat-treated sludge obtained by heat-treating the anaerobic digested sludge, and the separated sludge obtained by solid-liquid separation of the heat-treated sludge, that is, excess sludge, was discharged outside the system. When the sludge properties of the discharged sludge were examined, as shown in Table 2, the organic matter in the solid content was preferentially solubilized by the heat treatment, and TVS / TS was reduced in the excess sludge obtained by sedimentation of the heat-treated sludge. I was able to confirm that it will be done.

【0069】[0069]

【表2】 [Table 2]

【0070】実施例2 下水処理場より採取した混合生汚泥(TS濃度2%,T
SS濃度1.6%)を原水として、図2の嫌気性消化装
置により80L/dayの処理量で処理を行った。
Example 2 Mixed raw sludge collected from a sewage treatment plant (TS concentration 2%, T
The raw water (SS concentration: 1.6%) was used to treat the anaerobic digester shown in FIG. 2 at a treatment amount of 80 L / day.

【0071】嫌気性消化槽の処理条件は次の通りとし、
原水は温度150℃で1時間加熱処理した後嫌気性消化
槽に導入した。嫌気性消化槽からは1日当たり50Lの
消化汚泥(嫌気性消化槽の全保有汚泥量の1/40を引
き抜き、オゾン処理槽にて0.04g−O/g−TV
Sのオゾン使用量でオゾン処理した後嫌気性消化槽に返
送した。 [嫌気性消化槽の処理条件] 嫌気性消化槽容量:2m 有機物負荷量:0.64kg−VSS/m・日 水理学的滞留時間:25日 温度:35℃
The processing conditions of the anaerobic digester are as follows:
Raw water is heat-treated at 150 ℃ for 1 hour and then anaerobic digestion
It was introduced into the tank. 50L per day from anaerobic digester
Digested sludge (subtract 1/40 of total sludge in anaerobic digester)
Perforated, 0.04g-O in ozone treatment tankThree/ G-TV
After ozone treatment with the ozone usage amount of S, it is returned to the anaerobic digestion tank.
Sent. [Treatment conditions for anaerobic digester] Anaerobic digester capacity: 2mThree Organic matter load: 0.64 kg-VSS / mThree·Day Hydraulic retention time: 25 days Temperature: 35 ° C

【0072】なお、原水の投入に先立ち、嫌気性消化槽
から嫌気性消化汚泥100Lを引き抜き、遠心分離機
(2,100G)で固液分離して分離液を処理水として
系外に排出した。一方、分離汚泥のうち、一部を嫌気性
消化槽のTS濃度が5%を超えないように系外に引き抜
き、残部は嫌気性消化槽に返送した。なお、遠心濃縮機
には、0.2%に溶解した有機高分子凝集剤を汚泥1L
あたり0.2L添加した。
Prior to the introduction of raw water, 100 L of anaerobic digested sludge was drawn out from the anaerobic digestion tank, solid-liquid separated by a centrifuge (2,100 G), and the separated liquid was discharged out of the system as treated water. On the other hand, a part of the separated sludge was drawn out of the system so that the TS concentration in the anaerobic digestion tank did not exceed 5%, and the rest was returned to the anaerobic digestion tank. In addition, 1 L of sludge was added to the centrifugal concentrator with the organic polymer flocculant dissolved in 0.2%.
0.2 L was added per unit.

【0073】このときの全余剰汚泥発生量(余剰汚泥と
して系外へ排出したTS量と処理水として系外に排出し
た固液分離液中に含まれるTS量との合計)と、汚泥減
容率及び嫌気性消化槽からの消化ガス発生量と処理水水
質を調べ、結果を表3に示した。
The total amount of excess sludge generated at this time (the total amount of TS discharged to the outside as excess sludge and the amount of TS contained in the solid-liquid separated liquid discharged to the outside as treated water) and sludge volume reduction The rate and the amount of digested gas generated from the anaerobic digester and the quality of treated water were examined, and the results are shown in Table 3.

【0074】比較例2 実施例2において、嫌気性消化槽に導入する原水の加熱
処理を行わなかったこと以外は同様にして嫌気性消化処
理を行った。
Comparative Example 2 An anaerobic digestion treatment was carried out in the same manner as in Example 2 except that the heat treatment of the raw water introduced into the anaerobic digestion tank was not performed.

