JP2007190489A - Waste treatment method and waste treatment system - Google Patents

Waste treatment method and waste treatment system Download PDF

Info

Publication number
JP2007190489A
JP2007190489A JP2006011200A JP2006011200A JP2007190489A JP 2007190489 A JP2007190489 A JP 2007190489A JP 2006011200 A JP2006011200 A JP 2006011200A JP 2006011200 A JP2006011200 A JP 2006011200A JP 2007190489 A JP2007190489 A JP 2007190489A
Authority
JP
Japan
Prior art keywords
waste
methane fermentation
component
weight
nitrogen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006011200A
Other languages
Japanese (ja)
Other versions
JP5204954B2 (en
Inventor
Akihiko Sumi
晃彦 隅
Hisahiro Takeda
尚弘 竹田
Atsushi Kawashima
淳 川嶋
Takashi Kojima
小島  隆
Takeshi Miyamoto
武 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2006011200A priority Critical patent/JP5204954B2/en
Publication of JP2007190489A publication Critical patent/JP2007190489A/en
Application granted granted Critical
Publication of JP5204954B2 publication Critical patent/JP5204954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste treatment method and a waste treatment system stably and efficiently treating waste at low cost. <P>SOLUTION: In this waste treatment method, waste is weighed for every component contained in the waste; solvent is added to the waste to obtain a total nitrogen concentration to impart ammonia nitrogen concentration within an allowable range in methane fermentation, based on the component-wise weight and nitrogen content in each component; and the total nitrogen concentration of a mixture containing the waste is adjusted, to perform methane fermentation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、廃棄物処理方法及び廃棄物処理システムに関する。より詳しくは、本発明は、メタン発酵に基づく廃棄物処理方法及び廃棄物処理システムに関する。   The present invention relates to a waste treatment method and a waste treatment system. More particularly, the present invention relates to a waste treatment method and a waste treatment system based on methane fermentation.

現在、廃棄物の処理に際しては、環境への影響を低減させる試みや資源の有効利用の試みがなされている。例えば、生ごみ等の固形有機性廃棄物の処理の場合、メタン発酵により、廃棄物中の有機物を分解させるともに、メタンガスを生成させ、該メタンガスを資源として利用している。しかし、メタン発酵に際して生成したアンモニアにより、メタン発酵の進行が妨げられ、廃棄物処理の効率が低下する場合があるという欠点がある。   Currently, in the treatment of waste, attempts are being made to reduce the environmental impact and effective use of resources. For example, in the case of the treatment of solid organic waste such as garbage, the organic matter in the waste is decomposed by methane fermentation, methane gas is generated, and the methane gas is used as a resource. However, ammonia produced during methane fermentation has a drawback that the progress of methane fermentation is hindered and the efficiency of waste treatment may be reduced.

このアンモニアによるメタン発酵の阻害を回避するメタン発酵による廃棄物処理方法としては、例えば、固形有機性廃棄物をスラリー状に可溶化した混合液をpH7.0以上8.5以下でメタン発酵処理し、生成したガスを回収し、回収したガスの少なくとも一部からアンモニアを除去し、アンモニアが除去されたガスの少なくとも一部を該混合液に噴出して攪拌する廃棄物処理方法等が知られている(例えば、特許文献1等を参照)。
特開2001−276880号公報
As a waste treatment method by methane fermentation that avoids inhibition of methane fermentation by ammonia, for example, a mixed solution in which solid organic waste is solubilized in a slurry state is subjected to methane fermentation treatment at pH 7.0 to 8.5. A waste processing method is known in which the generated gas is recovered, ammonia is removed from at least a portion of the recovered gas, and at least a portion of the gas from which ammonia has been removed is jetted into the liquid mixture and stirred. (For example, see Patent Document 1).
JP 2001-276880 A

しかし、前記廃棄物処理方法では、アンモニアを除去するための設備、薬剤等が必要となり、その設備コストや運転コストが増加し、維持管理において多大な労力を必要とする場合があり、回収したアンモニアの処理が必要となる場合があるという欠点がある。   However, the waste treatment method requires equipment for removing ammonia, chemicals, etc., which increases equipment costs and operation costs, and may require a lot of labor in maintenance management. However, there is a drawback that it may be necessary.

本発明は、上記従来の欠点に鑑みてなされたものであり、安定的かつ効率的に、低コストで、廃棄物の処理を行なうことができる、廃棄物処理方法を提供することを1つの課題とする。また、本発明は、安定的かつ効率的に、低コストで、廃棄物の処理を行なうができる、廃棄物処理システムを提供することを1つの課題とする。   The present invention has been made in view of the above-described conventional drawbacks, and it is an object of the present invention to provide a waste treatment method capable of stably and efficiently treating waste at a low cost. And Another object of the present invention is to provide a waste treatment system capable of stably and efficiently treating waste at a low cost.

本発明は、前記課題に鑑みてなされたものであり、1つの側面では、廃棄物を該廃棄物中に含まれる成分毎に計量し、該成分毎の重量と各成分中に含まれる窒素の含有量とに基づき、メタン発酵における許容範囲のアンモニア性窒素濃度を与える全窒素濃度となるように溶媒を該廃棄物に添加して、該廃棄物を含む混合物の全窒素濃度を調整し、メタン発酵を行なうことを特徴とする、廃棄物処理方法に関する。本発明は、他の側面では、廃棄物の重量を成分毎に計量する廃棄物重量計量手段と、
該廃棄物重量計量手段で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量を算出する適正希釈溶媒量算出手段と、
該廃棄物重量計量手段で計量された後の廃棄物を蓄積させる廃棄物蓄積設備と、
該適正希釈溶媒量算出手段により算出された適正希釈溶媒量に基づき、廃棄物に希釈溶媒を投入する希釈溶媒投入手段と、
希釈溶媒が混合された混合物をメタン発酵に供するメタン発酵槽と
を備え、
該適正希釈溶媒量算出手段で算出された適正希釈溶媒量に基づき、該希釈溶媒投入手段により、希釈溶媒が、廃棄物と混合され、それにより、該廃棄物が、メタン発酵の許容範囲のアンモニア性窒素濃度を与える全窒素濃度に調整され、得られた混合物が、該メタン発酵槽に導入され、メタン発酵に供されるように構成されていることを特徴とする、廃棄物処理システムに関する。
The present invention has been made in view of the above problems, and in one aspect, waste is measured for each component contained in the waste, and the weight of each component and the nitrogen contained in each component are measured. Based on the content, a solvent is added to the waste to adjust the total nitrogen concentration of the mixture containing the waste to a total nitrogen concentration that gives an acceptable ammoniacal nitrogen concentration in methane fermentation, and methane The present invention relates to a waste treatment method characterized by performing fermentation. In another aspect, the present invention provides a waste weight weighing means for weighing the waste for each component;
Based on the weight of each component weighed by the waste weight weighing means and the nitrogen content of each component, the appropriate amount of solvent for the waste that gives the ammonia nitrogen concentration within the allowable range of methane fermentation is calculated. A dilution solvent amount calculating means;
A waste accumulation facility for accumulating waste after being weighed by the waste weight weighing means;
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, dilution solvent injection means for introducing the dilution solvent into the waste,
A methane fermentation tank for subjecting the mixture mixed with the dilution solvent to methane fermentation,
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, the dilution solvent is mixed with the waste by the dilution solvent input means, so that the waste is ammonia within the allowable range of methane fermentation. The present invention relates to a waste treatment system characterized in that it is configured to be adjusted to a total nitrogen concentration that gives a neutral nitrogen concentration and the resulting mixture is introduced into the methane fermentation tank and used for methane fermentation.

本発明の廃棄物処理方法によれば、メタン発酵に際して、適切な条件を維持でき、メタン発酵を安定的に行なうことができるため、廃棄物の処理を安定的に効率よく行なうことができるという優れた効果を奏する。   According to the waste treatment method of the present invention, appropriate conditions can be maintained during methane fermentation, and methane fermentation can be performed stably, so that waste can be treated stably and efficiently. Has an effect.

また、本発明の廃棄物処理システムによれば、適正希釈溶媒量算出手段において、廃棄物重量計量手段で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量が算出される構成を有するため、メタン発酵中に発生するアンモニア性窒素の濃度を測定し、調整する場合よりも、アンモニアの濃度上昇を未然に防ぐことができ、安定的に、メタン発酵に適した条件を得ることができるという優れた効果を奏する。そのため、本発明の廃棄物処理システムによれば、かかる構成を有するため、安定的かつ効率の良い廃棄物処理を行なうことができるという優れた効果を奏する。さらに、本発明の廃棄物処理システムによれば、適正希釈溶媒量算出手段で算出された適正希釈溶媒量に基づき、該希釈溶媒投入手段により、希釈溶媒が、廃棄物と混合される構成を有するため、希釈溶媒の導入でメタン発酵に適した条件を維持でき、例えば、気体として発生するアンモニア性窒素のトラッピング、メタン発酵槽内における環境維持等を実質的に必要とせず、簡便に、廃棄物の処理を行なうができるという優れた効果を奏する。また、本発明の廃棄物処理システムによれば、廃棄物の重量を成分毎に計量する廃棄物重量計量手段と、該廃棄物重量計量手段で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量を算出する適正希釈溶媒量算出手段とが備えられているため、所定時間単位の廃棄物中に含まれる成分の重量の変動を容易に把握することができ、廃棄物の組成の変動に伴う全窒素含有量の変動に対して、容易に対応することができるという優れた効果を奏する。そのため、本発明の廃棄物処理システムによれば、廃棄物処理のプロセスをより的確に自動化することができるという優れた効果を奏する。   Further, according to the waste treatment system of the present invention, in the appropriate dilution solvent amount calculation means, based on the weight of each component measured by the waste weight measurement means and the nitrogen content of each component, the allowable methane fermentation is allowed. Since the amount of the appropriate dilution solvent for the waste giving the ammonia nitrogen concentration in the range is calculated, the concentration of ammonia is higher than when measuring and adjusting the concentration of ammonia nitrogen generated during methane fermentation Can be prevented in advance, and there is an excellent effect that conditions suitable for methane fermentation can be obtained stably. Therefore, according to the waste treatment system of the present invention, since it has such a configuration, there is an excellent effect that a stable and efficient waste treatment can be performed. Furthermore, according to the waste treatment system of the present invention, the dilution solvent is mixed with the waste by the dilution solvent charging means based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means. Therefore, it is possible to maintain conditions suitable for methane fermentation by introducing a dilution solvent, for example, trapping ammonia nitrogen generated as a gas, maintaining the environment in the methane fermentation tank, etc. are substantially unnecessary, and waste can be easily There is an excellent effect that the process can be performed. Further, according to the waste treatment system of the present invention, the waste weight measuring means for weighing the waste for each component, the weight for each component measured by the waste weight measuring means, and the nitrogen for each component And a proper dilution solvent amount calculating means for calculating an appropriate dilution solvent amount for the waste that gives an ammoniacal nitrogen concentration in an allowable range of methane fermentation based on the content, so that the waste in a predetermined time unit It is possible to easily grasp the change in the weight of the components contained in the slag and to easily cope with the change in the total nitrogen content accompanying the change in the composition of the waste. Therefore, according to the waste treatment system of the present invention, there is an excellent effect that the waste treatment process can be more accurately automated.

