JP2000068118A - 永久電流超電導磁石装置 - Google Patents

永久電流超電導磁石装置

Info

Publication number
JP2000068118A
JP2000068118A JP24062198A JP24062198A JP2000068118A JP 2000068118 A JP2000068118 A JP 2000068118A JP 24062198 A JP24062198 A JP 24062198A JP 24062198 A JP24062198 A JP 24062198A JP 2000068118 A JP2000068118 A JP 2000068118A
Authority
JP
Japan
Prior art keywords
superconducting
permanent current
current switch
unit
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24062198A
Other languages
English (en)
Other versions
JP3715442B2 (ja
Inventor
Masatoshi Yoshikawa
正敏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24062198A priority Critical patent/JP3715442B2/ja
Publication of JP2000068118A publication Critical patent/JP2000068118A/ja
Application granted granted Critical
Publication of JP3715442B2 publication Critical patent/JP3715442B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】 【課題】 超電導接続に特殊な技術や対策を施すことな
く、従来と同一の励磁設備および操作方法で磁石装置中
心付近の中心磁場を極めて安定にする。 【解決手段】 同心状の複数の超電導磁石3を構成する
複数個の単位超電導コイル2a,2bが直列接続されて
いるため、同じ割合の励磁速度で同時に同心状の複数の
超電導磁石3を励磁することができて従来のように操作
方法が煩雑とはならない。また、複数個の直列接続され
た単位超電導コイル2a,2bと第1の永久電流スイッ
チ5からなる閉回路に加えて、任意の単位超電導コイル
2aの両端を接続して閉回路を構成する第2の永久電流
スイッチ6を設けているため、超電導磁石回路が2つの
閉回路からなり、それぞれの相互誘導により、磁石装置
中心磁場の減衰を抑えて極めて安定化させることができ
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば理化学用N
MR(核磁気共鳴)分析装置や医療用断層映像装置(M
RI)などに組み込まれ、永久電流モードで運転される
永久電流超電導磁石装置に関する。
【0002】
【従来の技術】一般に、この理化学用NMR分析装置で
は、磁界強度が高くしかも磁界の時間的変動(減衰)が
極めて小さい永久電流超電導磁石装置を必要としてい
る。このため、通常、この永久電流超電導磁石装置は永
久電流スイッチを用いて形成された閉回路を利用するこ
とで永久電流モードで運転されている。
【0003】ところが、実際には、永久電流モードの運
転時に、超電導コイル間の超電導線の接続部分の微小な
接続抵抗が主な原因になって、永久電流が時間と共に徐
々に減衰するために磁場の減衰が生じている。超電導線
の接続部分における通常の半田付けでは、半田材料が超
電導材料ではないので、この接続抵抗を10-9オーム程
度以下にすることは困難であるが、接続しにくい超伝導
線のフィラメント同士を、スポット溶接や圧着などで直
に接続して10-12オーム程度とすることができる接続
技術が開発されている。これにより、磁場の減衰度が
0.01ppm/hr程度の永久電流超電導磁石装置が実現可
能である。
【0004】しかし、このような超電導線間の接続抵抗
値は磁界によりその抵抗値が影響を受け、その接続部分
の磁束密度が1T(テスラ=104ガウス)程度以上に
なると、その接続部分は超電導状態から通常の金属導電
状態に移行してしまい、接続抵抗値が急激に上昇して電
流(磁場)の減衰も大きくなってしまう。そのため、接
続部分に磁気シールドを施すなどの特殊な対策が必要と
なる。このような特殊な対策を施すことなく極めて安定
な磁場を得る方法として、従来より特公平4−6110
3号公報に示される方法が提案されている。
【0005】この方法による永久電流超電導磁石装置3
0は、図5に示すように、外周側の第1の超電導磁石3
1と、その内周側の第2の超電導磁石32とを同心状に
有し内部に作用空間が形成されている。さらに、第1の
超電導磁石31の外周側には磁場補正用超電導コイル3
3が、第1の超電導磁石31および第2の超電導磁石3
2に対して同心状に配設されている。
【0006】この第1の超電導磁石31は、円筒状に巻
回された第1の超電導コイル34と、この第1の超電導
コイル34と並列接続された第1の永久電流スイッチ3
5と、第1の超電導コイル34に対して励磁用の電流を
供給する励磁用電源36と、第1の永久電流スイッチ3
5のヒータに対して電流を供給するヒータ用電源37と
を有している。また、第2の超電導磁石32は、第1の
超電導コイル34の内周側に他の超電導線が同心状でか
つ円筒状に巻回された第2の超電導コイル38と、この
第2の超電導コイル38と並列接続された第2の永久電
流スイッチ39と、第2の超電導コイル38に対して励