【0075】このときの全余剰汚泥発生量と、汚泥減容
率及び消化ガス発生量と処理水水質を調べ、結果を表3
に示した。
At this time, the total excess sludge generation amount, the sludge volume reduction rate, the digestion gas generation amount and the treated water quality were examined, and the results are shown in Table 3.
It was shown to.

【0076】実施例3 実施例2において、原水の投入に先立ち、嫌気性消化槽
から嫌気性消化汚泥100Lを引き抜いて固液分離する
代りに、次のような操作を行った。即ち、嫌気性消化槽
から嫌気性消化汚泥200Lを引き抜き、そのうち50
Lをオートクレーブにて121℃で30分加熱処理した
後、30分重力沈降させた沈澱物5Lを余剰汚泥として
系外へ引き抜き、分離液は嫌気性消化槽に返送した。こ
の加熱処理に供した消化汚泥量は、嫌気性消化槽の全汚
泥保有量の1/40に相当する。また、引き抜いた嫌気
性消化汚泥の残り150Lを遠心濃縮機(2,100
G)で固液分離して分離液100Lを処理水として系外
に排出し、濃縮汚泥は嫌気性消化槽に返送した。なお、
遠心濃縮機には、0.2%に溶解した有機高分子凝集剤
を汚泥1Lあたり0.2L添加した。この操作により、
嫌気性消化槽の汚泥濃度を5%以下で維持することがで
きた。
Example 3 In Example 2, the following operation was carried out prior to the addition of raw water, instead of pulling out 100 L of the anaerobic digestion sludge from the anaerobic digestion tank and performing solid-liquid separation. That is, 200 L of anaerobic digested sludge was drawn from the anaerobic digestion tank,
L was heat-treated in an autoclave at 121 ° C. for 30 minutes, and then 5 L of the precipitate gravity-precipitated for 30 minutes was drawn out of the system as excess sludge, and the separated liquid was returned to the anaerobic digestion tank. The amount of digested sludge subjected to this heat treatment corresponds to 1/40 of the total amount of sludge retained in the anaerobic digestion tank. In addition, the remaining 150 L of the extracted anaerobic digested sludge was centrifuged (2,100
Solid-liquid separation was performed in G), and 100 L of the separated liquid was discharged to the outside of the system as treated water, and the concentrated sludge was returned to the anaerobic digestion tank. In addition,
To the centrifugal concentrator, 0.2 L of an organic polymer coagulant dissolved in 0.2% was added per 1 L of sludge. By this operation,
It was possible to maintain the sludge concentration in the anaerobic digestion tank at 5% or less.

【0077】このときの全余剰汚泥発生量と、汚泥減容
率及び消化ガス発生量と処理水水質を調べ、結果を表3
に示した。
At this time, the total excess sludge generation amount, sludge volume reduction rate, digestion gas generation amount and treated water quality were examined, and the results are shown in Table 3.
It was shown to.

【0078】[0078]

【表3】 [Table 3]

【0079】表3より明らかなように、原水を予め加熱
処理した実施例2では比較例2に比べて全余剰汚泥発生
量が低減され、汚泥減容率は16%の向上が達成され、
消化ガス発生量は1.3倍に増加した。更に、消化汚泥
を加熱処理した後固液分離し、分離汚泥を余剰汚泥とし
て系外に排出した実施例3によれば、全余剰汚泥発生
量、汚泥減容率及び消化ガス発生量のより一層の改善が
認められた。
As is clear from Table 3, in Example 2 in which the raw water was preheated, the total excess sludge generation amount was reduced as compared with Comparative Example 2, and the sludge volume reduction rate was improved by 16%.
The amount of digestive gas generated increased 1.3 times. Furthermore, according to Example 3 in which the digested sludge was subjected to the heat treatment and then solid-liquid separated, and the separated sludge was discharged out of the system as excess sludge, the total excess sludge generation rate, sludge volume reduction rate, and digestive gas generation rate were further improved. Was observed.