本発明は、1つの側面では、廃棄物を該廃棄物中に含まれる成分毎に計量し、該成分毎の重量と各成分中に含まれる窒素の含有量とに基づき、メタン発酵における許容範囲のアンモニア性窒素濃度を与える全窒素濃度となるように溶媒を該廃棄物に添加して、該廃棄物を含む混合物の全窒素濃度を調整し、メタン発酵を行なうことを特徴とする、廃棄物処理方法に関する。   In one aspect, the present invention measures the waste for each component contained in the waste, and based on the weight of each component and the content of nitrogen contained in each component, the allowable range in methane fermentation A waste is characterized by adding a solvent to the waste so as to give a total nitrogen concentration that gives an ammoniacal nitrogen concentration, adjusting the total nitrogen concentration of the mixture containing the waste, and performing methane fermentation It relates to the processing method.

本発明の廃棄物処理方法は、廃棄物の成分毎の重量を計量していることに1つの大きな特徴がある。したがって、本発明の廃棄物処理方法によれば、メタン発酵に際するアンモニア性窒素濃度の管理に影響を与える因子、例えば、高窒素含有成分の量等をより的確に把握することができるという優れた効果を発揮する。さらに、本発明の廃棄物処理方法によれば、廃棄物の成分毎の重量を計量しているため、所定時間単位で廃棄される廃棄物の成分組成の変動をより的確に把握し、対応することができるという優れた効果を発揮する。   The waste treatment method of the present invention has one major feature in that the weight of each component of the waste is measured. Therefore, according to the waste treatment method of the present invention, it is possible to more accurately grasp factors that affect the management of ammonia nitrogen concentration during methane fermentation, such as the amount of high nitrogen-containing components. Show the effect. Furthermore, according to the waste treatment method of the present invention, since the weight of each component of the waste is measured, the change in the component composition of the waste discarded in a predetermined time unit is more accurately grasped and dealt with. It exhibits the excellent effect of being able to.

さらに、本発明の廃棄物処理方法は、廃棄物中に含まれる成分毎の重量と各成分中に含まれる窒素の含有量とに基づき、溶媒を該廃棄物に添加して、該廃棄物を含む混合物の全窒素濃度を調整していることにも1つの大きな特徴がある。したがって、本発明の廃棄物処理方法によれば、簡便に、かつより高い精度でメタン発酵に適した条件の安定的な維持が可能になるという優れた効果を発揮する。そのため、本発明の廃棄物処理方法によれば、廃棄物の処理を安定的に効率よく行なうことができるという優れた効果を発揮する。また、かかる精度は、メタン発酵に際しては、廃棄物の全重量を基準としてスラリーを形成させ、該スラリーを用いて行なわれている従来のメタン発酵に比べ、顕著に高く、本発明の廃棄物処理方法は、メタン発酵に適した条件のより安定的な維持が可能である点で優れる。   Furthermore, the waste treatment method of the present invention adds a solvent to the waste based on the weight of each component contained in the waste and the content of nitrogen contained in each component. One major feature is that the total nitrogen concentration of the mixture is adjusted. Therefore, according to the waste treatment method of the present invention, an excellent effect is achieved in that it is possible to stably maintain conditions suitable for methane fermentation easily and with higher accuracy. Therefore, according to the waste treatment method of the present invention, the excellent effect that the waste can be treated stably and efficiently is exhibited. In addition, such accuracy is significantly higher in methane fermentation than in the conventional methane fermentation performed using a slurry formed on the basis of the total weight of the waste, and the waste treatment of the present invention. The method is superior in that the conditions suitable for methane fermentation can be maintained more stably.

なお、本明細書において、前記溶媒を、「希釈溶媒」と称する場合もある。前記希釈溶媒としては、水(例えば、工業用水、排水処理装置から排出される窒素成分濃度が低い処理水)等が挙げられる。   In the present specification, the solvent may be referred to as a “dilution solvent”. Examples of the diluting solvent include water (for example, industrial water, treated water having a low nitrogen component concentration discharged from a wastewater treatment apparatus), and the like.

本発明の廃棄物処理方法は、より具体的には、
(A)廃棄物の重量を成分毎に計量するステップ、
(B)前記ステップ(A)で計量された各成分の重量と、各成分中に含まれる窒素の含有量とに基づき、該廃棄物の全窒素含有量を算出し、該全窒素含有量からメタン発酵の許容範囲のアンモニア性窒素濃度を維持する適正希釈溶媒量を算出するステップ、
(C)前記ステップ(B)で算出された適正希釈溶媒量となるように、希釈溶媒を、前記(A)で計量された廃棄物と混合し、得られた混合物の全窒素濃度を、メタン発酵における許容範囲のアンモニア性窒素濃度を与える濃度となるように調整するステップ、及び
(D)前記ステップ(C)で得られた混合物を、メタン発酵に供するステップ、
を含むプロセスにより行なわれる。
More specifically, the waste treatment method of the present invention is as follows.
(A) measuring the weight of the waste for each component;
(B) Based on the weight of each component weighed in step (A) and the content of nitrogen contained in each component, the total nitrogen content of the waste is calculated, and from the total nitrogen content Calculating an appropriate amount of diluting solvent that maintains an acceptable ammoniacal nitrogen concentration for methane fermentation;
(C) The diluted solvent is mixed with the waste weighed in (A) so that the amount of the appropriate diluted solvent calculated in the step (B) is obtained, and the total nitrogen concentration of the obtained mixture is changed to methane. Adjusting the concentration to give an acceptable ammoniacal nitrogen concentration in fermentation, and (D) subjecting the mixture obtained in step (C) to methane fermentation,
Is performed by a process including:

本発明において、対象となる廃棄物は、例えば、メタン発酵に供される廃棄物であればよく、有機性廃棄物、例えば、生ゴミ等が挙げられる。なお、前記廃棄物には、メタン発酵により分解等の対象とならない成分を含有していてもよい。この場合、廃棄物から、メタン発酵により分解等の対象とならない成分を、メタン発酵の前に予め除去してもよく、メタン発酵を行なった後に除去してもよい。   In the present invention, the target waste may be, for example, waste that is subjected to methane fermentation, and examples thereof include organic waste such as garbage. The waste may contain components that are not subject to decomposition or the like by methane fermentation. In this case, components that are not subject to decomposition or the like by methane fermentation may be removed in advance from the waste before methane fermentation, or may be removed after methane fermentation.

前記ステップ(A)では、廃棄物の重量が、成分毎に計量される。   In the step (A), the weight of the waste is weighed for each component.

前記ステップ(A)は、廃棄物処理能等に応じて、所定時間単位で行なえばよい。これにより、1回の廃棄物処理で処理される廃棄物の組成、重量等がより適切に把握されうる。   The step (A) may be performed in units of a predetermined time according to the waste disposal capacity. Thereby, the composition, weight, etc. of the waste processed by one waste processing can be grasped more appropriately.

本発明の廃棄物処理方法を、例えば、食品等の製造工場における廃棄物の処理に適用する場合、製造工場では、各製造部門により廃棄される不用物の成分は、通常、ほぼ一定していることが多いことから、前記ステップ(A)において、各製造部門から廃棄された不用物毎に重量を計量することにより、当該不用物の窒素含有量を容易に把握することができる。かかる場合においては、前記各製造部門の不用物毎に重量を計量することが、成分毎に計量されることと同義になる。   When the waste treatment method of the present invention is applied to, for example, the treatment of waste in a manufacturing factory for foods and the like, the components of waste materials discarded by each manufacturing department are usually almost constant in the manufacturing factory. In many cases, in step (A), the nitrogen content of the waste can be easily grasped by measuring the weight of each waste disposed from each manufacturing department. In such a case, measuring the weight for each waste in each manufacturing department is synonymous with measuring for each component.

ついで、前記ステップ(B)において、前記ステップ(A)で計量された各成分の重量と、各成分中に含まれる窒素の含有量とに基づき、該廃棄物の全窒素含有量が算出され、該全窒素含有量からメタン発酵の許容範囲のアンモニア性窒素濃度を維持する適正希釈溶媒量が算出される。   Next, in step (B), based on the weight of each component weighed in step (A) and the nitrogen content contained in each component, the total nitrogen content of the waste is calculated, From the total nitrogen content, an appropriate dilution solvent amount that maintains an ammoniacal nitrogen concentration within an allowable range of methane fermentation is calculated.