磁用の電流を供給する励磁用電源40と、第2の永久電
流スイッチ39のヒータに対して電流を供給するヒータ
用電源41とを有している。
【0007】さらに、クライオスタット42の内部にお
いて、これらの第1の超電導磁石31と第2の超電導磁
石32とがそれぞれ電気的に独立し、かつ、第2の超電
導コイル38が第1の超電導コイル34のボア内部に具
備されている。これによって、第2の超電導コイル38
の電流減衰による作用空間内の磁場の減衰を、この電流
減衰に伴って第1の超電導コイル34に相互誘導される
電流による第1の超電導コイル34の作用空間内の磁場
の増加分で補償することにより、作用空間内の磁場を極
めて安定に保とうとしている。つまり、第2の超電導コ
イル38の電流による磁界低下分と、それにより誘起さ
れる第1の超電導コイル34の電流による磁界増加分を
等しくすることにより、作用空間内の磁界強度を一定に
保つようにしている。
【0008】
【発明が解決しようとする課題】ところが、上記従来の
方法では、2つの独立した超電導磁石31,32をそれ
ぞれ励磁するためには、独立した別々の励磁用電源3
6,40が必要となると共に、独立した別々の永久電流
スイッチ35,39に対するヒータ用電源37,41が
必要となる。しかも、電気的に独立した第1の超電導コ
イル34および第2の超電導コイル38を励磁する場合
には、磁場中のコイルに働く力のバランスが崩れてコイ
ル部分が破損する虞があるため、それぞれの超電導磁石
31,32を同じ割合の励磁速度で同時に励磁する必要
がある。このように、励磁用電源36,40などの励磁
設備を2つ用い、2つの設備を操作するため、超電導磁
石装置30の操作方法は煩雑となり、その煩雑さ故にそ
の操作方法は、1つの超電導磁石だけからなる永久電流
超電導磁石装置の操作方法(同じ割合の励磁速度で同時
に励磁する必要がない場合)と比べると著しく異なって
いる。
【0009】本発明は、上記従来の問題を解決するもの
で、超電導接続に特殊な技術や対策を施すことなく、し
かも、1つの超電導磁石だけからなる磁石装置と同様の
励磁設備および操作方法によって磁石装置中心付近の中
心磁場が極めて安定な永久電流超電導磁石装置を提供す
ることを目的とする。
【0010】
【課題を解決するための手段】本発明の永久電流超電導
磁石装置は、複数個の単位超電導コイルが直列接続され
た超電導磁石と、直列接続された単位超電導コイルより
なる直列回路の両端に接続された第1の永久電流スイッ
チと、複数個の単位超電導コイルの任意の一つまたは、
連続する所定数の単位超電導コイルの両端に接続された
少なくとも一つの第2の永久電流スイッチとを有したこ
とを特徴とするものである。この場合、第2の永久電流
スイッチは複数設けられていてもよい。
【0011】この構成により、複数個の直列接続された
単位超電導コイルと第1の永久電流スイッチからなる閉
回路に加えて、複数個の単位超電導コイルのうち任意の
一または複数の単位超電導コイルの両端を接続して閉回
路を構成する少なくとも一つの第2の永久電流スイッチ
を設けているので、超電導磁石回路が少なくとも2つの
閉回路に分割され、それぞれの相互誘導により、磁石装
置中心付近の磁場の減衰が抑えられ、磁石装置中心付近
の磁場を極めて安定に保つことが可能となる。また、こ
れらの少なくとも2つの閉回路を構成している各超電導
磁石は、複数個の単位超電導コイルが直列接続されてい
るので、同じ割合の励磁速度で同時に容易に励磁するこ
とが可能となって、例えば従来のような電気的に独立し
た2つの超電導磁石に対して励磁用電源などの励磁設備
を2つ用いる必要がなくなって部品点数が削減され、ま
た、2つの設備を操作したりする必要はなって操作方法
が煩雑なものとはならない。よって、超電導線間の接続
にスポット溶接などの特殊な接続技術や、磁気シールド
などの特殊な対策を施すことなく、しかも、1つの超電
導磁石だけからなる場合と同様の励磁設備(各1つの励
磁用電源およびヒータ用電源)によって、さらに、1つ
の超電導磁石だけからなる場合と同様の操作方法によっ
て同じ割合の励磁速度で同時に容易に励磁され得ること
から、従来のように煩雑な操作方法とはならず、磁石装
置中心付近の中心磁場が極めて安定なものとなる。
【0012】また、好ましくは、本発明の永久電流超電
導磁石装置における第2の永久電流スイッチが一つ設け
られ、第2の永久電流スイッチが接続されている単位超
電導コイルの自己インダクタンスをL1、その単位超電
導コイルに含まれる微小抵抗をR1、他の単位超電導コ
イルの自己インダクタンスをL2、他の単位超電導コイ
ルに含まれる微小抵抗をR2、それらの相互インダクタ
ンスをMとしたとき、
【0013】
【数1】
【0014】を満足する一または所定数の単位超電導コ
イルの両端に第2の永久電流スイッチが接続されてい
る。
【0015】この構成により、磁石装置中心付近の中心
磁場の減衰を、第2の永久電流スイッチがない場合の従
来の超電導磁石よりも低く抑える上記条件式(数1)を
満足する位置に第2の永久電流スイッチを配置して閉回
路を構成するので、第2の永久電流スイッチがない場合
の超電導磁石よりも磁場減衰率を低く抑えることがで
き、磁石装置中心付近の中心磁場が極めて安定な超電導
磁石装置となる。
【0016】さらに、好ましくは、本発明の永久電流超
電導磁石装置における第1の永久電流スイッチと第2の
永久電流スイッチとが共に熱式永久電流スイッチであっ
て、それらのヒータ線がヒータ用電源に対して直列接続
されている。
【0017】この構成により、第1の永久電流スイッチ
と第2の永久電流スイッチのヒータ線が直列接続されて
いるので、ヒータ用電源が共用できる。
【0018】
【発明の実施の形態】以下、本発明に係る永久電流超電
導磁石装置の実施形態について図面を参照して説明する