【0080】[0080]

【発明の効果】以上詳述した通り、請求項1,2の有機
性排液の嫌気性消化方法及び嫌気性消化装置によれば、
有機性汚泥、し尿等の有機性排液を、嫌気性微生物を含
む汚泥の存在下でメタン発酵により処理するに当たり、
嫌気性消化処理系内に蓄積する汚泥中の無機成分を優先
的に引き抜くことによって、汚泥を大幅に減量化するこ
とができると共に、消化ガス発生量を増加させることが
できる。
As described in detail above, according to the anaerobic digestion method and apparatus for anaerobic digestion of organic effluent according to claims 1 and 2,
When treating organic effluent such as organic sludge and human waste by methane fermentation in the presence of sludge containing anaerobic microorganisms,
By preferentially extracting the inorganic components in the sludge accumulated in the anaerobic digestion treatment system, the sludge can be significantly reduced and the digestive gas generation amount can be increased.

【0081】また、請求項3〜6の有機性排液の嫌気性
消化方法及び嫌気性消化装置によれば、有機性汚泥、し
尿等の有機性排液を、嫌気性微生物を含む汚泥の存在下
でメタン発酵により処理するに当たり、嫌気性消化槽の
汚泥濃度を過度に高めることなく、嫌気性消化汚泥をオ
ゾン処理して循環させることによって、汚泥を大幅に減
容化することができると共に、消化ガス発生量を増加さ
せることができる。
Further, according to the anaerobic digestion method and the anaerobic digester of the organic effluent according to claims 3 to 6, the organic effluent such as organic sludge and human excrement is converted into the presence of sludge containing anaerobic microorganisms. When treating by methane fermentation under the conditions below, without excessively increasing the sludge concentration in the anaerobic digestion tank, the anaerobic digestion sludge can be ozone-treated and circulated, and the volume of the sludge can be greatly reduced, The amount of digestive gas generated can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1,の有機性排液の嫌気性消化方法及び
嫌気性消化装置の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an anaerobic digestion method and an anaerobic digester for organic waste liquid according to claim 1.

【図2】請求項3〜6の有機性排液の嫌気性消化方法及
び嫌気性消化装置の実施の形態を示す系統図である。
FIG. 2 is a system diagram showing an embodiment of an anaerobic digestion method and an anaerobic digester for organic drainage according to claims 3 to 6.

【符号の説明】[Explanation of symbols]

1 嫌気性消化槽 2 遠心分離装置 3 汚泥可溶化槽 4 沈殿槽 5 オゾン処理槽 6 オゾン発生器 7 原水可溶化槽 1 Anaerobic digester 2 Centrifuge 3 Sludge solubilization tank 4 settling tank 5 Ozone treatment tank 6 Ozone generator 7 Raw water solubilization tank

フロントページの続き Fターム(参考) 4D040 AA12 AA23 AA27 AA55 4D059 AA01 AA02 AA04 AA05 AA08 AA23 BA12 BA21 BA56 BB03 BE31 BE38 BE49 BE56 BE58 BF02 BF20 BJ01 BK12 CA22 DA43 DB08 DB24 DB25 DB26 DB28 Continued front page    F-term (reference) 4D040 AA12 AA23 AA27 AA55                 4D059 AA01 AA02 AA04 AA05 AA08                       AA23 BA12 BA21 BA56 BB03                       BE31 BE38 BE49 BE56 BE58                       BF02 BF20 BJ01 BK12 CA22                       DA43 DB08 DB24 DB25 DB26                       DB28