前記ステップ(B)では、まず、前記ステップ(A)で計量された各成分の重量と、各成分中に含まれる窒素の含有量との情報により、廃棄物中に含まれる全窒素含有量が算出される。これにより、所定時間単位での廃棄物の成分の変動に対応して、廃棄物中に含まれる全窒素含有量を把握することができる。   In the step (B), first, the total nitrogen content contained in the waste is determined based on the information on the weight of each component measured in the step (A) and the content of nitrogen contained in each component. Calculated. Thereby, it is possible to grasp the total nitrogen content contained in the waste corresponding to the change in the components of the waste in a predetermined time unit.

さらに、前記ステップ(B)では、算出された全窒素含有量から、メタン発酵に際して発生することが予測されるアンモニア性窒素の量が算出される。ここで、アンモニア性窒素の量は、各成分中に含まれる窒素の様態を参酌することにより、より高い精度で算出されうる。   Further, in the step (B), the amount of ammoniacal nitrogen that is predicted to be generated during methane fermentation is calculated from the calculated total nitrogen content. Here, the amount of ammoniacal nitrogen can be calculated with higher accuracy by taking into account the state of nitrogen contained in each component.

その後、前記ステップ(B)では、予測されるアンモニア性窒素の量から、メタン発酵の許容範囲のアンモニア性窒素濃度を維持する適正希釈溶媒量が算出される。   Thereafter, in the step (B), an appropriate amount of diluting solvent that maintains the ammonia nitrogen concentration within the allowable range of methane fermentation is calculated from the predicted amount of ammonia nitrogen.

なお、前記ステップ(B)では、各成分中に含まれる水分量が考慮されうる。   In the step (B), the amount of water contained in each component can be considered.

メタン発酵の許容範囲のアンモニア性窒素濃度は、メタン発酵の運転条件、用いられる微生物の種類等により異なる。前記メタン発酵の許容範囲のアンモニア性窒素濃度は、例えば、高温(例えば、53〜55℃等)メタン発酵の場合、好ましくは、最大2000mg/l程度であることが望ましく、中温(例えば、36〜38℃等)メタン発酵の場合、好ましくは、最大4000mg/lであることが望ましい。   The ammonia nitrogen concentration within the allowable range of methane fermentation varies depending on the operating conditions of methane fermentation, the type of microorganism used, and the like. For example, in the case of high temperature (for example, 53 to 55 ° C.) methane fermentation, the ammoniacal nitrogen concentration within the allowable range of the methane fermentation is preferably about 2000 mg / l at the maximum, and medium temperature (for example, 36 to 55 ° C.). In the case of methane fermentation, it is desirable that the maximum is 4000 mg / l.

本明細書において、「適正希釈溶媒量」とは、算出された全窒素含有量から、メタン発酵に際して発生することが予測されるアンモニア性窒素の量を、前記メタン発酵の許容範囲のアンモニア性窒素濃度にするのに必要な希釈溶媒の量を意味する。   In the present specification, the “appropriate dilution solvent amount” means the amount of ammonia nitrogen that is predicted to be generated during methane fermentation from the calculated total nitrogen content, and the amount of ammonia nitrogen in the allowable range of methane fermentation. It means the amount of diluting solvent required to reach a concentration.

その後、前記ステップ(C)において、前記ステップ(B)で算出された適正希釈溶媒量となるように、希釈溶媒を、前記ステップ(A)で計量された廃棄物と混合し、得られた混合物の全窒素濃度を、メタン発酵における許容範囲のアンモニア性窒素濃度を与える濃度となるように調整する。   Thereafter, in the step (C), the diluted solvent is mixed with the waste weighed in the step (A) so that the amount of the appropriate diluted solvent calculated in the step (B) is obtained, and the resulting mixture is obtained. The total nitrogen concentration is adjusted to a concentration that gives an acceptable ammoniacal nitrogen concentration in methane fermentation.

前記ステップ(C)において、希釈溶媒は、前記ステップ(A)で計量された廃棄物に対して混合される。したがって、かかるステップ(C)では、希釈溶媒は、前記ステップ(A)で計量された廃棄物の組成に対応して適正希釈溶媒量となるように、該廃棄物に添加されることになる。   In the step (C), the diluting solvent is mixed with the waste weighed in the step (A). Therefore, in this step (C), the diluting solvent is added to the waste so that the amount of the diluting solvent becomes an appropriate amount corresponding to the composition of the waste weighed in the step (A).

前記廃棄物への希釈溶媒の添加は、例えば、前記ステップ(B)で算出された適正希釈溶媒量に基づき希釈溶媒を廃棄物に投入する希釈溶媒投入手段により行なわれうる。前記希釈溶媒投入手段は、前記ステップ(B)で算出された適正希釈溶媒量と連係して廃棄物への希釈溶媒の添加量が制御されるように構成された自動弁を備えうる。前記廃棄物への希釈溶媒の添加後、例えば、攪拌機等により、廃棄物と希釈溶媒とが混合される。   The addition of the diluting solvent to the waste can be performed by, for example, diluting solvent feeding means for feeding the diluting solvent to the waste based on the appropriate amount of the diluting solvent calculated in step (B). The dilution solvent charging means may include an automatic valve configured to control the addition amount of the dilution solvent to the waste in association with the appropriate dilution solvent amount calculated in the step (B). After the dilution solvent is added to the waste, the waste and the dilution solvent are mixed with, for example, a stirrer.

前記ステップ(C)の後、前記ステップ(D)において、前記ステップ(C)で得られた混合物が、メタン発酵に供される。前記ステップ(D)では、メタン発酵における許容範囲のアンモニア性窒素濃度を与える全窒素濃度となるように濃度が調整された混合物が、メタン発酵に供される。そのため、本発明の廃棄物処理方法では、メタン発酵の進行が安定的に維持される。   After the step (C), in the step (D), the mixture obtained in the step (C) is subjected to methane fermentation. In the step (D), the mixture whose concentration is adjusted so that the total nitrogen concentration gives an ammoniacal nitrogen concentration within an allowable range in methane fermentation is subjected to methane fermentation. Therefore, in the waste treatment method of the present invention, the progress of methane fermentation is stably maintained.

前記メタン発酵は、慣用のメタン生成微生物等を用いて行なわれうる。   The methane fermentation can be performed using a conventional methanogenic microorganism or the like.

前記メタン発酵は、前記ステップ(A)で計量された廃棄物単位で行なわれる。そのため、前記ステップ(A)で計量された廃棄物の組成に対応して調整された許容アンモニア性窒素濃度が維持されるため、許容範囲外の量のアンモニア性窒素に基づくメタン発酵の阻害を実質的に伴うことなく、安定的に効率よくメタン発酵が行われる。   The methane fermentation is performed in units of waste measured in step (A). Therefore, since the allowable ammonia nitrogen concentration adjusted according to the composition of the waste weighed in the step (A) is maintained, the inhibition of methane fermentation based on the ammonia nitrogen in an amount outside the allowable range is substantially prevented. Therefore, methane fermentation is performed stably and efficiently.

本発明の廃棄物処理方法は、例えば、廃棄物の重量を成分毎に計量する廃棄物重量計量手段と、
該廃棄物重量計量手段で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量を算出する適正希釈溶媒量算出手段と、
該廃棄物重量計量手段で計量された後の廃棄物を蓄積させる廃棄物蓄積設備と、
該適正希釈溶媒量算出手段により算出された適正希釈溶媒量に基づき、該廃棄物蓄積設備に希釈溶媒を投入する希釈溶媒投入手段と、
該廃棄物蓄積設備で希釈溶媒が混合された混合物をメタン発酵に供するメタン発酵槽と
を備え、
該適正希釈溶媒量算出手段で算出された適正希釈溶媒量に基づき、該希釈溶媒投入手段により、希釈溶媒が、該廃棄物蓄積設備に導入されて、該廃棄物蓄積設備に蓄積した廃棄物と混合され、それにより、該廃棄物が、メタン発酵の許容範囲のアンモニア性窒素濃度を与える全窒素濃度に調整され、得られた混合物が、該メタン発酵槽に導入され、メタン発酵に供されるように構成されていることを特徴とする、廃棄物処理システムにより好適に実施されうる。
The waste treatment method of the present invention includes, for example, a waste weight weighing means for weighing the waste for each component,
Based on the weight of each component weighed by the waste weight weighing means and the nitrogen content of each component, the appropriate amount of solvent for the waste that gives the ammonia nitrogen concentration within the allowable range of methane fermentation is calculated. A dilution solvent amount calculating means;
A waste accumulation facility for accumulating waste after being weighed by the waste weight weighing means;
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, dilution solvent injection means for introducing the dilution solvent into the waste storage facility;
A methane fermentation tank for subjecting the mixture in which the diluent solvent is mixed in the waste accumulation facility to methane fermentation,
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, the dilution solvent is introduced into the waste storage facility by the dilution solvent input means, and the waste accumulated in the waste storage facility Mixed, whereby the waste is adjusted to a total nitrogen concentration that gives an acceptable ammoniacal nitrogen concentration for methane fermentation, and the resulting mixture is introduced into the methane fermenter and subjected to methane fermentation It can be suitably implemented by a waste treatment system characterized by being configured as described above.

したがって、本発明は、他の側面では、前記廃棄物処理システムに関する。   Therefore, in another aspect, the present invention relates to the waste treatment system.