が、本発明は以下に示す実施形態に限定されるものでは
ない。
【0019】(実施形態1)図1は本発明の実施形態1
の超電導磁石装置の基本概念を示す回路図である。
【0020】図1において、この永久電流超電導磁石装
置1は、同心状に配列された各単位超電導コイル2a,
2bが直列接続された超電導磁石3と、単位超電導コイ
ル2a,2bの直列回路に励磁用の電流を供給可能な励
磁用電源4とを有している。これらの円筒状の単位超電
導コイル2a,2bの内側は作用空間として作用し、こ
の作用空間内に分析試料を挿入(NMR)して高磁場を
生じさせた状態で所定の組成分析を行ったり、また、こ
の作用空間内に人体を挿入(MRI)して高磁場を生じ
させた状態で人体の検診を行うようになっている。な
お、これらの単位超電導コイル2a,2bはそれぞれ一
または所定数の更なる単位超電導コイルから構成されて
いてもよい。
【0021】また、超電導磁石装置1は、単位超電導コ
イル2a,2bの直列回路の両端に接続された第1の永
久電流スイッチ5と、単位超電導コイル2aの両端に接
続された第2の永久電流スイッチ6と、第1の永久電流
スイッチ5および第2の永久電流スイッチ6のヒータ線
に対して電流を供給可能なヒータ用電源7とを有してい
る。これらの第1の永久電流スイッチ5と第2の永久電
流スイッチ6とは共に熱式永久電流スイッチであって、
それらのヒータ線が直列接続されてヒータ用電源7から
電流供給可能に構成されている。
【0022】このように、直列接続された単位超電導コ
イル2a,2bと閉回路を構成する第1の永久電流スイ
ッチ5に加えて、単位超電導コイル2aの両端を接続し
て閉回路を構成する第2の永久電流スイッチ6を設けて
いる。このように、超電導磁石回路が2つの閉回路から
なり、それぞれの相互誘導により、作用空間内(磁石装
置中心付近)の磁場の減衰を抑えることができて、作用
空間内の磁場を極めて安定に保つことができる。
【0023】この場合、それぞれの相互誘導とは、第2
の永久電流スイッチ6と並列接続されている単位超電導
コイル2aと、この単位超電導コイル2a以外の単位超
電導コイル2bとの相互誘導であり、例えば単位超電導
コイル2bの電流が減って磁束が減る方向に変化する
と、その磁束と鎖交する単位超電導コイル2aに、単位
超電導コイル2bの電流変化(減少)分に相当する電流
が誘起されることにより、作用空間内の磁場の減衰を相
殺的に抑えることができて、作用空間内の磁場を極めて
安定に保つことができる。このとき、単位超電導コイル
2a,2bが励磁用電源4に対して直列接続されている
だけでは単位超電導コイル2a,2bに流れる電流値は
同一であるが、単位超電導コイル2aの両端を接続した
閉回路を構成したことにより、単位超電導コイル2bの
電流変化(減少)分に相当する増加電流が単位超電導コ
イル2a側に誘起され得るようになっている。
【0024】上記構成により、その永久電流モード動作
を説明する。まず、複数個の単位超電導コイル2a,2
bの直列回路に並列に接続されている第1の永久電流ス
イッチ5と、単位超電導コイル2aに並列に接続されて
いる第2の永久電流スイッチ6のそれぞれのヒータ線に
外部のヒータ用電源7から通電して、それぞれの永久電
流スイッチ4,5を開状態(オフ状態)にする。この永
久電流スイッチ4,5の開状態(オフ状態)は、外部か
らの励磁用電源4によって複数個の単位超電導コイル2
a,2bに、電流値が所定の設定電流値I0に達するま
で電流を供給する。
【0025】次に、その供給電流値が所定の設定電流値
0に達したところで、外部のヒータ用電源7からの通
電をオフにして、それぞれの永久電流スイッチ4,5を
閉状態(オン状態)に切り換えて、単位超電導コイル2
a,2bと第1の永久電流スイッチ5で構成された閉回
路と、単位超電導コイル2aと第2の永久電流スイッチ
6で構成された閉回路とで電流がそれぞれ循環する永久
電流モードでの運転を行わせる。
【0026】このようにして、まず、単位超電導コイル
2a,2bを励磁した初期状態では、単位超電導コイル
2aの電流I1と単位超電導コイル2bの電流I2は、何
れも設定電流I0と等しいが、単位超電導コイル2a,
2bには微小抵抗R1,R2が存在するために時間と共に
それぞれ減衰を生じることとなる。
【0027】ここで、第2の永久電流スイッチ6と閉回
路を構成する単位超電導コイル2aの自己インダクタン
スをL1、単位超電導コイル2aに含まれる接続部等に
起因する微小抵抗をR1、単位超電導コイル2a以外の
単位超電導コイル2bの自己インダクタンスをL2、そ
の単位超電導コイル2bに含まれる接続部等に起因する
微小抵抗をR2、単位超電導コイル2a,2b間の相互
インダクタンスをMとすると、微小抵抗R1,R2による
電流変化は以下の回路方程式(数2および数3)により
求められる。
【0028】
【数2】
【0029】
【数3】
【0030】一方、第2の永久電流スイッチ6を設けて
いない場合の従来の超電導磁石では、励磁した後の電流
変化は以下の回路方程式(数4)により求められる。
【0031】
【数4】
【0032】t=0のとき、I1=I2=I0なので、上
記(数2)および(数3)により、下記の(数5)とな
る。
【0033】
【数5】
【0034】また、(数4)により、
【0035】
【数6】
【0036】ここで、L0は回路全体のインダクタンス
であり、L0=L1+L2+2Mを満足し、R0は回路全体
の微小抵抗であり、R0=R1+R2を満足する。
【0037】したがって、第2の永久電流スイッチ6が
ない従来の超電導磁石と比較して、作用空間内の磁場の
減衰を低く抑えるためには、電流I1,I2が変化するこ
とによる磁場減衰が、電流Iが変化することによる磁場
減衰よりも小さくなればよい。すなわち、電流がI1
2であるコイルの磁場定数(コイルに1A通電したと