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機性排液を、嫌気性微生物を含む汚泥
の存在下にメタン発酵させる嫌気性消化工程と、該嫌気
性消化工程の流出液を汚泥と処理液とに固液分離する固
液分離工程と、該固液分離工程の分離汚泥を前記嫌気性
消化工程に返送する汚泥返送工程とを含む有機性排液の
嫌気性消化方法において、 該嫌気性消化工程において生成する汚泥を引き抜いて6
0℃以上の温度で加熱処理する汚泥熱処理工程と、該汚
泥熱処理工程の加熱処理汚泥を固液分離して分離汚泥を
系外に排出する汚泥排出工程と、該汚泥排出工程で分離
された分離液を前記嫌気性消化工程に返送する分離液返
送工程を有することを特徴とする有機性排液の嫌気性消
化方法。
1. An anaerobic digestion step of subjecting an organic waste liquid to methane fermentation in the presence of sludge containing anaerobic microorganisms, and a solid-liquid separation of the effluent of the anaerobic digestion step into sludge and treated liquid. In an anaerobic digestion method of organic waste liquid, which comprises a liquid separation step and a sludge return step of returning the separated sludge of the solid-liquid separation step to the anaerobic digestion step, the sludge produced in the anaerobic digestion step is extracted. 6
A sludge heat treatment step of heat treatment at a temperature of 0 ° C. or higher, a sludge discharge step of solid-liquid separating the heat-treated sludge of the sludge heat treatment step and discharging the separated sludge to the outside of the system, and a separation separated in the sludge discharge step An anaerobic digestion method for organic waste liquid, comprising a separated liquid return step for returning a liquid to the anaerobic digestion step.
【請求項2】 有機性排液を、嫌気性微生物を含む汚泥
の存在下にメタン発酵させる嫌気性消化手段と、該嫌気
性消化手段の流出液を汚泥と処理液とに固液分離する固
液分離手段と、該固液分離手段の分離汚泥を前記嫌気性
消化手段に返送する汚泥返送手段とを含む有機性排液の
嫌気性消化装置において、 該嫌気性消化手段及び/又は前記固液分離手段から汚泥
を引き抜いて60℃以上の温度で加熱処理する汚泥熱処
理手段と、該汚泥熱処理手段の加熱処理汚泥を固液分離
して分離汚泥を系外に排出する汚泥排出手段と、該汚泥
排出手段で分離された分離液を前記嫌気性消化手段に返
送する分離液返送手段を有することを特徴とする有機性
排液の嫌気性消化装置。
2. An anaerobic digestion means for methane-fermenting an organic effluent in the presence of sludge containing anaerobic microorganisms, and a solid for separating the effluent of the anaerobic digestion means into sludge and treatment liquid. In an anaerobic digester for organic waste liquid, which comprises a liquid separating means and a sludge returning means for returning the separated sludge of the solid-liquid separating means to the anaerobic digesting means, the anaerobic digesting means and / or the solid liquid Sludge heat treatment means for extracting sludge from the separation means and heat-treating it at a temperature of 60 ° C. or higher; sludge discharge means for solid-liquid separating the heat-treated sludge of the sludge heat treatment means and discharging the separated sludge out of the system; and the sludge. An anaerobic digester for organic waste liquid, comprising a separated liquid returning means for returning the separated liquid separated by the discharging means to the anaerobic digesting means.
【請求項3】 有機性排液を、嫌気性微生物を含む汚泥
の存在下にメタン発酵させる嫌気性消化工程と、該嫌気
性消化工程の流出液を汚泥と処理液とに固液分離する固
液分離工程と、該固液分離工程の分離汚泥を前記嫌気性
消化工程に返送する汚泥返送工程とを含む有機性排液の
嫌気性消化方法において、 該嫌気性消化工程に送給する有機性排液の少なくとも一
部を、予め60℃以上の温度で加熱処理する原水熱処理
工程を有することを特徴とする嫌気性消化方法。
3. An anaerobic digestion step in which organic effluent is subjected to methane fermentation in the presence of sludge containing anaerobic microorganisms, and a solid phase for separating the effluent of the anaerobic digestion step into sludge and treatment solution. In the method for anaerobic digestion of organic effluent, which comprises a liquid separation step and a sludge return step of returning the separated sludge of the solid-liquid separation step to the anaerobic digestion step, an organic substance fed to the anaerobic digestion step An anaerobic digestion method comprising a raw water heat treatment step of preliminarily heat-treating at least a part of the effluent at a temperature of 60 ° C. or higher.
【請求項4】 請求項3において、該嫌気性消化工程に
おいて生成する汚泥を引き抜いて60℃以上の温度で加
熱処理する汚泥熱処理工程と、該汚泥熱処理工程の加熱
処理汚泥を固液分離して分離汚泥を系外に排出する汚泥
排出工程と、該汚泥排出工程で分離された分離液を前記
嫌気性消化工程に返送する分離液返送工程を有すること
を特徴とする有機性排液の嫌気性消化方法。
4. The sludge heat treatment step according to claim 3, wherein sludge generated in the anaerobic digestion step is extracted and heat-treated at a temperature of 60 ° C. or higher, and the heat-treated sludge in the sludge heat treatment step is subjected to solid-liquid separation. Anaerobic organic wastewater characterized by having a sludge discharging step of discharging the separated sludge to the outside of the system, and a separated liquid returning step of returning the separated liquid separated in the sludge discharging step to the anaerobic digestion step. Digestion method.
【請求項5】 有機性排液を、嫌気性微生物を含む汚泥
の存在下にメタン発酵させる嫌気性消化手段と、該嫌気
性消化手段において生成する汚泥を引き抜いて易生物分
解性に改質する改質手段と、該改質手段で改質された改
質汚泥を前記嫌気性消化手段に返送する改質汚泥返送手
段とを含む有機性排液の嫌気性消化装置において、 該嫌気性消化手段に送給する有機性排液の少なくとも一
部を、予め60℃以上の温度で加熱処理する原水熱処理
手段を有することを特徴とする嫌気性消化装置。
5. An organic effluent is anaerobically digested by methane fermentation in the presence of sludge containing anaerobic microorganisms, and sludge produced in the anaerobic digester is extracted to be easily biodegradable. An anaerobic digester for an organic waste liquid, comprising: a reformer and a reformed sludge return unit for returning the reformed sludge modified by the reformer to the anaerobic digester. An anaerobic digestion apparatus comprising a raw water heat treatment means for preliminarily heat-treating at least a part of the organic waste liquid to be fed to the above.
【請求項6】 請求項5において、該嫌気性消化手段に
おいて生成する汚泥を引き抜いて60℃以上の温度で加
熱処理する汚泥熱処理手段と、該汚泥熱処理手段の加熱
処理汚泥を固液分離して分離汚泥を系外に排出する汚泥
排出手段と、該汚泥排出手段で分離された分離液を前記
嫌気性消化手段に返送する返送手段を有することを特徴
とする有機性排液の嫌気性消化装置。
6. The sludge heat treatment means for extracting sludge generated in the anaerobic digestion means and heat-treating it at a temperature of 60 ° C. or higher, and solid-liquid separation of the heat-treated sludge of the sludge heat treatment means according to claim 5. An anaerobic digester for organic waste liquid, comprising sludge discharge means for discharging the separated sludge to the outside of the system, and return means for returning the separated liquid separated by the sludge discharge means to the anaerobic digester means. .
JP2002081159A 2002-03-22 2002-03-22 Method for anaerobic digestion of organic waste liquid and anaerobic digestion device Pending JP2003275789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081159A JP2003275789A (en) 2002-03-22 2002-03-22 Method for anaerobic digestion of organic waste liquid and anaerobic digestion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081159A JP2003275789A (en) 2002-03-22 2002-03-22 Method for anaerobic digestion of organic waste liquid and anaerobic digestion device