本発明の廃棄物処理システムは、廃棄物重量計量手段と、適正希釈溶媒量算出手段とを有し、該廃棄物重量計量手段と該適正希釈溶媒量算出手段とが、該適正希釈溶媒量算出手段において、該廃棄物重量計量手段で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量が算出されるように構成されていることに1つの大きな特徴がある。したがって、本発明の廃棄物処理システムによれば、かかる構成を有することにより、メタン発酵中に発生するアンモニア性窒素の濃度を測定し、調整する場合よりも、メタン発酵を安定的に維持することができ、かつ高い精度で、メタン発酵に適した条件を得ることができる。また、本発明の廃棄物処理システムによれば、かかる構成を有することにより、安定的かつ効率の良い廃棄物処理を行なうことができる。   The waste treatment system of the present invention has a waste weight measurement means and an appropriate dilution solvent amount calculation means, and the waste weight measurement means and the appropriate dilution solvent amount calculation means calculate the appropriate dilution solvent amount. In the means, based on the weight of each component weighed by the waste weight weighing means and the nitrogen content of each component, there is an appropriate amount of diluting solvent for the waste that gives an ammonia nitrogen concentration within an allowable range of methane fermentation. One major feature is that it is configured to be calculated. Therefore, according to the waste treatment system of the present invention, by having such a configuration, it is possible to maintain methane fermentation more stably than when measuring and adjusting the concentration of ammonia nitrogen generated during methane fermentation. It is possible to obtain conditions suitable for methane fermentation with high accuracy. Further, according to the waste treatment system of the present invention, by having such a configuration, stable and efficient waste treatment can be performed.

さらに、本発明の廃棄物処理システムによれば、適正希釈溶媒量算出手段と、希釈溶媒投入手段と、廃棄物蓄積設備とを有し、該適正希釈溶媒量算出手段と、該希釈溶媒投入手段と、該廃棄物蓄積設備とが、該適正希釈溶媒量算出手段で算出された適正希釈溶媒量に基づき、該希釈溶媒投入手段により、希釈溶媒が、該廃棄物蓄積設備に導入されて、該廃棄物蓄積設備に蓄積した廃棄物と混合されるように構成されていることにも1つの大きな特徴がある。したがって、本発明の廃棄物処理システムによれば、かかる構成を有することにより、希釈溶媒の導入でメタン発酵に適した条件を維持でき、例えば、気体として発生するアンモニア性窒素のストリッピング等のアンモニア除去によるメタン発酵槽内における環境維持等を実質的に必要とせず、簡便に、かつ低エネルギーで、廃棄物の処理を行なうができる。   Furthermore, according to the waste treatment system of the present invention, there is provided an appropriate dilution solvent amount calculation means, a dilution solvent input means, and a waste storage facility, and the appropriate dilution solvent amount calculation means and the dilution solvent input means. And the waste storage facility, based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, the dilution solvent is introduced into the waste storage facility by the dilution solvent input means, Another great feature is that it is configured to be mixed with the waste accumulated in the waste accumulation facility. Therefore, according to the waste treatment system of the present invention, by having such a configuration, conditions suitable for methane fermentation can be maintained by introducing a diluent solvent, for example, ammonia such as stripping of ammonia nitrogen generated as a gas. It is not necessary to maintain the environment in the methane fermentation tank by removal, and waste can be treated easily and with low energy.

また、本発明の廃棄物処理システムによれば、前記廃棄物重量計量手段と、前記適正希釈溶媒量算出手段とが備えられているため、所定時間単位の廃棄物中に含まれる成分の重量の変動を容易に把握することができ、廃棄物の組成の変動に伴う全窒素含有量の変動に対して、容易に対応することができる。そのため、本発明の廃棄処理システムによれば、廃棄物処理のプロセスをより効率よく行なえるように的確に自動化することができる。   Further, according to the waste treatment system of the present invention, since the waste weight measuring means and the appropriate dilution solvent amount calculating means are provided, the weight of the component contained in the waste in a predetermined time unit is obtained. The fluctuation can be easily grasped, and the fluctuation of the total nitrogen content accompanying the fluctuation of the composition of the waste can be easily dealt with. Therefore, according to the waste treatment system of the present invention, it is possible to accurately automate the waste treatment process so that the waste treatment process can be performed more efficiently.

本発明の廃棄物処理システムの実施態様の一例としては、例えば、図1に示される廃棄物処理システムが挙げられる。以下、図1に示される実施態様の廃棄物処理システムを一例として挙げ、説明するが、本発明は、かかる実施態様に限定されるものではない。   An example of the embodiment of the waste treatment system of the present invention is, for example, the waste treatment system shown in FIG. Hereinafter, the waste treatment system of the embodiment shown in FIG. 1 will be described as an example, but the present invention is not limited to such an embodiment.

図1に示される廃棄物処理システムは、廃棄物の重量を成分毎に計量する廃棄物重量計量手段1と、
廃棄物重量計量手段1で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量を算出する適正希釈溶媒量算出手段2と、
廃棄物重量計量手段1で計量された後の廃棄物を蓄積させる廃棄物蓄積設備3と、
適正希釈溶媒量算出手段2により算出された適正希釈溶媒量に基づき、廃棄物蓄積設備3に希釈溶媒を投入する希釈溶媒投入手段4と、
廃棄物蓄積設備3で希釈溶媒が混合された混合物をメタン発酵に供するメタン発酵槽5と
を備え、
廃棄物が、廃棄物重量計量手段1で計量され、
廃棄物重量計量手段1と適正希釈溶媒量算出手段2とは、廃棄物重量計量手段1で計量された成分毎の重量の数値情報が伝達され、適正希釈溶媒量算出手段2に入力(導入)されるように構成され、
廃棄物重量計量手段1と廃棄物蓄積設備3とは、廃棄物重量計量手段1で計量された後の廃棄物が、廃棄物重量計量手段1から廃棄物蓄積設備3へ移送され廃棄物蓄積設備3に蓄積されるように構成され、
適正希釈溶媒量算出手段2では、廃棄物重量計量手段1で得られた数値情報と、成分毎の窒素含有量とに基づき、アンモニア性窒素の量が算出され、該アンモニア性窒素の量と、計量された全成分の重量とに基づき、廃棄物のアンモニア性窒素の濃度が算出され、算出されたアンモニア性窒素濃度とメタン発酵の許容範囲のアンモニア性窒素濃度とを比較して、メタン発酵の許容範囲のアンモニア性窒素濃度を達成するに必要な適正希釈溶媒量が算出され、
適正希釈溶媒量算出手段2と希釈溶媒投入手段4とは、適正希釈溶媒量算出手段2で算出された適正希釈溶媒量に基づき、希釈溶媒投入手段4から希釈溶媒が排出されるように配され、
希釈溶媒投入手段4と廃棄物蓄積設備3とは、希釈溶媒投入手段4から希釈溶媒が排出された希釈溶媒が、廃棄物蓄積設備に導入されて、廃棄物蓄積設備に蓄積した廃棄物と混合され、それにより、メタン発酵の許容範囲のアンモニア性窒素濃度を与える全窒素濃度に調整されるように構成され、
廃棄物蓄積設備3とメタン発酵槽5とは、廃棄物蓄積設備3で得られた混合物がメタン発酵槽5に導入され、メタン発酵に供されるように構成されている。
The waste treatment system shown in FIG. 1 includes a waste weight weighing means 1 for weighing the waste for each component,
Based on the weight of each component weighed by the waste weight weighing means 1 and the nitrogen content of each component, the appropriate amount of the diluting solvent for the waste that gives the ammonia nitrogen concentration within the allowable range of methane fermentation is calculated. Dilution solvent amount calculating means 2;
A waste accumulation facility 3 for accumulating waste after being weighed by the waste weight weighing means 1;
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means 2, the dilution solvent injection means 4 that supplies the dilution solvent to the waste storage facility 3,
A methane fermentation tank 5 for subjecting the mixture in which the diluent solvent is mixed in the waste accumulation facility 3 to methane fermentation,
Waste is weighed by the waste weight weighing means 1,
The waste weight measurement means 1 and the appropriate dilution solvent amount calculation means 2 receive numerical information on the weight of each component measured by the waste weight measurement means 1 and input (introduction) to the appropriate dilution solvent amount calculation means 2 Configured to be
The waste weight weighing means 1 and the waste accumulation facility 3 are configured such that the waste after being measured by the waste weight weighing means 1 is transferred from the waste weight weighing means 1 to the waste accumulation facility 3 and is disposed. 3 is configured to accumulate in
In the appropriate diluted solvent amount calculating means 2, the amount of ammonia nitrogen is calculated based on the numerical information obtained by the waste weight measuring means 1 and the nitrogen content for each component, and the amount of ammonia nitrogen, Based on the weight of all the components weighed, the concentration of ammonia nitrogen in the waste is calculated, and the calculated ammonia nitrogen concentration is compared with the ammonia nitrogen concentration within the allowable range for methane fermentation. The amount of appropriate dilution solvent required to achieve an acceptable ammoniacal nitrogen concentration is calculated,
The appropriate dilution solvent amount calculation means 2 and the dilution solvent input means 4 are arranged so that the dilution solvent is discharged from the dilution solvent input means 4 based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means 2. ,
The diluting solvent input means 4 and the waste storage facility 3 are configured such that the diluted solvent discharged from the diluting solvent input means 4 is introduced into the waste storage facility and mixed with the waste stored in the waste storage facility. And is thereby configured to be adjusted to a total nitrogen concentration that gives an acceptable ammoniacal nitrogen concentration for methane fermentation,
The waste accumulation facility 3 and the methane fermentation tank 5 are configured such that the mixture obtained in the waste accumulation facility 3 is introduced into the methane fermentation tank 5 and used for methane fermentation.

廃棄物重量計量手段1としては、前述の重量計等が挙げられる。廃棄物重量計量手段1は、例えば、食品等の製造工場では、各製造部門における不用物の廃棄場所等に設けられうる。   Examples of the waste weight measuring means 1 include the above-described weighing scale. The waste weight measuring means 1 can be provided, for example, at a waste disposal place or the like in each manufacturing department in a food manufacturing factory.