きに生じる磁場の強さで定義され、単位はT/Aとな
る)をK1,K2、全体の超電導磁石3の磁場定数をK0
とすれば、次式(数7)が成立するようにすればよい。
但し、K0=K1+K2を満足する。
【0038】
【数7】
【0039】これらのI1,I2,Iを上記の(数7)に
代入すると、次の(数8)となり、これを整理して次の
(数9)が得られる。
【0040】
【数8】
【0041】
【数9】
【0042】この条件式(数9)を満足する位置に第2
の永久電流スイッチ6を配置して閉回路を構成すること
によって、第2の永久電流スイッチ6を設けていない場
合の従来の超電導磁石よりも磁場減衰率を低く抑えるこ
とができ、作用空間内の中心磁場が極めて安定した超電
導磁石装置1を得ることができる。
【0043】また、この(数9)において、一般的に
は、下記の(数10)が成り立つために、次の(数1
1)が得られる。
【0044】
【数10】
【0045】
【数11】
【0046】すなわち、上記(数9)の場合と同様に、
この条件式(数11)を満足する位置に第2の永久電流
スイッチ6を配置して閉回路を構成することによって、
第2の永久電流スイッチ6を設けていない場合の従来の
超電導磁石よりも磁場減衰率を低く抑えることができ、
作用空間内の中心磁場が極めて安定した超電導磁石装置
1を得ることができる。
【0047】(実施形態2)上記実施形態1では、直列
接続された複数個の単位超電導コイル2a,2bの任意
の一つである単位超電導コイル2aと並列に第2の永久
電流スイッチ6を接続して閉回路を構成したが、本実施
形態2では、直列接続された複数個の単位超電導コイル
のうちの、連続する一部(複数個)の単位超電導コイル
と並列に第2の永久電流スイッチを接続して閉回路を構
成した場合である。
【0048】図2は本発明の実施形態2の、磁場補正用
の磁性体シムを具備した超電導磁石装置の概略構成を示
す縦断面図、図3は図2の超電導磁石装置の概略構成を
示す回路図である。
【0049】図2および図3において、この永久電流超
電導磁石装置11は、同心状に配列された複数個の単位
超電導コイルよりなる超電導コイル12が直列接続され
た超電導磁石13と、この超電導コイル12の直列回路
の両端に接続され、超電導コイル12の直列回路に励磁
用の電流を供給可能な励磁用電源14とを有している。
この円筒状の超電導コイル12の内側の中心軸部分に
は、高磁場による作用空間Sが形成されるようになって
いる。
【0050】また、永久電流超電導磁石装置11は、複
数個の超電導コイル12に並列に第1の永久電流スイッ
チ15を接続して閉回路を形成すると共に、複数個の超
電導コイル12のうち、連続する任意の例えば超電導コ
イル121aに並列に第2の永久電流スイッチ16を接
続して閉回路を形成している。また、これらの第1の永
久電流スイッチ15と第2の永久電流スイッチ16とは
共に熱式永久電流スイッチであって、第1の永久電流ス
イッチ15のヒータ線と第2の永久電流スイッチ16の
ヒータ線とはクライオスタット18の内部で直列に接続
され、その直列回路の両端は外部のヒータ用電源17に
接続されてヒータ用電源17から電流供給可能に構成さ
れている。
【0051】さらに、超電導コイル12は超電導コイル
121、122,123からなっている。この超電導コ
イル121(121aと121b)は、軸心方向に等し
い長さを有し、それぞれ所要のターン数を有して巻回さ
れた6個の単位超電導コイルが同心状で径方向に積層さ
れてなっている。その内側には、超電導コイル122が
相互作用を行う超電導コイル121に対して同心状に収
納配設されている。超電導コイル122は、超電導コイ
ル121とは軸心方向長が多少短かく設定されており、
それぞれ所要のターン数を有して巻回された3個の単位
超電導コイルが同心状で径方向に積層されてなるもので
ある。この超電導コイル122の空心部分を高磁場とす
る作用空間Sとしている。超電導コイル121の軸心長
を超電導コイル122に比して長くすることで、作用空
間Sにおける軸心方向の磁場の均一度を(軸方向両端に
よる磁界の乱れを抑制することで)可及的に高めるよう
にしている。
【0052】また、補正用の超電導コイル123が最外
周部に配設され、作用空間Sの軸心方向の中心に対して
上下対称となる位置、本実施形態2では中央と上下両側
に、それぞれ所要数のターン数を有して(上下側は同一
ターン数)配設されている。これにより、作用空間S内
の磁場を径方向及び軸心方向に対して均一に補正可能に
している。
【0053】なお、図示は示していないが、超電導コイ
ル123の外側には、外部へ漏れる磁界を抑制するシー
ルド部材、例えばシールド用の超電導コイルが必要に応
じて配設されている。
【0054】上記において、作用空間Sには、その中心
部に分析試料(NMRの場合)が挿入され、あるいは人
体が入れられ(MRIの場合)て、高磁場の下で組成解
析や検診が施される。
【0055】以上のように、超電導磁石回路が2つの閉
回路からなり、それぞれの相互誘導により、磁石装置中
心付近の作用空間Sの磁場の減衰を抑えることができ
る。この場合の相互誘導とは、第2の永久電流スイッチ
16と並列接続されている位超電導コイル121aと、
この超電導コイル121a以外の超電導コイル122,
121b,123との相互誘導であり、例えば超電導コ
イル122,121b,123に流れている電流が減っ
て磁束が減る方向に変化すると、その磁束と鎖交する超
電導コイル121a側に、その電流変化(減少)分に相
当する増加電流が誘起されることにより、作用空間Sの
磁場の減衰が抑制されて、作用空間Sの磁場を極めて安
定に保つことができる。このとき、超電導コイル12が
直列接続されているだけでは超電導コイル12に流れる
電流値は常に同一であるが、超電導コイル121aの両