Publications (1)

Publication Number Publication Date
JP2003275789A true JP2003275789A (en) 2003-09-30

Family

ID=29206532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081159A Pending JP2003275789A (en) 2002-03-22 2002-03-22 Method for anaerobic digestion of organic waste liquid and anaerobic digestion device

Country Status (1)

Country Link
JP (1) JP2003275789A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125203A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2005169329A (en) * 2003-12-15 2005-06-30 Mitsubishi Kakoki Kaisha Ltd Treatment method for organic waste
JP2010179217A (en) * 2009-02-04 2010-08-19 Japan Sewage Works Agency Anaerobic treatment method combined with thermal solubilization drying
JP2010179216A (en) * 2009-02-04 2010-08-19 Japan Sewage Works Agency Anaerobic digestion treatment method of organic sludge
JP2010227876A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Composite treatment method for wastewater and organic residue
CN103523918A (en) * 2013-10-28 2014-01-22 河北科技大学 Air flow and machinery double-boosting internal circulation-type high suspension solid anaerobic digestion device
CN105417930A (en) * 2015-11-20 2016-03-23 四川大学 Method for lowering viscosity of high-solid-concentration sludge
CN106873379A (en) * 2017-03-31 2017-06-20 北京工业大学 A kind of sewage disposal method for optimally controlling based on iteration ADP algorithms
CN107140731A (en) * 2017-05-26 2017-09-08 东台银信钢结构工程有限公司 A kind of pond for being applied to processing sanitary sewage
CN107739096A (en) * 2017-11-24 2018-02-27 广州益方田园环保股份有限公司 Industrial wastewater energy-saving constant-temperature biochemical processing device
JP2022518330A (en) * 2018-11-21 2022-03-15 キャンビ テクノロジー エイエス Improved phosphorus recovery process and plant
CN114477672A (en) * 2022-01-10 2022-05-13 长春工程学院 Treatment system and treatment method for recycling excess sludge of urban sewage plant

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125203A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP4542764B2 (en) * 2003-10-22 2010-09-15 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
JP2005169329A (en) * 2003-12-15 2005-06-30 Mitsubishi Kakoki Kaisha Ltd Treatment method for organic waste
JP2010179217A (en) * 2009-02-04 2010-08-19 Japan Sewage Works Agency Anaerobic treatment method combined with thermal solubilization drying
JP2010179216A (en) * 2009-02-04 2010-08-19 Japan Sewage Works Agency Anaerobic digestion treatment method of organic sludge
JP2010227876A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Composite treatment method for wastewater and organic residue
CN103523918A (en) * 2013-10-28 2014-01-22 河北科技大学 Air flow and machinery double-boosting internal circulation-type high suspension solid anaerobic digestion device
CN105417930A (en) * 2015-11-20 2016-03-23 四川大学 Method for lowering viscosity of high-solid-concentration sludge
CN106873379A (en) * 2017-03-31 2017-06-20 北京工业大学 A kind of sewage disposal method for optimally controlling based on iteration ADP algorithms
CN106873379B (en) * 2017-03-31 2019-12-27 北京工业大学 Sewage treatment optimal control method based on iterative ADP algorithm
CN107140731A (en) * 2017-05-26 2017-09-08 东台银信钢结构工程有限公司 A kind of pond for being applied to processing sanitary sewage
CN107739096A (en) * 2017-11-24 2018-02-27 广州益方田园环保股份有限公司 Industrial wastewater energy-saving constant-temperature biochemical processing device
CN107739096B (en) * 2017-11-24 2023-10-03 广州益方田园环保股份有限公司 Energy-saving constant-temperature biochemical treatment equipment for industrial wastewater
JP2022518330A (en) * 2018-11-21 2022-03-15 キャンビ テクノロジー エイエス Improved phosphorus recovery process and plant
JP7177269B2 (en) 2018-11-21 2022-11-22 キャンビ テクノロジー エイエス Improved phosphorus recovery process and plant
CN114477672A (en) * 2022-01-10 2022-05-13 长春工程学院 Treatment system and treatment method for recycling excess sludge of urban sewage plant

Similar Documents

Publication Publication Date Title
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP2003275789A (en) Method for anaerobic digestion of organic waste liquid and anaerobic digestion device
JP2002361291A (en) Anaerobic digesting apparatus
JP4292610B2 (en) Organic wastewater treatment equipment
JP3893654B2 (en) Organic wastewater treatment method
JP2003010895A (en) Method for anaerobic treatment of organic substance and apparatus therefor
JP2014008491A (en) Organic waste treatment apparatus, and organic waste treatment method using the same
JP3556101B2 (en) Anaerobic digestion of organic waste
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP2007216207A (en) Method and apparatus for anaerobic digestion of organic waste liquid
JP2000246280A (en) Treatment apparatus of organic waste water
JP3591086B2 (en) Biological treatment of organic wastewater
JP4595230B2 (en) Anaerobic digestion apparatus and anaerobic digestion method
WO2007083456A1 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2002316186A (en) Anaerobic digestion apparatus
JP2003275788A (en) Method for anaerobic digestion of organic waste liquid and anaerobic treatment device
JP3814855B2 (en) Anaerobic treatment method for organic drainage
WO2005058764A1 (en) Anaerobic digestion apparatus for organic waste liquid
JP3963110B2 (en) Anaerobic treatment equipment for organic drainage
JP2006075730A (en) Anaerobic treatment device
JP3485220B2 (en) Organic wastewater treatment method
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP2004344782A (en) Method and apparatus for treating organic waste fluid
JP2000246224A (en) Method for treating organic waste