廃棄物重量計量手段1では、搬出の際、廃棄物の計量が行なわれ、計量された後の廃棄物は、廃棄物重量計量手段1から廃棄物蓄積設備3に移送され、廃棄物蓄積設備3で蓄積される。   In the waste weight measuring means 1, the waste is measured at the time of carrying out, and the measured waste is transferred from the waste weight measuring means 1 to the waste storage facility 3, and the waste storage facility 3 Accumulated at.

廃棄物蓄積設備3は、廃棄物から、メタン発酵に利用されない異物を除去する異物除去手段を備えていてもよい。かかる異物除去手段を備えている場合、廃棄物蓄積設備3では、異物が除去され、よりメタン発酵が効率的に行なわれる点で有利である。前記異物除去手段としては、破袋分別装置、圧縮分別装置等が挙げられる。廃棄物が生ゴミと袋、パック等の包材とからなるものである場合、例えば、前記破袋分別装置により、生ごみが分解して得られる液と袋、パック等の包材とが分離され、該包材は残渣として除去されうる。   The waste accumulation facility 3 may include foreign matter removing means for removing foreign matters that are not used for methane fermentation from the waste. When such foreign matter removing means is provided, the waste accumulation facility 3 is advantageous in that foreign matter is removed and methane fermentation is performed more efficiently. Examples of the foreign matter removing means include a broken bag sorting device and a compression sorting device. When the waste is composed of garbage and packaging materials such as bags and packs, for example, the liquid obtained by decomposing the garbage and the packaging materials such as bags and packs are separated by the bag-breaking separation device. The packaging material can be removed as a residue.

また、廃棄物蓄積設備3は、蓄積された廃棄物をスラリー化させるスラリー化手段を備えていてもよい。かかるスラリー化手段を備えている場合、蓄積された廃棄物がスラリー化される。かかるスラリー化に際しては、水(例えば、工業用水、排水処理装置から排出される窒素成分濃度が低い処理水等)を添加してもよい。スラリー化に際して水を添加した場合には、廃棄物蓄積設備3は、水の添加量の数値情報が、適正希釈溶媒量算出手段に入力(導入)されるように構成されうる。   In addition, the waste accumulation facility 3 may include a slurrying means for slurrying the accumulated waste. When the slurrying means is provided, the accumulated waste is slurried. At the time of such slurrying, water (for example, industrial water, treated water having a low concentration of nitrogen component discharged from the waste water treatment apparatus, etc.) may be added. When water is added at the time of slurrying, the waste accumulation facility 3 can be configured such that numerical information on the amount of water added is input (introduced) to the appropriate dilution solvent amount calculation means.

一方、廃棄物重量計量手段1で計量された成分毎の重量の数値情報は、適正希釈溶媒量算出手段2に入力(導入)される。   On the other hand, the numerical information of the weight of each component measured by the waste weight measuring unit 1 is input (introduced) to the appropriate diluted solvent amount calculating unit 2.

適正希釈溶媒量算出手段2としては、具体的には、例えば、計量された成分毎の重量の数値情報を入力(導入)する重量数値情報入力(導入)部と、
該重量数値情報入力(導入)部に入力(導入)された成分毎の重量の数値情報と、成分毎の窒素含有量とに基づき、メタン発酵に際して発生することが予測されるアンモニア性窒素の量をコンピュータにより算出する予測アンモニア性窒素量算出部と、
該予測アンモニア性窒素量算出部で算出されたアンモニア性窒素の量と、計量された全成分の重量とに基づき、廃棄物のアンモニア性窒素の濃度をコンピュータにより算出するアンモニア性窒素濃度算出部と、
該アンモニア性窒素濃度算出部で算出されたアンモニア性窒素濃度と、メタン発酵の許容範囲のアンモニア性窒素濃度とに基づき、廃棄物に対する適正希釈溶媒量をコンピュータにより算出する適正希釈溶媒量算出部と、
適正希釈溶媒量の数値を出力する適正希釈溶媒量値出力部と
を備えた手段等が挙げられる。
As the appropriate dilution solvent amount calculation means 2, specifically, for example, a numerical value information input (introduction) unit for inputting (introducing) numerical value information of the weight of each measured component,
Amount of ammonia nitrogen predicted to be generated during methane fermentation based on numerical information on the weight of each component input (introduced) in the weight numerical information input (introduction) section and the nitrogen content of each component Predictive ammonia nitrogen amount calculation unit that calculates the computer,
An ammoniacal nitrogen concentration calculation unit that calculates the concentration of ammoniacal nitrogen in the waste by a computer based on the amount of ammoniacal nitrogen calculated by the predicted ammoniacal nitrogen amount calculation unit and the weight of all measured components; ,
Based on the ammonia nitrogen concentration calculated by the ammonia nitrogen concentration calculation unit and the ammonia nitrogen concentration within the allowable range of methane fermentation, an appropriate dilution solvent amount calculation unit for calculating an appropriate dilution solvent amount for waste by a computer; ,
Examples of the means include an appropriate dilution solvent amount value output unit that outputs a numerical value of the appropriate dilution solvent amount.

かかる適正希釈溶媒量算出手段2は、例えば、適正希釈溶媒量を算出するためにコンピュータを、
計量された成分毎の重量の数値情報を入力する数値情報入力手段、
成分毎の窒素含有量を記録しておく窒素含有量記録手段、
記録された成分毎の窒素含有量の数値を窒素含有量記録手段から読み出し、該成分毎の窒素含有量に成分毎の重量の数値を乗じて、メタン発酵に際して、アンモニア又はアンモニウム化合物に変換されることが予測される窒素の量をアンモニア性窒素の量として算出するアンモニア性窒素量算出手段、
計量された成分の全重量を算出し、該アンモニア性窒素量算出手段で算出されたアンモニア性窒素の量に、全成分の重量の数値の逆数を乗じて、廃棄物のアンモニア性窒素の濃度を算出するアンモニア性窒素濃度算出手段、
メタン発酵の許容範囲のアンモニア性窒素濃度を記録しておく許容アンモニア性窒素濃度記録手段、
算出されたアンモニア性窒素濃度と、記録された許容アンモニア性窒素濃度とを比較して、許容アンモニア性窒素濃度を達成するに必要な適正希釈溶媒量の数値を得る手段、
適正希釈溶媒量の数値を出力する適正希釈溶媒量値出力手段、
として機能させるための適正希釈溶媒量算出プログラムを組み込んだコンピュータであってもよい。
For example, the appropriate dilution solvent amount calculation means 2 uses a computer to calculate the appropriate dilution solvent amount,
Numerical information input means for inputting numerical information of the weight of each measured component,
Nitrogen content recording means for recording the nitrogen content for each component;
The recorded nitrogen content value for each component is read out from the nitrogen content recording means, and the nitrogen content for each component is multiplied by the weight value for each component to be converted into ammonia or an ammonium compound during methane fermentation. Ammonia nitrogen amount calculating means for calculating the amount of nitrogen predicted to be the amount of ammonia nitrogen,
Calculate the total weight of the components weighed and multiply the ammonia nitrogen amount calculated by the ammonia nitrogen amount calculation means by the inverse of the numerical value of the weight of all components to obtain the concentration of ammonia nitrogen in the waste. Ammonia nitrogen concentration calculating means for calculating,
An acceptable ammonia nitrogen concentration recording means for recording the ammonia nitrogen concentration within the allowable range of methane fermentation,
Means for comparing the calculated ammonia nitrogen concentration with the recorded allowable ammonia nitrogen concentration to obtain a numerical value of the appropriate amount of diluting solvent necessary to achieve the allowable ammonia nitrogen concentration;
Appropriate dilution solvent amount output means for outputting the value of the appropriate dilution solvent amount,
It may be a computer incorporating an appropriate dilution solvent amount calculation program for causing

適正希釈溶媒量算出手段2では、計量された成分毎の重量の数値情報が入力(導入)され、該数値情報と、成分毎の窒素含有量とに基づき、該成分毎の窒素含有量に成分毎の重量の数値を乗じて、メタン発酵に際して、アンモニア又はアンモニウム化合物に変換されることが予測される窒素の量がアンモニア性窒素の量としてコンピュータ等により算出され、算出されたアンモニア性窒素の量に、計量された全成分の重量の数値の逆数が乗じられて、廃棄物のアンモニア性窒素の濃度がコンピュータ等により算出され、算出されたアンモニア性窒素濃度とメタン発酵の許容範囲のアンモニア性窒素濃度とを比較して、メタン発酵の許容範囲のアンモニア性窒素濃度を達成するに必要な適正希釈溶媒量がコンピュータ等により算出される。ここで、前記廃棄物蓄積設備において、蓄積された廃棄物が、水の添加によりスラリー化された場合には、水の添加量を差し引いた量となる適正希釈溶媒量が算出されることとなる。   In the appropriate dilution solvent amount calculation means 2, numerical information on the weight of each measured component is input (introduced), and based on the numerical information and the nitrogen content for each component, the component is added to the nitrogen content for each component. By multiplying the numerical value of each weight, the amount of nitrogen that is predicted to be converted to ammonia or an ammonium compound during methane fermentation is calculated by the computer as the amount of ammonia nitrogen, and the amount of ammonia nitrogen calculated Is multiplied by the reciprocal of the weight value of all the components weighed, and the concentration of ammonia nitrogen in the waste is calculated by a computer, etc., and the calculated ammonia nitrogen concentration and the ammonia nitrogen within the allowable range of methane fermentation Compared with the concentration, an appropriate amount of diluting solvent necessary to achieve the ammoniacal nitrogen concentration within the allowable range of methane fermentation is calculated by a computer or the like. Here, in the waste accumulation facility, when the accumulated waste is slurried by the addition of water, an appropriate dilution solvent amount that is an amount obtained by subtracting the addition amount of water is calculated. .