端を接続して閉回路を構成したために、それ以外の超電
導コイル122,121b,123の電流変化(減少)
分に相当する増加電流が超電導コイル121a側に誘起
され得るようになっている。
【0056】以下に、具体的に説明すると、超電導磁石
13の超電導コイル12は、内径φ80mm,幅350
mmの巻枠にφ0.8mmのNb3Sn超電導線材が巻
回された超電導コイル122と、内径φ140mm,幅
500mmの巻枠にφ0.7mmとφ0.6mmのNb
Ti超電導線が巻回された超電導コイル121と、φ
0.6mmのNbTi超電導線が巻回された磁場補正用
超電導コイル123から構成される合計12個の単位超
電導コイルが直列に接続されて設けられている。また、
NbTi超電導線が巻回された超電導コイル121の一
部である、連続した3個の単位超電導コイルからなる超
電導コイル121aと並列に第2の永久電流スイッチ1
6が接続されている。
【0057】この場合、超電導コイル12全体の自己イ
ンダクタンスL0は120H、第2の永久電流スイッチ
16により分割された各々の単位超電導コイル121a
の自己インダクタンスL1は15H、他の単位超電導コ
イル122,121b,123の自己インダクタンスを
2は55H、それぞれの相互インダクタンスMは25
Hである。これらを上記条件式(数11)の右辺(数1
2)に代入すると、以下のようになる。
【0058】
【数12】
【0059】一方、単位超電導コイルの微小抵抗はその
接続部の抵抗が支配的であるため、各単位超電導コイル
の微小抵抗はその接続部の数に比例する。各単位超電導
コイル毎に接続しているのは、中央側のコイルのコイル
線ほど太いコイル線を用い、かつそれらの材質も異なる
ようにして磁場発生の効率化を図っていることと、全コ
イルに渡る長いコイル線が作れないためである。
【0060】このように、各単位超電導コイルの微小抵
抗はその接続部の数に比例するため、複数個(本実施形
態2では3個)の単位超電導コイルよりなる超電導コイ
ル121aに含まれる微小抵抗をR1、それ以外の全単
位超電導コイル(本実施形態2では9個)よりなる超電
導コイル122,121b,123に含まれる微小抵抗
をR2とすると、上記条件式(数11)の左辺は、次式
(数13)のようになって、第2の永久電流スイッチ1
6は、上記式(数11)を満足する位置に閉回路が配置
していることになる。つまり、第2の永久電流スイッチ
16は、上記式(数11)を満足する一または所定数
(本実施形態2では、連続する3個)の単位超電導コイ
ルよりなる超電導コイル121aの両端に接続されてい
る。
【0061】
【数13】
【0062】さらに、本実施形態2において、磁場定数
1は0.044T/A、K2は1.086T/Aなの
で、下記の(数14)となる。また、下記の(数15)
であり、下記の(数16)であるので、上記条件式(数
9)も成立する位置に第2の永久電流スイッチ16が配
置されて接続されている。
【0063】
【数14】
【0064】
【数15】
【0065】
【数16】
【0066】上記構成により、まず、外部のヒータ用電
源17による通電により、12個の直列接続された単位
超電導コイルよりなる超電導コイル12全体に並列に接
続された第1の永久電流スイッチ15と、NbTi超電
導コイル121の一部である3個の単位超電導コイルよ
りなる超電導コイル121aと並列に接続された第2の
永久電流スイッチ16とを開状態とし、外部の励磁用電
源14を用いて超電導コイル12に電流を流して励磁を
行う。
【0067】次に、超電導磁石13の電流値が所定の設
定電流値I0になったときに、外部のヒータ用電源17
をオフとし、第1の永久電流スイッチ15および第2の
永久電流スイッチ16を共に閉状態として各閉回路を構
成する。
【0068】この後、磁石装置中心磁場を1か月以上の
長期間に亘り測定した結果を図4に示している。一方、
比較のために、第2の永久電流スイッチ16を用いずに
同様の測定をした結果も併せて図4に示している。図4
の測定結果からも判るように、第2の永久電流スイッチ
16を用いることで、超電導磁石回路を2つの閉回路に
分割し、それぞれの相互誘導によって、従来の超電導磁
石装置よりも磁場減衰率を低く抑えることができ、約
0.01ppm/hrの磁場減衰率となる極めて安定な磁場を
得ることができた。
【0069】以上により、本発明の永久電流超電導磁石
装置1,11によれば、複数個の直列接続された単位超
電導コイルと第1の永久電流スイッチ5,15からなる
閉回路に加えて、複数個の単位超電導コイルのうち任意
の一または複数の単位超電導コイルの両端を接続して閉
回路を構成する第2の永久電流スイッチ6,16を設け
ているため、超電導磁石回路が2つの閉回路よりなり、
それぞれの相互誘導により、磁石装置中心付近の磁場の
減衰を抑制でき、磁石装置中心付近の磁場を極めて安定
化させることができる。また、これらの2つの閉回路を
構成している各超電導磁石は、複数個の単位超電導コイ
ルが直列接続されているために、同じ割合の励磁速度で
同時に励磁することが容易になって、従来のような電気
的に独立した2つの超電導磁石の、2つの励磁設備を用
い同じ割合の励磁速度で同時に励磁する操作方法とは異
なって煩雑なものとはならない。よって、超電導線間の
接続にスポット溶接などの特殊な接続技術や、磁気シー
ルドなどの特殊な対策を施すことなく、しかも、従来の
1つの超電導磁石だけからなる場合と同様の励磁設備
(各1つの励磁用電源4,14およびヒータ用電源7,
17)によって、さらに、1つの超電導磁石だけからな
る場合と同様の操作方法によって同じ割合の励磁速度で
同時に容易に励磁され得ることから、従来のように煩雑
な操作方法とはならず、磁石装置中心付近の中心磁場を
極めて安定化させることができる。
【0070】また、上記条件式(数1)を満足するコイ
ル位置に第2の永久電流スイッチ6,16を配置して閉
回路を構成するようにしたため、第2の永久電流スイッ
チ6,16を設けない場合の従来の超電導磁石よりも磁
場減衰率を低く抑えることができ、磁石装置中心付近の
中心磁場が極めて安定な超電導磁石装置とすることがで
きる。
【0071】さらに、第1の永久電流スイッチ5,15
と第2の永久電流スイッチ6,16のヒータ線が直列接
続されているので、ヒータ用電源7,17を共用化する
ことができて部品点数を削減することができ、しかも、
一つの超電導磁石だけからなる場合と同じ操作方法によ
り励磁ができる。
【0072】なお、上記実施形態2では、第2の永久電
流スイッチ16による閉回路は、連続して接続された3
個の単位超電導コイルよりなる超電導コイル121aを
含むように構成したが、これに限らず、超電導コイル1
22,121b,123の何れかの一または複数個の単
位超電導コイルを含むように設けてもよく、また、超電
導コイル122,121a,121b,123のうち、
連続する何れかに渡る複数個の単位超電導コイルを含む
ように設けてもよい。
【0073】例えば、閉回路を構成する第2の永久電流
スイッチ16の配置位置が変われば、第2の永久電流ス
イッチ16と並列に接続される超電導コイルの自己イン
ダクタンスも変更され、その超電導コイルに含まれる接
続部等に起因する微小抵抗も変更され、さらには、その
超電導コイル以外の全超電導コイルの自己インダクタン
スも変わると共に、その超電導コイルに含まれる接続部
等に起因する微小抵抗も変わり、かつ、それらの間の相
互インダクタンスMも変わるが、要は、上記条件式(数
1)を満足する第2の永久電流スイッチ16の配置位置
であれば、第2の永久電流スイッチ16を設けない場合
の従来の超電導磁石よりも磁場減衰率を低く抑えること
ができて、磁石装置中心付近の中心磁場が極めて安定な
超電導磁石装置とすることができる。
【0074】また、上記実施形態1,2では、第1の永
久電流スイッチ5または15による閉回路に対して一つ
の第2の永久電流スイッチ6または16による閉回路と
の2つの閉回路を設けて、それらのコイルによる相互誘
導によって磁石装置中心付近の中心磁場を極めて安定化
させるようにしたが、これに限らず、複数の第2の永久
電流スイッチによる多段の閉回路を構成して、それらの
コイルによる相互誘導によって磁石装置中心付近の中心
磁場を極めて安定化させるようにしてもよい。この場
合、閉回路数に応じて永久電流スイッチを設ければよ
い。但し、それらのヒータ線に流れる電流が多くなるた
め、ヒータ用電源としての容量が大きいものが必要とな
ると共に、各永久電流スイッチとコイルとを接続する作
業も増えるので、これらの点を考慮して好ましい数の閉
回路を設けるようにすればよい。
【0075】
【発明の効果】以上のように請求項1によれば、複数個
の直列接続された単位超電導コイルと第1の永久電流ス
イッチからなる閉回路に加えて、複数個の単位超電導コ
イルのうち任意の一または複数の単位超電導コイルの両
端を接続して閉回路を構成する少なくとも一つの第2の
永久電流スイッチを設けているため、超電導磁石回路が
少なくとも2つの閉回路よりなり、それぞれの相互誘導
により、磁石装置中心付近の磁場の減衰を抑制でき、磁
石装置中心付近の磁場を極めて安定化させることができ
る。また、これらの少なくとも2つの閉回路を構成して
いる各超電導磁石は、複数個の単位超電導コイルが直列
接続されているために、同じ割合の励磁速度で同時に励
磁することが容易になって、例えば従来のような電気的
に独立した2つの超電導磁石に対して励磁用電源などの
励磁設備を2つ用いる必要がなくなって部品点数が削減
され、また、2つの設備を操作したりする必要はなって
操作方法が煩雑なものとはならない。よって、超電導線
間の接続にスポット溶接などの特殊な接続技術や、磁気
シールドなどの特殊な対策を施すことなく、しかも、1
つの超電導磁石だけからなる場合と同様の励磁設備によ
って、さらに、1つの超電導磁石だけからなる場合と同
様の操作方法によって同じ割合の励磁速度で同時に容易
に励磁され得ることから、従来のように煩雑な操作方法
とはならず、磁石装置中心付近の中心磁場を極めて安定
化させることができる。
【0076】また、請求項2によれば、上記条件式(数
1)を満足するコイル位置に第2の永久電流スイッチを
配置して閉回路を構成するようにしたため、第2の永久
電流スイッチを設けない場合の従来の超電導磁石よりも
磁場減衰率を低く抑えることができ、磁石装置中心付近
の中心磁場が極めて安定な超電導磁石装置とすることが
できる。
【0077】さらに、請求項3によれば、第1の永久電
流スイッチと第2の永久電流スイッチのヒータ線が直列
接続されているため、ヒータ用電源を共用化することが
できて部品点数を削減することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1の超電導磁石装置の基本概
念を示す回路図である。
【図2】本発明の実施形態2の磁場補正用の磁性体シム
を具備した超電導磁石装置の概略構成を示す縦断面図で
ある。
【図3】図2の超電導磁石装置の回路図である。
【図4】図2の超電導磁石装置による磁石装置中心磁場
の減衰率の測定結果を示す図である。
【図5】従来の磁場補正用の磁性体シムを具備した超電
導磁石装置の概略構成を示す縦断面図である。
【符号の説明】
1,11 永久電流超電導磁石装置 2a,2b 単位超電導コイル 12,121,121a,121b,122,123
超電導コイル 3,13 超電導磁石 4,14 励磁用電源 5,15 第1の永久電流スイッチ 6,16 第2の永久電流スイッチ 7,17 ヒータ用電源 18 クライオスタット

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 複数個の単位超電導コイルが直列接続さ
    れた超電導磁石と、 前記直列接続された単位超電導コイルよりなる直列回路
    の両端に接続された第1の永久電流スイッチと、 前記複数個の単位超電導コイルの任意の一つまたは、連
    続する所定数の単位超電導コイルの両端に接続された少
    なくとも一つの第2の永久電流スイッチとを有したこと
    を特徴とする永久電流超電導磁石装置。
  2. 【請求項2】 前記第2の永久電流スイッチが一つ設け
    られ、前記第2の永久電流スイッチが接続されている単
    位超電導コイルの自己インダクタンスをL1、その単位
    超電導コイルに含まれる微小抵抗をR1、他の単位超電
    導コイルの自己インダクタンスをL2、前記他の単位超
    電導コイルに含まれる微小抵抗をR2、それらの相互イ
    ンダクタンスをMとしたとき、 【数1】 を満足する一または所定数の単位超電導コイルの両端に
    前記第2の永久電流スイッチが接続されていることを特
    徴とする請求項1に記載の永久電流超電導磁石装置。
  3. 【請求項3】 前記第1の永久電流スイッチと第2の永
    久電流スイッチとが共に熱式永久電流スイッチであっ
    て、それらのヒータ線がヒータ用電源に対して直列接続
    されていることを特徴とする請求項1または2に記載の
    永久電流超電導磁石装置。
JP24062198A 1998-08-26 1998-08-26 永久電流超電導磁石装置 Expired - Lifetime JP3715442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24062198A JP3715442B2 (ja) 1998-08-26 1998-08-26 永久電流超電導磁石装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24062198A JP3715442B2 (ja) 1998-08-26 1998-08-26 永久電流超電導磁石装置

Publications (2)

Publication Number Publication Date
JP2000068118A true JP2000068118A (ja) 2000-03-03
JP3715442B2 JP3715442B2 (ja) 2005-11-09

Family

ID=17062227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24062198A Expired - Lifetime JP3715442B2 (ja) 1998-08-26 1998-08-26 永久電流超電導磁石装置

Country Status (1)

Country Link
JP (1) JP3715442B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386193A (en) * 2001-11-15 2003-09-10 Bruker Biospin Gmbh Superconducting nmr magnet with drift compensation
GB2405210A (en) * 2003-07-12 2005-02-23 Bruker Biospin Gmbh Method for homogenising a super-conducting NMR magnet
KR100720057B1 (ko) 2005-07-06 2007-05-18 학교법인 한국산업기술대학 영구전류용 초전도자석 및 제조방법
WO2008044863A1 (en) * 2006-10-10 2008-04-17 Korea Polytechnic University Structure of persistent current switch and that of control method
JP2008522704A (ja) * 2004-12-14 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気共鳴イメージング装置、主磁石の磁界ドリフトを補償するための方法及びコンピュータプログラム
JP2009141255A (ja) * 2007-12-10 2009-06-25 Kobe Steel Ltd 超電導電磁石
JP2014068001A (ja) * 2012-08-31 2014-04-17 Bruker Biospin Gmbh 高度に安定した磁場を発生させるための磁石システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386193A (en) * 2001-11-15 2003-09-10 Bruker Biospin Gmbh Superconducting nmr magnet with drift compensation
US6777938B2 (en) 2001-11-15 2004-08-17 Bruker Biospin Gmbh NMR magnet coil system with separate superconducting short-circuited regions for drift compensation as well as method for operation thereof
GB2386193B (en) * 2001-11-15 2005-11-09 Bruker Biospin Gmbh NMR magnet coil system with superconducting capability and drift compensation as well as method for operation thereof
GB2405210A (en) * 2003-07-12 2005-02-23 Bruker Biospin Gmbh Method for homogenising a super-conducting NMR magnet
US6972652B2 (en) 2003-07-12 2005-12-06 Bruker Biospin Gmbh Method for homogenizing a super-conducting NMR magnet
GB2405210B (en) * 2003-07-12 2006-04-19 Bruker Biospin Gmbh Method for homogenizing a super-conducting NMR magnet
JP2008522704A (ja) * 2004-12-14 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気共鳴イメージング装置、主磁石の磁界ドリフトを補償するための方法及びコンピュータプログラム
KR100720057B1 (ko) 2005-07-06 2007-05-18 학교법인 한국산업기술대학 영구전류용 초전도자석 및 제조방법
WO2008044863A1 (en) * 2006-10-10 2008-04-17 Korea Polytechnic University Structure of persistent current switch and that of control method
JP2009141255A (ja) * 2007-12-10 2009-06-25 Kobe Steel Ltd 超電導電磁石
JP2014068001A (ja) * 2012-08-31 2014-04-17 Bruker Biospin Gmbh 高度に安定した磁場を発生させるための磁石システム

Also Published As

Publication number Publication date
JP3715442B2 (ja) 2005-11-09

Similar Documents

Publication Publication Date Title
US6646836B2 (en) Superconducting magnet apparatus in persistent mode
US5311135A (en) Multiple tap gradient field coil for magnetic resonance imaging
US20100060282A1 (en) Three-dimensional asymmetric transverse gradient coils
EP0562707A1 (en) Magnetic resonance apparatus and methods
EP0826977B1 (en) Compact MRI superconducting magnet
US8350568B2 (en) Nuclear magnetic resonance apparatus
JPH0793211B2 (ja) 核磁気共鳴断層撮影設備の磁石コイル装置
CA1257644A (en) Axisymmetric correction coil system for nmr magnets
CA1275695C (en) Compensation coil for temporal drift of a superconducting magnet
JP3447090B2 (ja) 超電導性磁石を有する磁気共鳴装置
JP4421079B2 (ja) Mri用傾斜磁場コイル
JP4204470B2 (ja) 勾配磁場を発生させるためのコイルシステム
US6498947B2 (en) rf shielding method and apparatus
JP3715442B2 (ja) 永久電流超電導磁石装置
JPS6325692B2 (ja)
JP3737895B2 (ja) 永久電流超電導磁石装置
JPH04504065A (ja) 超伝導電磁石装置
JP2008522704A (ja) 磁気共鳴イメージング装置、主磁石の磁界ドリフトを補償するための方法及びコンピュータプログラム
JP4142010B2 (ja) 磁石組立体
US6236203B1 (en) Super shielding of finite length structures in open magnetic and electric systems
US7838774B2 (en) Low AC loss single-filament superconductor for a superconducting magnet and method of making same
WO2005043183A1 (en) Mri system with variable field of view magnet
US4799017A (en) Background field magnet for image generating devices using nuclear spin resonance
US7477055B1 (en) Apparatus and method for coupling coils in a superconducting magnet
JP3857093B2 (ja) 超電導磁石装置、および、超電導磁石装置での磁場安定化方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

EXPY Cancellation because of completion of term