適正希釈溶媒量算出手段2で算出された適正希釈溶媒量の数値は、希釈溶媒投入手段4に伝達され、希釈溶媒投入手段4から廃棄物蓄積設備3への希釈溶媒の投入量の制御の際の判断基準として利用される。   The numerical value of the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means 2 is transmitted to the dilution solvent input means 4, and at the time of controlling the input amount of the dilution solvent from the dilution solvent input means 4 to the waste accumulation facility 3. It is used as a judgment standard.

図1に示される廃棄物処理システムにおいて、希釈溶媒投入手段4は、希釈溶媒を貯留する希釈溶媒貯留槽4aと、所望の量の希釈溶媒を廃棄物蓄積設備に投入する希釈溶媒投入量調節手段4bとを備えている。したがって、廃棄物蓄積設備3に蓄積された計量後の廃棄物には、適正希釈溶媒量算出手段2で算出された適正希釈溶媒量の数値に基づき、希釈溶媒貯留槽4aからの希釈溶媒の供給量が希釈溶媒投入量調節手段4bで調節され、それにより、廃棄物蓄積設備3に蓄積された廃棄物に希釈溶媒が投入される。   In the waste treatment system shown in FIG. 1, the dilution solvent input means 4 includes a dilution solvent storage tank 4a for storing the dilution solvent, and a dilution solvent input amount adjustment means for supplying a desired amount of the dilution solvent to the waste storage facility. 4b. Therefore, the measured waste accumulated in the waste accumulation facility 3 is supplied with the dilution solvent from the dilution solvent storage tank 4a based on the value of the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means 2. The amount is adjusted by the diluted solvent input amount adjusting means 4 b, whereby the diluted solvent is input to the waste accumulated in the waste accumulation facility 3.

なお、本発明においては、他の実施態様として、廃棄物重量計量手段1において、廃棄物の計量の結果に応じて、該廃棄物に適正希釈溶媒量の希釈溶媒が投入される態様も挙げられる。   In the present invention, as another embodiment, there is also an embodiment in which the waste weight weighing unit 1 is charged with an appropriate amount of dilution solvent to the waste according to the result of weighing the waste. .

希釈溶媒投入量調節手段4bとしては、例えば、希釈溶媒の投入流量と適正希釈溶媒量とに基づき、適正希釈溶媒量の投入が完了するまでの時間、希釈溶媒の流通を行なう自動弁、廃棄物蓄積設備3への希釈溶媒の投入流量を制御する流量制御手段等が挙げられる。前記流量制御手段としては、例えば、積算流量計とシーケンサーとの組み合わせ等が挙げられる。   As the diluted solvent input amount adjusting means 4b, for example, based on the flow rate of the diluted solvent and the appropriate diluted solvent amount, an automatic valve that distributes the diluted solvent for a period of time until the input of the appropriate diluted solvent amount is completed. Examples thereof include a flow rate control means for controlling the flow rate of the diluting solvent to the storage facility 3. Examples of the flow rate control means include a combination of an integrating flow meter and a sequencer.

廃棄物蓄積設備3で得られた混合物は、その後、メタン発酵槽5に導入される。   The mixture obtained in the waste accumulation facility 3 is then introduced into the methane fermentation tank 5.

メタン発酵槽5内では、メタン発酵を行なう微生物若しくは微生物群又は該微生物を含む汚泥等がメタン発酵に適した条件下に保持されている。前記メタン発酵を行なう微生物若しくは微生物群は、慣用のものが用いられうる。   In the methane fermentation tank 5, microorganisms or microorganism groups that perform methane fermentation or sludge containing the microorganisms are maintained under conditions suitable for methane fermentation. As the microorganism or microorganism group performing the methane fermentation, a conventional microorganism can be used.

メタン発酵槽5内では、前記混合物は、前記微生物若しくは微生物群又は該微生物を含む汚泥等によるメタン発酵能、処理対象となる廃棄物量等に応じた滞留時間で滞留される。   In the methane fermentation tank 5, the mixture is retained for a residence time corresponding to the methane fermentation ability by the microorganisms or the microorganism group or sludge containing the microorganisms, the amount of waste to be treated, and the like.

メタン発酵後、メタン発酵槽5からメタンガスが回収される。   After the methane fermentation, methane gas is recovered from the methane fermentation tank 5.

以下、本発明を実施例等により詳細に説明するが、本発明は、かかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. demonstrate this invention in detail, this invention is not limited to this Example.

(実験例1)
ゴミAとゴミBとゴミCとを含有した廃棄物について、4日間にわたって、ゴミA、ゴミB及びゴミCそれぞれの重量比率を調べた。その結果、第1日目〜第4日目のゴミAとゴミBとゴミCとの重量比率は、表1に示されるとおりであった。
(Experimental example 1)
About the waste containing garbage A, garbage B, and garbage C, the weight ratio of each of garbage A, garbage B, and garbage C was investigated over 4 days. As a result, the weight ratio of the garbage A, the garbage B, and the garbage C on the first day to the fourth day was as shown in Table 1.

なお、以下、廃棄物の含水率を60重量%とし、流動性を確保するために、4倍希釈を行ない、含水率を90重量%とすることを標準の運転条件とする。このとき、タンパク質含有量が多いゴミBとゴミCとの比率が十分に低い場合、アンモニア性窒素濃度は、高温(53〜55℃)メタン発酵におけるメタン発酵阻害を起こさない2000mg/L以下に維持される。   Hereinafter, it is assumed that the water content of waste is 60% by weight, in order to ensure fluidity, 4-fold dilution is performed and the water content is 90% by weight, which is a standard operating condition. At this time, when the ratio of garbage B and garbage C having a high protein content is sufficiently low, the ammoniacal nitrogen concentration is maintained at 2000 mg / L or less which does not cause inhibition of methane fermentation in high temperature (53-55 ° C.) methane fermentation. Is done.

第1日目及び第3日目は、予測アンモニア性窒素濃度が2000mg/Lを下回るため、標準の運転条件である4倍希釈のままとし、第2日目は、ゴミCの重量比率が上昇したため、4倍希釈とすると、予測アンモニア性窒素濃度が2000mg/L以上になる計算となった。このため、表1に示されるように、希釈用水を追加投入して、希釈倍率を4.2倍とし、アンモニア性窒素濃度を2000mg/L未満となるように調整した。さらに、第4日目も、ゴミB及びゴミCの重量比率が上昇したため、4倍希釈又は4.2倍希釈の場合、予測アンモニア性窒素濃度が2000mg/L以上となる。このため、希釈用水を追加投入して、希釈倍率を4.4倍とし、アンモニア性窒素濃度を2000mg/L未満となるように調整した。   On the first day and the third day, the predicted ammonia nitrogen concentration is below 2000 mg / L, so the standard operating conditions remain the 4-fold dilution. On the second day, the weight ratio of garbage C increases. Therefore, when the dilution was 4 times, the predicted ammonia nitrogen concentration was calculated to be 2000 mg / L or more. Therefore, as shown in Table 1, additional dilution water was added to make the dilution rate 4.2 times, and the ammonia nitrogen concentration was adjusted to be less than 2000 mg / L. Furthermore, since the weight ratio of garbage B and garbage C also increased on the fourth day, the predicted ammoniacal nitrogen concentration becomes 2000 mg / L or more in the case of 4-fold dilution or 4.2-fold dilution. For this reason, additional dilution water was added, the dilution rate was 4.4 times, and the ammoniacal nitrogen concentration was adjusted to be less than 2000 mg / L.

一方、含水率を90%にするための標準の運転条件のまま実施する。この方法の場合、表1に示されるように、予測アンモニア濃度が2000mg/Lを超過することがわかる。   On the other hand, it carries out with the standard operating conditions for making the moisture content 90%. In the case of this method, as shown in Table 1, it can be seen that the predicted ammonia concentration exceeds 2000 mg / L.

表1及び図2に、結果を示す。   The results are shown in Table 1 and FIG.

Figure 2007190489
Figure 2007190489

また、図2に示されるように、ゴミA、ゴミB及びゴミCそれぞれの重量比率から算出される全窒素濃度に基づき、適宜希釈用水を添加して希釈し、処理する方法では、高温メタン発酵槽内のアンモニア性窒素濃度を2000mg/L未満に維持することができることがわかる。しかし、廃棄物の含水率を90%にするための標準の運転条件のまま実施する方法では、メタン発酵槽内のアンモニア性窒素濃度が2000mg/Lを超える場合が生じうることがわかる。   In addition, as shown in FIG. 2, in the method of adding dilution water as appropriate and diluting based on the total nitrogen concentration calculated from the weight ratios of garbage A, garbage B, and garbage C, high-temperature methane fermentation It can be seen that the ammoniacal nitrogen concentration in the tank can be maintained below 2000 mg / L. However, it can be seen that the ammonia nitrogen concentration in the methane fermentation tank may exceed 2000 mg / L in the method that is carried out under the standard operating conditions for setting the moisture content of the waste to 90%.

(実験例2)
10日間にわたって排出される前記ゴミAとゴミBとゴミCとを含有した廃棄物について、ゴミA、ゴミB及びゴミCを計量し、ゴミA、ゴミB及びゴミCそれぞれの重量比率から算出される全窒素濃度に基づき、適宜希釈用水を添加して希釈し、処理する場合と、含水率を90%とする標準の運転条件のまま(4倍希釈)で処理する場合とにおける全窒素濃度及びアンモニア濃度を表2及び図3に示す。
(Experimental example 2)
The waste containing waste A, waste B, and waste C, which is discharged over 10 days, is measured from the weight ratios of waste A, waste B, and waste C. Based on the total nitrogen concentration to be added, dilution water is appropriately added for dilution, and when processing is performed under the standard operating conditions with a moisture content of 90% (4 times dilution), and The ammonia concentration is shown in Table 2 and FIG.

Figure 2007190489
Figure 2007190489

表2及び図3に示されるように、10日間に導入される廃棄物中のゴミ成分によって、アンモニア性窒素濃度は変化することがわかる。また、ゴミA、ゴミB及びゴミCそれぞれの重量比率から算出される全窒素濃度に基づき、適宜希釈用水を添加して希釈し、処理する場合、全窒素濃度が高い廃棄物が排出される日が続いても、アンモニア濃度を2000mg以下に容易に維持できることがわかる。   As shown in Table 2 and FIG. 3, it can be seen that the ammoniacal nitrogen concentration varies depending on the waste components in the waste introduced in 10 days. In addition, based on the total nitrogen concentration calculated from the respective weight ratios of garbage A, garbage B, and garbage C, when diluting by adding water for dilution as appropriate, the day when waste with a high total nitrogen concentration is discharged It can be seen that the ammonia concentration can be easily maintained at 2000 mg or less even if the process continues.

なお、例えば、季節の変動等で高窒素含有廃棄物(タンパク質含有廃棄物)が多く排出される時期は、相対的にメタン発酵槽内のアンモニア性窒素濃度が高くなる。   Note that, for example, when a large amount of high nitrogen-containing waste (protein-containing waste) is discharged due to seasonal fluctuations, the ammonia nitrogen concentration in the methane fermentation tank is relatively high.

また、アンモニア性窒素濃度が2000mg/Lを超えると、メタン生成菌の活性低下によりメタン発酵が阻害され、メタン発酵槽内にプロピオン酸が蓄積し、ガス発生量は低下する。   On the other hand, when the ammoniacal nitrogen concentration exceeds 2000 mg / L, methane fermentation is inhibited due to a decrease in the activity of the methane-producing bacteria, propionic acid accumulates in the methane fermentation tank, and the amount of gas generated decreases.

希釈倍率の調整を行なった場合、高窒素含有ゴミが多く排出される時期でも常に、高温メタン発酵槽内のアンモニア性窒素濃度が、2000mg/L未満となり、高温メタン発酵を良好に行なうことができる。   When adjusting the dilution rate, the ammoniacal nitrogen concentration in the high-temperature methane fermentation tank is always less than 2000 mg / L even when a large amount of high nitrogen-containing waste is discharged, and high-temperature methane fermentation can be performed satisfactorily. .

(実験例3)
表1に示すようなゴミ比率で、ゴミA、ゴミB及びゴミCそれぞれが排出された場合において、メタン発酵槽への廃棄物の導入に先立ち、収集時の重量に基づき、該ゴミA、ゴミB及びゴミCそれぞれについて、個別に希釈する。すなわち、第1日目においては、収集時の重量に基づき、ゴミAに対して4倍希釈(アンモニア性窒素濃度:1500mg/L)、ゴミBに対して4.5倍希釈(アンモニア性窒素濃度:2000mg/L)、ゴミCに対して6倍希釈(アンモニア性窒素濃度:2000mg/L)となるように希釈する。ついで、希釈後の産物を混合して、メタン発酵槽に導入する。これにより、高温メタン発酵槽内におけるアンモニア性窒素濃度は、1724mg/Lとなり、阻害を起こさないレベルに抑えられる。また、第4日目には、第1日目においては、収集時の重量に基づき、ゴミAに対して4倍希釈(アンモニア性窒素濃度:1500mg/L)、ゴミBに対して4.5倍希釈(アンモニア性窒素濃度:2000mg/L)、ゴミCに対して6倍希釈(アンモニア性窒素濃度:2000mg/L)となるように希釈する。ついで、希釈後の産物を混合して、メタン発酵槽に導入する。これにより、高温メタン発酵槽内におけるアンモニア性窒素濃度は、1826mg/Lとなり、阻害を起こさないレベルに抑えられる。
(Experimental example 3)
When garbage A, garbage B, and garbage C are discharged at a garbage ratio as shown in Table 1, prior to the introduction of waste into the methane fermentation tank, the garbage A, garbage is collected based on the weight at the time of collection. Dilute B and garbage C individually. That is, on the first day, based on the weight at the time of collection, diluted 4-fold with respect to garbage A (ammonia nitrogen concentration: 1500 mg / L) and diluted 4.5-fold with respect to garbage B (ammonia nitrogen concentration) : 2000 mg / L), diluted to 6-fold with respect to garbage C (ammonia nitrogen concentration: 2000 mg / L). Next, the diluted product is mixed and introduced into the methane fermenter. Thereby, the ammoniacal nitrogen concentration in the high-temperature methane fermenter becomes 1724 mg / L, and is suppressed to a level that does not cause inhibition. On the fourth day, on the first day, based on the weight at the time of collection, diluted 4-fold with respect to garbage A (ammonia nitrogen concentration: 1500 mg / L) and 4.5 with respect to garbage B. Dilute twice (ammonia nitrogen concentration: 2000 mg / L) and 6-fold dilution with respect to garbage C (ammonia nitrogen concentration: 2000 mg / L). Next, the diluted product is mixed and introduced into the methane fermenter. Thereby, the ammoniacal nitrogen concentration in the high-temperature methane fermenter becomes 1826 mg / L, and is suppressed to a level that does not cause inhibition.

(実施例1)
図1に示される廃棄物処理システムを実際のメタン発酵設備に適用した。メタン発酵設備の高温メタン発酵槽内の液体中のアンモニア性窒素濃度の変化を図4に示す。なお、図4中、希釈制御を開始した日を0日とし、経過日数を横軸に示す。また、図4中、白丸印が、流動性を確保するために、4倍希釈を行ない、含水率を90重量%とした標準の運転条件とした場合における推定アンモニア性窒素濃度を示す。さらに、図4中、黒四角印は、実際のアンモニア性窒素濃度の測定値を示す。また、表3に、ゴミ量、標準条件における推定アンモニア性窒素濃度、運転時における希釈倍率の変動及び実際のアンモニア性窒素濃度の測定値を示す。
Example 1
The waste treatment system shown in FIG. 1 was applied to an actual methane fermentation facility. The change of the ammoniacal nitrogen concentration in the liquid in the high temperature methane fermentation tank of the methane fermentation facility is shown in FIG. In FIG. 4, the day when the dilution control is started is defined as day 0, and the elapsed days are indicated on the horizontal axis. In FIG. 4, white circles indicate the estimated ammoniacal nitrogen concentration in the case of standard operating conditions in which 4-fold dilution is performed and the water content is 90% by weight in order to ensure fluidity. Further, in FIG. 4, black square marks indicate measured values of actual ammonia nitrogen concentration. Table 3 shows the amount of dust, the estimated ammonia nitrogen concentration under standard conditions, the fluctuation of the dilution factor during operation, and the measured values of the actual ammonia nitrogen concentration.

Figure 2007190489
Figure 2007190489

その結果、図4に示されるように、制御適用前のアンモニア性窒素濃度は、2000〜2200mg/Lとなり、メタン発酵阻害の徴候が見られた。このように、制御開始後、メタン発酵槽内の液体が入れ替わるのに要する期間後(24日目以降)は、メタン発酵槽内の液体中のアンモニア性窒素濃度は、2000mg/L未満に維持され、阻害を起こさないレベルに抑えられることがわかる。   As a result, as shown in FIG. 4, the ammoniacal nitrogen concentration before the application of control was 2000 to 2200 mg / L, indicating signs of methane fermentation inhibition. Thus, after the start of control, after the period required for the liquid in the methane fermentation tank to be replaced (after the 24th day), the ammoniacal nitrogen concentration in the liquid in the methane fermentation tank is maintained at less than 2000 mg / L. It can be seen that the level can be suppressed to a level that does not cause inhibition.

本発明によれば、効率のよいメタン発酵が可能になる。   According to the present invention, efficient methane fermentation becomes possible.

図1は、廃棄物処理システムの実施形態の1つを示す概略説明図である。FIG. 1 is a schematic explanatory diagram showing one embodiment of a waste treatment system. 図2は、表1の各日のゴミを10日間、高温(53〜55℃)メタン発酵させた後の液体成分中におけるアンモニア性窒素の濃度を示す図である。図中、三角印は、含水率を90%にするための標準の運転条件のまま実施する場合の結果、丸印は、ゴミA、ゴミB及びゴミCそれぞれの重量比率から算出される全窒素濃度に基づき、適宜希釈用水を添加して希釈し、処理する場合の結果を示す。また、図中、破線部は、高温メタン発酵におけるアンモニア性窒素濃度の阻害濃度を示す。FIG. 2 is a diagram showing the concentration of ammoniacal nitrogen in the liquid component after trash fermentation of each day of Table 1 for 10 days at high temperature (53-55 ° C.). In the figure, the triangle marks indicate the results when the standard operating conditions for achieving a moisture content of 90% are performed, and the circle marks indicate the total nitrogen calculated from the weight ratios of garbage A, garbage B, and garbage C. Based on the concentration, the results are shown in the case of diluting by appropriately adding dilution water. Moreover, the broken line part in a figure shows the inhibitory density | concentration of the ammoniacal nitrogen density | concentration in high temperature methane fermentation. 図3は、実験例2の条件で、10日間にわたって排出される前記ゴミAとゴミBとゴミCとを含有した廃棄物をメタン発酵させた後の液体成分中におけるアンモニア性窒素の濃度を示す図である。図中、ひし形印は、含水率を90%にするための標準の運転条件のまま実施する場合の結果、四角印は、ゴミA、ゴミB及びゴミCそれぞれの重量比率から算出される全窒素濃度に基づき、適宜希釈用水を添加して希釈し、処理する場合の結果を示す。また、図中、太線部は、高温メタン発酵におけるアンモニア性窒素濃度の阻害濃度を示す。FIG. 3 shows the concentration of ammonia nitrogen in the liquid component after methane fermentation of the waste containing waste A, waste B, and waste C discharged over 10 days under the conditions of Experimental Example 2. FIG. In the figure, the diamond marks indicate the results when the standard operating conditions for achieving a moisture content of 90% are used, and the square marks indicate the total nitrogen calculated from the respective weight ratios of garbage A, garbage B, and garbage C. Based on the concentration, the results are shown in the case of diluting by appropriately adding dilution water. Moreover, the thick line part in a figure shows the inhibitory concentration of the ammoniacal nitrogen concentration in high temperature methane fermentation. 図4は、図1に示される廃棄物処理システムを実際のメタン発酵設備に適用した場合の高温メタン発酵槽内の発酵液中のアンモニア性窒素濃度の変化を示す図である。図中、希釈制御を開始した日を0日とし、経過日数を横軸に示す。また、図中、白丸印が、流動性を確保するために、4倍希釈を行ない、含水率を90重量%とした標準の運転条件とした場合における推定アンモニア性窒素濃度を示す。さらに、図中、黒四角印は、実際のアンモニア性窒素濃度の測定値を示す。FIG. 4 is a diagram showing changes in the ammoniacal nitrogen concentration in the fermentation liquor in the high-temperature methane fermentation tank when the waste treatment system shown in FIG. 1 is applied to an actual methane fermentation facility. In the figure, the day when the dilution control is started is defined as day 0, and the elapsed days are shown on the horizontal axis. Also, in the figure, white circles indicate the estimated ammoniacal nitrogen concentration when standard dilution is performed with 4-fold dilution to ensure fluidity and a moisture content of 90% by weight. Further, in the figure, black square marks indicate actual measured values of ammoniacal nitrogen concentration.

符号の説明Explanation of symbols

1 廃棄物重量計量手段
2 適正希釈溶媒量算出手段
3 廃棄物蓄積設備
4 希釈溶媒投入手段
4a 希釈溶媒貯留槽
4b 希釈溶媒投入量調節手段
5 メタン発酵槽
DESCRIPTION OF SYMBOLS 1 Waste weight measurement means 2 Appropriate dilution solvent amount calculation means 3 Waste accumulation equipment 4 Dilution solvent input means 4a Dilution solvent storage tank 4b Dilution solvent input amount adjustment means 5 Methane fermentation tank

Claims (3)

廃棄物を該廃棄物中に含まれる成分毎に計量し、該成分毎の重量と各成分中に含まれる窒素の含有量とに基づき、メタン発酵における許容範囲のアンモニア性窒素濃度を与える全窒素濃度となるように溶媒を該廃棄物に添加して、該廃棄物を含む混合物の全窒素濃度を調整し、メタン発酵を行なうことを特徴とする、廃棄物処理方法。   Total nitrogen that measures waste for each component contained in the waste and gives an ammoniacal nitrogen concentration within an acceptable range in methane fermentation based on the weight of each component and the content of nitrogen contained in each component A waste treatment method comprising adding a solvent to the waste so as to have a concentration, adjusting the total nitrogen concentration of the mixture containing the waste, and performing methane fermentation. (A)廃棄物の重量を成分毎に計量するステップ、
(B)前記ステップ(A)で計量された各成分の重量と、各成分中に含まれる窒素の含有量とに基づき、該廃棄物の全窒素含有量を算出し、該全窒素含有量からメタン発酵の許容範囲のアンモニア性窒素濃度を維持する適正希釈溶媒量を算出するステップ、
(C)前記ステップ(B)で算出された適正希釈量となるように、希釈溶媒を、前記ステップ(A)で計量された廃棄物と混合し、得られた混合物の全窒素濃度を、メタン発酵における許容範囲のアンモニア性窒素濃度を与える濃度となるように調整するステップ、及び
(D)前記ステップ(C)で得られた混合物を、メタン発酵に供するステップ、
を含む、請求項1記載の廃棄物処理方法。
(A) measuring the weight of the waste for each component;
(B) Based on the weight of each component weighed in step (A) and the content of nitrogen contained in each component, the total nitrogen content of the waste is calculated, and from the total nitrogen content Calculating an appropriate amount of diluting solvent that maintains an acceptable ammoniacal nitrogen concentration for methane fermentation;
(C) The diluted solvent is mixed with the waste weighed in the step (A) so that the appropriate dilution amount calculated in the step (B) is obtained, and the total nitrogen concentration of the obtained mixture is changed to methane. Adjusting the concentration to give an acceptable ammoniacal nitrogen concentration in fermentation, and (D) subjecting the mixture obtained in step (C) to methane fermentation,
The waste disposal method of Claim 1 containing this.
廃棄物の重量を成分毎に計量する廃棄物重量計量手段と、
該廃棄物重量計量手段で計量された成分毎の重量と、成分毎の窒素含有量とに基づき、メタン発酵の許容範囲のアンモニア性窒素濃度を与える該廃棄物に対する適正希釈溶媒量を算出する適正希釈溶媒量算出手段と、
該廃棄物重量計量手段で計量された後の廃棄物を蓄積させる廃棄物蓄積設備と、
該適正希釈溶媒量算出手段により算出された適正希釈溶媒量に基づき、廃棄物に希釈溶媒を投入する希釈溶媒投入手段と、
希釈溶媒が混合された混合物をメタン発酵に供するメタン発酵槽と
を備え、
該適正希釈溶媒量算出手段で算出された適正希釈溶媒量に基づき、該希釈溶媒投入手段により、希釈溶媒が、廃棄物と混合され、それにより、該廃棄物が、メタン発酵の許容範囲のアンモニア性窒素濃度を与える全窒素濃度に調整され、得られた混合物が、該メタン発酵槽に導入され、メタン発酵に供されるように構成されていることを特徴とする、廃棄物処理システム。
Waste weight measuring means for measuring the weight of waste for each component;
Based on the weight of each component weighed by the waste weight weighing means and the nitrogen content of each component, the appropriate amount of solvent for the waste that gives the ammonia nitrogen concentration within the allowable range of methane fermentation is calculated. A dilution solvent amount calculating means;
A waste accumulation facility for accumulating waste after being weighed by the waste weight weighing means;
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, dilution solvent injection means for introducing the dilution solvent into the waste,
A methane fermentation tank for subjecting the mixture mixed with the dilution solvent to methane fermentation,
Based on the appropriate dilution solvent amount calculated by the appropriate dilution solvent amount calculation means, the dilution solvent is mixed with the waste by the dilution solvent input means, so that the waste is ammonia within the allowable range of methane fermentation. A waste treatment system, wherein the mixture is adjusted to a total nitrogen concentration that gives a neutral nitrogen concentration, and the resulting mixture is introduced into the methane fermentation tank and used for methane fermentation.
JP2006011200A 2006-01-19 2006-01-19 Waste treatment method and waste treatment system Expired - Fee Related JP5204954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011200A JP5204954B2 (en) 2006-01-19 2006-01-19 Waste treatment method and waste treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011200A JP5204954B2 (en) 2006-01-19 2006-01-19 Waste treatment method and waste treatment system

Publications (2)

Publication Number Publication Date
JP2007190489A true JP2007190489A (en) 2007-08-02
JP5204954B2 JP5204954B2 (en) 2013-06-05

Family

ID=38446583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011200A Expired - Fee Related JP5204954B2 (en) 2006-01-19 2006-01-19 Waste treatment method and waste treatment system

Country Status (1)

Country Link
JP (1) JP5204954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219960A (en) * 2008-03-14 2009-10-01 Metawater Co Ltd Methane fermentation process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070908A (en) * 1998-08-31 2000-03-07 Kubota Corp Method for anaerobically digesting organic waste
JP2004337667A (en) * 2003-05-13 2004-12-02 Kurimoto Ltd Method for methane fermentation of organic substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070908A (en) * 1998-08-31 2000-03-07 Kubota Corp Method for anaerobically digesting organic waste
JP2004337667A (en) * 2003-05-13 2004-12-02 Kurimoto Ltd Method for methane fermentation of organic substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219960A (en) * 2008-03-14 2009-10-01 Metawater Co Ltd Methane fermentation process

Also Published As

Publication number Publication date
JP5204954B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
TWI640481B (en) Wastewater treatment plant online monitoring and control
KR101201865B1 (en) System for managing livestock animal manure and method therefor
Ohimain et al. Some selected physico-chemical and heavy metal properties of palm oil mill effluents
Rodrigues et al. Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater
CN102784795A (en) Kitchen waste resourceful utilization method
JP4834021B2 (en) Methane fermentation treatment method
Maktabifard et al. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants–case studies from northern Poland
JP7035572B2 (en) How to operate a wet methane fermentation treatment facility
Baquero-Rodríguez et al. A simplified method for estimating chemical oxygen demand (COD) fractions
JP5204954B2 (en) Waste treatment method and waste treatment system
JP5180132B2 (en) Methane fermentation method and methane fermentation apparatus
JP7095501B2 (en) Waste treatment facility management method and waste treatment facility management equipment
JP4784521B2 (en) Methane fermentation treatment method
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
JP3630165B1 (en) Methane fermentation treatment method
JP2004290921A (en) Methane fermentation method and system
JP5006424B2 (en) Methane fermentation treatment method
JP4403812B2 (en) Methane fermentation treatment method
JP2007098369A (en) Management system for biologically treating organic waste and method thereof
US20220402797A1 (en) Method and system for storing biomass raw material
JP6829956B2 (en) Anaerobic treatment method and anaerobic treatment equipment
JP2006346572A (en) Organic substance treatment method
Hill et al. Continuously expanding digestor performance using a swine waste substrate
JP6298792B2 (en) Sludge treatment system and sludge treatment method
Aggarangsi et al. Biogas System Operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110707

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5204954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees