JP2000054020A - Method for refining molten high carbon steel - Google Patents

Method for refining molten high carbon steel

Info

Publication number
JP2000054020A
JP2000054020A JP10229421A JP22942198A JP2000054020A JP 2000054020 A JP2000054020 A JP 2000054020A JP 10229421 A JP10229421 A JP 10229421A JP 22942198 A JP22942198 A JP 22942198A JP 2000054020 A JP2000054020 A JP 2000054020A
Authority
JP
Japan
Prior art keywords
molten steel
refining
temperature
temp
high carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10229421A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aoki
裕幸 青木
Kohei Kimura
晃平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10229421A priority Critical patent/JP2000054020A/en
Publication of JP2000054020A publication Critical patent/JP2000054020A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the obstruction in operation caused by CO gas, to reduce the wear of a refractory, to restrain the generation of oxide of valuable metal, etc., and to obtain molten steel having high cleanliness by adding an exothermic agent in an immersion tube dipped into the molten steel under reducing the pressure after receiving the molten steel having high carbon concn. melted at a temp. lower than a target temp. in a refining furnace, executing oxygen blowing and raising the molten steel temp. to the target temp. SOLUTION: The carbon concn. in molten steel decarburize-refined in a refining furnace is made to 0.20-1.2 wt.% and the molten steel 12 is tapped off into a ladle 11 at a lower temp. by 10-90 deg.C than a target temp. (ordinary molten steel tapping temp.). The pressure in an immersion tube 13 and a vacuum vessel 15 is reduced to 500-750 Torr and continuous stirring is executed in the direction shown with an arrow mark while blowing gaseous argon from a porous plug 21. The prescribed quantity of Al or an Al alloy in a storing hopper 18 is continuously added into the immersion tube 13 as an exothermic agent and also, the Al is burned by blowing the stoichiometrically necessary oxygen from a lance 20 on the molten steel surface 19 and the temp. of the molten steel 12 is easily and efficiently raised with this exothermic heat to become the target temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精錬炉と減圧精錬
装置を用いて脱炭精錬を行う際に、精錬炉の耐火物の負
荷を軽減し、溶鋼の昇温を安定して行うことができる高
炭素溶鋼の精錬方法に関する。
The present invention relates to a method for reducing the load on refractories in a refining furnace and stably raising the temperature of molten steel when performing decarburization refining using a refining furnace and a vacuum refining device. It relates to a method for refining high carbon molten steel that can be produced.

【0002】[0002]

【従来の技術】従来、転炉、電気炉等の精錬炉は、大気
圧下で大量の溶鉄を迅速に脱炭して、容易に溶鋼を溶製
できることから広く採用されている。特に、高炭素濃度
の溶鋼を溶製する際は、脱炭を行ないながら燐(P)や
硫黄(S)等の不純物の除去を行うと共に、出鋼や鋳造
工程等による温度の低下を考慮して所定の温度に昇温す
る必要があり、この温度は、通常で略1550〜170
0℃もの高い温度になる。しかし、目標の炭素濃度にす
る脱炭と溶鋼の昇温を同時に行う場合は、炭素や鉄を積
極的に燃焼させて高温の炉内雰囲気を形成する必要があ
り、精錬炉の内張り耐火物の損耗が大きく、精錬炉の寿
命や精錬炉の稼働率が低下する等の問題がある。この対
策として、特開昭61−91313号公報に記載されて
いるように、精錬炉から出鋼される溶鋼の温度を比較的
低い温度にし、かつ未脱酸状態にして、取鍋精錬炉で脱
酸剤や合金鉄等を添加して精錬することにより、P含有
量の少ない溶鋼を得る方法が提案されている。また、特
開平1−79316号公報に記載されているように、出
鋼される溶鋼の温度を低くして取鍋に移し、この溶鋼に
浸漬した浸漬管内にAlを添加してランスから酸素を吹
酸して溶鋼を昇温する工程を経た後、浸漬管内にフラッ
クスを添加して脱Sを行なうことにより、P及びSの少
ない溶鋼を溶製することが提案されている。これ等の溶
鋼の精錬方法は、精錬炉と取鍋精錬炉を組み合わせて用
いて、精錬炉で行う脱炭精錬をわずかに低温度で行うこ
とにより、低P化、又は、低P化と同時に低S化を図る
ことを主体にした精錬方法である。
2. Description of the Related Art Refining furnaces, such as converters and electric furnaces, have been widely used because they can quickly decarburize a large amount of molten iron under atmospheric pressure and easily produce molten steel. In particular, when smelting molten steel having a high carbon concentration, impurities such as phosphorus (P) and sulfur (S) are removed while performing decarburization, and a reduction in temperature due to tapping and a casting process is taken into consideration. It is necessary to raise the temperature to a predetermined temperature.
The temperature is as high as 0 ° C. However, if decarburization to achieve the target carbon concentration and temperature rise of molten steel are performed at the same time, it is necessary to actively burn carbon and iron to form a high-temperature atmosphere in the furnace. There is a problem that the wear is large and the life of the smelting furnace and the operating rate of the smelting furnace are reduced. As a countermeasure, as described in JP-A-61-91313, the temperature of molten steel discharged from a refining furnace is set to a relatively low temperature and is in a non-deoxidized state. A method has been proposed in which molten steel having a low P content is obtained by refining by adding a deoxidizing agent, alloyed iron, or the like. Further, as described in JP-A-1-79316, the temperature of molten steel to be tapped is lowered and transferred to a ladle, and Al is added to a dipping tube immersed in the molten steel to remove oxygen from a lance. It has been proposed that after passing through a step of raising the temperature of molten steel by blowing acid, a flux is added to the inside of the immersion tube to remove S, thereby melting molten steel having a small amount of P and S. These methods of refining molten steel use a combination of a smelting furnace and a ladle smelting furnace, and perform decarburization smelting in the smelting furnace at a slightly lower temperature, thereby lowering the P or simultaneously reducing the P. This is a refining method mainly aimed at reducing the S.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
61−91313号公報に記載された方法では、溶鋼の
脱Pを促進するために温度を低くしているが、その温度
の低下量を小さくしているので、脱炭等を行う精錬炉の
耐火物の負荷を低減することができない。更に、溶鋼の
温度を大幅に低下すると鋳造工程等で溶鋼が凝固して地
金付着等が発生し、歩留りの低下や地金処理等の作業の
負荷が増加する。また、精錬炉から未脱酸の溶鋼を取鍋
精錬炉に移してから脱酸剤や合金鉄等を添加するため
に、取鍋精錬炉で処理された溶鋼中に、脱酸剤や合金鉄
が酸化して生成した酸化物が混濁して介在物等の原因に
なる。特に、高炭素濃度の溶鋼の場合は、取鍋精錬炉に
より未脱酸の溶鋼の処理を行う際に、溶鋼中の炭素
(C)とフリーの酸素が反応してCOガスが発生し、取
鍋精錬炉の排気系等の一部に滞留することによって、異
常燃焼(爆発)を起こして安定操業を阻害する等の問題
があった。一方、特開平1−79316号公報に記載さ
れた方法では、Alを燃焼して昇温する際に、前記と同
様に、溶鋼中の炭素(C)とフリー酸素及び吹酸中の酸
素の一部が反応してかなりのCOガスが発生し、取鍋精
錬炉の排気系等の一部に滞留することによって、異常燃
焼(爆発)を起こして、安定操業を阻害する。このCO
ガスの発生は、溶鋼の高炭素濃度が高くなる程に顕著に
なり、異常燃焼が頻繁に発生して安定した操業を行うこ
とが困難となる。また、昇温のための吹酸によって、燃
焼により生成したAl2 3 や溶鋼中の有価金属の酸化
物等が生成して、溶鋼の品質を阻害する等の問題があっ
た。
However, in the method described in Japanese Patent Application Laid-Open No. 61-91313, the temperature is lowered in order to promote the removal of P from molten steel. Therefore, it is not possible to reduce the load on the refractory of the smelting furnace for decarburization and the like. Further, when the temperature of the molten steel is significantly reduced, the molten steel is solidified in a casting process or the like, and the adhesion of the metal occurs, thereby lowering the yield and increasing the load of operations such as the metal processing. In addition, in order to transfer the undeoxidized molten steel from the refining furnace to the ladle refining furnace and then add the deoxidizer and ferroalloys, the molten steel treated in the ladle refining furnace contains Oxidation results in turbidity of the generated oxide, which causes inclusions and the like. In particular, in the case of molten steel having a high carbon concentration, when undeoxidized molten steel is treated by a ladle refining furnace, carbon (C) in the molten steel reacts with free oxygen to generate CO gas, and the molten steel is removed. There is a problem such as abnormal combustion (explosion) caused by stagnation in a part of the exhaust system of the pot refining furnace, which hinders stable operation. On the other hand, in the method described in Japanese Patent Application Laid-Open No. 1-79316, when Al is burned to raise the temperature, as described above, one of carbon (C) in the molten steel and free oxygen and oxygen in the The part reacts to generate considerable CO gas, which stays in a part of the exhaust system of the ladle refining furnace, causing abnormal combustion (explosion) and impeding stable operation. This CO
The generation of gas becomes remarkable as the high carbon concentration of the molten steel increases, and abnormal combustion frequently occurs, making it difficult to perform a stable operation. In addition, there is a problem in that the blowing acid for raising the temperature generates Al 2 O 3 generated by combustion, oxides of valuable metals in the molten steel, and the like, thereby impairing the quality of the molten steel.

【0004】本発明はかかる事情に鑑みてなされたもの
で、精錬炉及び減圧精錬装置の耐火物の損耗を少なくす
ると共に、精錬過程で発生するCOガスに起因した操業
阻害を回避し、溶鋼中の有価金属等の酸化物の生成を抑
制して溶鋼の清浄度の優れた高炭素溶鋼の精錬方法を提
供することを目的とする。
[0004] The present invention has been made in view of the above circumstances, while reducing the wear of refractories in refining furnaces and vacuum refining equipment, avoiding the operation hindrance caused by CO gas generated in the refining process, and reducing It is an object of the present invention to provide a method for refining high carbon molten steel having excellent cleanliness of molten steel by suppressing generation of oxides such as valuable metals.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載の高炭素溶鋼の精錬方法は、精錬炉により脱炭精錬
を行なって、高炭素濃度の溶鋼を目標温度より低く溶製
して、該溶鋼を取鍋に受鋼した後、前記溶鋼内に浸漬し
た浸漬管内を減圧して、該浸漬管内の溶鋼に発熱剤を添
加して吹酸を行って、前記溶鋼の温度を前記目標温度に
高める。
According to the present invention, there is provided a semiconductor device comprising:
The refining method of the high-carbon molten steel according to the description is to perform decarburization refining by a refining furnace, to produce molten steel having a high carbon concentration lower than a target temperature, to receive the molten steel in a ladle, and then into the molten steel. The pressure in the immersed immersion tube is reduced, and an exothermic agent is added to the molten steel in the immersion tube to perform blowing acid to raise the temperature of the molten steel to the target temperature.

【0006】請求項2記載の高炭素溶鋼の精錬方法は、
請求項1記載の高炭素溶鋼の精錬方法において、前記取
鍋に受鋼する溶鋼の温度を前記目標温度よりも10〜9
0℃低くしている。ここで、溶鋼の目標温度とは、出鋼
してから時間の経過に伴う温度低下量、タンディッシュ
等へ注湯する際の温度低下量等を加算した出鋼を終了す
る直前の溶鋼の温度である。また、溶鋼の温度が目標温
度に対して10℃未満で低いと、浸漬管内の溶鋼に発熱
剤を添加して吹酸を行った際に生成する酸化物の分離と
除去に時間を要し、結果として溶鋼の温度低下を招いて
昇温の効果が小さくなる。一方、溶鋼の温度が目標温度
よりも90℃を超えて低いと、溶鋼に添加する発熱剤の
量が増加し、吹酸による酸化物の溶鋼中への混濁量が増
加し、浸漬管の耐火物の損耗が大きくなる。
[0006] The method for refining high carbon molten steel according to claim 2 comprises:
2. The refining method for high carbon molten steel according to claim 1, wherein the temperature of the molten steel received in the ladle is 10 to 9 lower than the target temperature.
0 ° C lower. Here, the target temperature of the molten steel is the temperature of the molten steel immediately before the end of tapping by adding the amount of temperature decrease over time after tapping, the amount of temperature drop when pouring into a tundish, etc. It is. Further, if the temperature of the molten steel is lower than the target temperature by less than 10 ° C., it takes time to separate and remove oxides generated when a blowing agent is added by adding a heating agent to the molten steel in the dip tube, As a result, the temperature of the molten steel is reduced, and the effect of increasing the temperature is reduced. On the other hand, if the temperature of the molten steel is lower than the target temperature by more than 90 ° C., the amount of the exothermic agent added to the molten steel increases, the turbidity of oxides in the molten steel due to the blowing acid increases, and the fire resistance of the immersion pipe increases. The wear of objects increases.

【0007】請求項3記載の高炭素溶鋼の精錬方法は、
請求項1又は2記載の高炭素溶鋼の精錬方法において、
前記精錬炉により脱炭精錬した前記溶鋼の炭素濃度が
0.20〜1.2重量%である。
[0007] The method for refining high carbon molten steel according to claim 3 comprises:
The method for refining high carbon molten steel according to claim 1 or 2,
The carbon concentration of the molten steel decarburized and refined by the refining furnace is 0.20 to 1.2% by weight.

【0008】請求項4記載の高炭素溶鋼の精錬方法は、
請求項1〜3のいずれか1項に記載の高炭素溶鋼の精錬
方法において、前記発熱剤としてAlあるいはAl合金
を連続して添加する。
[0008] A method for refining high carbon molten steel according to claim 4 is as follows.
In the method for refining high carbon molten steel according to any one of claims 1 to 3, Al or an Al alloy is continuously added as the exothermic agent.

【0009】[0009]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は、本発明の一実施の形態に係
る高炭素溶鋼の精錬方法を適用する減圧精錬装置10の
全体図である。まず、減圧精錬装置10は、取鍋11内
の溶鋼12に浸漬された浸漬管13と、この浸漬管13
にフランジ14等の締結手段により固定した真空槽15
と、浸漬管13及び真空槽15の内部を吸引して減圧す
るエゼクターに連接した排気ダクト16と、浸漬管13
内に発熱剤の一例であるAlを添加するシュート17及
びAlの貯蔵ホッパー18を備えている。また、真空槽
15の上部には、浸漬管13内の溶鋼面19に酸素を吹
き付けるためのランス20が自在に昇降できるように設
けられている。更に、取鍋11の底部11aには、不活
性ガスの供給源に接続されたポーラスプラグ21を設け
ており、このポーラスプラグ21から溶鋼12内に不活
性ガスが吹き込まれるようにしている。なお、19a
は、取鍋11内に形成された溶鋼12の湯面である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is an overall view of a vacuum refining apparatus 10 to which a method for refining high carbon molten steel according to an embodiment of the present invention is applied. First, the vacuum refining apparatus 10 includes an immersion pipe 13 immersed in molten steel 12 in a ladle 11,
Vacuum chamber 15 fixed by a fastening means such as a flange 14
And an exhaust duct 16 connected to an ejector for sucking and depressurizing the inside of the immersion tube 13 and the vacuum tank 15,
A chute 17 for adding Al, which is an example of a heat generating agent, and a storage hopper 18 for Al are provided therein. A lance 20 for blowing oxygen to the molten steel surface 19 in the immersion pipe 13 is provided at the upper part of the vacuum chamber 15 so as to be able to freely move up and down. Further, a porous plug 21 connected to a supply source of an inert gas is provided at the bottom 11 a of the ladle 11, and the inert gas is blown into the molten steel 12 from the porous plug 21. In addition, 19a
Is a molten metal surface of the molten steel 12 formed in the ladle 11.

【0010】次に、減圧精錬装置10を適用した高炭素
溶鋼の精錬方法について説明する。精錬炉の一例である
転炉を用いて脱炭精錬を行い炭素濃度が0.20〜1.
2重量%、その時の溶鋼12を通常の出鋼温度(すなわ
ち目標温度)より10〜90℃低い温度にして容量35
0トンの取鍋11に出鋼した。この溶鋼12の炭素濃度
が0.20重量%より低いと、転炉の脱炭精錬の負荷が
増加し、転炉及び減圧精錬装置10を合わせた総合の耐
火物の損耗が増加する。更に、炭素濃度が1.2重量%
を超えると、転炉を用いた脱炭精錬の際に炭素濃度の上
昇につれて耐火物の損耗が小さくなるが、引き続き行う
減圧下の吹酸(昇温精錬)の負荷が大幅に増加すること
により総合の耐火物の節減が望めない。
Next, a method for refining high carbon molten steel using the vacuum refining apparatus 10 will be described. Decarburization refining is performed using a converter, which is an example of a refining furnace, to obtain a carbon concentration of 0.20-1.
2 wt%, and the molten steel 12 at that time is set to a temperature 10 to 90 ° C. lower than a normal tapping temperature (that is, a target temperature) to obtain a capacity 35
Steel was tapped on a ladle 11 of 0 tons. When the carbon concentration of the molten steel 12 is lower than 0.20% by weight, the load of the decarburization refining of the converter increases, and the total refractory wear of the converter and the decompression refining apparatus 10 increases. Furthermore, the carbon concentration is 1.2% by weight.
Above, the wear of refractories decreases as the carbon concentration increases during decarburization refining using a converter, but the load of the subsequent blowing acid (heating refining) under reduced pressure increases significantly. It is not possible to reduce the total refractory.

【0011】また、出鋼温度が目標温度より10℃未満
で低いと、昇温を行っている時間内に生じる温度低下や
Alの使用量が少ないので着熱効率が悪くなる。その結
果、Alの添加量が増加する。一方、出鋼温度が目標温
度より90℃を超えて低くなると、転炉から取鍋に出鋼
した際に溶鋼12の温度が低下し過ぎて付着地金が発生
したり、ノズル詰まり等が発生して操業の支障を招き、
更に、Alの添加量の増加と吹酸に用いる酸素量が増加
することによって生成したAl2 3 等の一部が溶鋼1
2中に混濁して介在物の原因となる場合が生じる。この
理由から出鋼温度は、目標温度より20〜75℃低い温
度にするとより好ましい結果が得られる。この取鍋11
内の溶鋼12に直径2.0mの浸漬管13を浸漬して、
浸漬管13及び真空槽15内を500〜750torr
に減圧し、ポーラスプラグ21から不活性ガスの一例で
あるアルゴンガスを0.6〜15NL/(分・溶鋼ト
ン)吹き込みながら、図1の矢印で示す流れを形成する
ことにより溶鋼12の連続した攪拌を行った。次に、貯
蔵ホッパー18のAlを50〜180kg切り出して、
シュート17から浸漬管13内に添加すると共に、浸漬
管13内に形成された溶鋼面19にランス20から酸素
を吹き付けて、Alを燃焼させる。Alの添加は、溶鋼
12の温度からAlを燃焼させた際の着熱効率を考慮し
て求めた全添加量の内の一部を最初に添加しておき、そ
の後、ランス20により吹酸(昇温精錬)を開始する。
そして、吹酸を開始してから1分経過後に、浸漬管13
内に数回に分けてAlを添加する。このAlの燃焼によ
り(1)式で表す反応により7407kcal/kgの
熱が発生し、この発熱により溶鋼12が昇温されて所定
の温度となる。 2Al+3O→Al2 3 ・・・・・(1) 従って、吹酸する酸素量を化学量的に(1)式の反応に
必要な量にして、余剰な酸素の供給をなくすことで、溶
鋼12の有価金属の酸化ロスを防止することができる。
また、吹酸する前に、浸漬管13内へのAlの添加を行
うことにより、浸漬管13内の溶鋼12のAlの濃度を
極端に高くし、この溶鋼面19に酸素を吹き付けると、
Alを優先的に燃焼させることができるので溶鋼12中
の有価金属の酸化を少なくした状態で溶鋼12の昇温が
できる。この理由からAlの添加は、吹き付ける酸素量
に応じて連続的に添加するとより好ましい結果が得られ
る。また、Alの添加と吹酸を開始する際の真空度が、
500torr未満の高真空では、添加したAlが溶鋼
12中の酸化物や酸素と急激な異常反応(テルミット反
応)を起こして突沸が発生し、突沸により飛散した地金
が浸漬管13及び真空槽15内に付着して残存し、次の
低炭素材を精錬する際に炭素のピックアップ等の原因と
なる。
On the other hand, if the tapping temperature is lower than the target temperature by less than 10 ° C., the temperature drop occurring during the time of raising the temperature and the amount of Al used are small, so that the heat transfer efficiency deteriorates. As a result, the amount of Al added increases. On the other hand, when the tapping temperature is lower than the target temperature by more than 90 ° C., the temperature of the molten steel 12 becomes too low when tapping from the converter to the ladle, so that the deposited metal or the nozzle is clogged. And hinder operation,
Further, a part of the Al 2 O 3 and the like generated by the increase in the amount of Al added and the amount of oxygen used for the blowing acid increases in the molten steel 1.
2 may cause turbidity and cause inclusions. For this reason, a more preferable result is obtained when the tapping temperature is set to a temperature 20 to 75 ° C. lower than the target temperature. This ladle 11
The immersion pipe 13 having a diameter of 2.0 m is immersed in the molten steel 12 in the inside,
500-750 torr in the immersion tube 13 and the vacuum chamber 15
The molten steel 12 was continuously formed by forming a flow indicated by an arrow in FIG. 1 while blowing 0.6 to 15 NL / (min./ton of molten steel) of an inert gas as an example of an inert gas from the porous plug 21. Stirring was performed. Next, 50-180 kg of Al in the storage hopper 18 is cut out,
Al is burned by adding oxygen from the lance 20 to the molten steel surface 19 formed in the immersion tube 13 while adding the slag to the immersion tube 13 from the chute 17. For the addition of Al, a part of the total addition amount determined in consideration of the heat transfer efficiency when burning Al from the temperature of the molten steel 12 is added first, and then the lance 20 is used to blow acid (ascending). (Smelting).
One minute after the start of the blowing acid, the immersion tube 13
Al is added in several portions. The combustion of Al generates the heat of 7407 kcal / kg by the reaction represented by the equation (1), and the heat generated causes the temperature of the molten steel 12 to rise to a predetermined temperature. 2Al + 3O → Al 2 O 3 (1) Accordingly, the amount of oxygen to be blown is stoichiometrically set to the amount required for the reaction of the formula (1), and the supply of excess oxygen is eliminated. Oxidation loss of the 12 valuable metals can be prevented.
Further, by adding Al into the immersion tube 13 before the blowing acid, the concentration of Al in the molten steel 12 in the immersion tube 13 is extremely increased, and oxygen is sprayed on the molten steel surface 19.
Since Al can be burned preferentially, the temperature of the molten steel 12 can be increased with less oxidation of valuable metals in the molten steel 12. For this reason, more preferable results can be obtained by adding Al continuously according to the amount of oxygen to be blown. Also, the degree of vacuum at the start of the addition of Al and the blowing acid is
At a high vacuum of less than 500 torr, the added Al causes a sudden abnormal reaction (thermite reaction) with the oxides and oxygen in the molten steel 12 to cause bumping, and the metal scattered by the bumping is immersed in the immersion tube 13 and the vacuum tank 15. Remains in the inside and causes carbon pickup when refining the next low carbon material.

【0012】一方、750torrを超える低真空(大
気圧に近くなる側)の場合は、浸漬管13及び真空槽1
5内に外気が侵入して溶鋼12中の有価金属の酸化、あ
るいは浸漬管13内への吸い上げ量の減少によって溶鋼
12の攪拌が弱くなって、溶鋼12への着熱効率が低下
する。この理由からAlの添加と吹酸を開始する際に
は、550〜700torrに減圧して行うとより好ま
しい結果が得られる。
On the other hand, in the case of a low vacuum exceeding 750 torr (on the side closer to the atmospheric pressure), the immersion tube 13 and the vacuum tank 1
The outside air intrudes into 5 and oxidation of the valuable metal in the molten steel 12 or a decrease in the amount of water drawn into the immersion tube 13 weakens the stirring of the molten steel 12 and lowers the heat transfer efficiency to the molten steel 12. For this reason, when starting the addition of Al and the blowing acid, a more preferable result is obtained by reducing the pressure to 550 to 700 torr.

【0013】浸漬管13内でAlの燃焼した熱は、アル
ゴンガスの攪拌による溶鋼12の循環によって、溶鋼1
2の全体に伝わって昇温される。また、吹酸によりAl
を燃焼させる際に、溶鋼12中のフリー酸素及び吹酸に
よる酸素が、炭素と反応してCOガスが発生するが、浸
漬管13及び真空槽15内をエゼクターによって排気し
ているので、このCOガスは、排気系内に滞留すること
なく速やかに排出され、COガスに起因する爆発等の操
業トラブルが回避できる。更に、昇温が低真空の減圧状
態で行われるために、浸漬管13及び真空槽15内に侵
入する外気を遮断できることから、浸漬管13内の溶鋼
12の有価金属等の酸化が防止でき、溶鋼12中に混濁
する酸化物の低減が可能となるので、介在物が減少され
溶鋼12の清浄度(品質)が大幅に向上できる。
The heat generated by the burning of Al in the immersion tube 13 is transferred to the molten steel 1 by circulation of the molten steel 12 by stirring argon gas.
2 and the temperature is raised. In addition, by blowing acid, Al
Is burned, the free oxygen in the molten steel 12 and the oxygen from the blowing acid react with the carbon to generate CO gas. However, since the inside of the immersion pipe 13 and the vacuum chamber 15 is exhausted by an ejector, The gas is quickly discharged without staying in the exhaust system, and operation troubles such as an explosion caused by the CO gas can be avoided. Further, since the temperature is raised in a reduced pressure state with a low vacuum, it is possible to shut off the outside air that enters the immersion pipe 13 and the vacuum tank 15, so that oxidation of valuable metals and the like of the molten steel 12 in the immersion pipe 13 can be prevented, Since oxides that are turbid in the molten steel 12 can be reduced, inclusions are reduced and the cleanliness (quality) of the molten steel 12 can be greatly improved.

【0014】また、この昇温の過程では、溶鋼12の攪
拌と溶鋼12中のフリー酸素及び吹酸による酸素が炭素
と反応することにより脱炭反応が生じるが、この脱炭は
小さく高炭素濃度の溶鋼12の目標の炭素濃度を低下さ
せる程ではない。この精錬では、転炉を用いて炭素濃度
と温度をそれぞれの所定の値する従来の場合と異なり、
溶鋼12の温度のみを積極的に低い温度にしており、大
量の酸素の供給による昇温を必要としないことから、鉄
及び有価金属の酸化が少なく、かつ生成したスラグ中の
酸化物も少なくでき、転炉の耐火物の損耗も大幅に減少
できる。そして、前述したように減圧下で、溶鋼12の
昇温を浸漬管13内の限定された領域で行うので、少な
い吹酸で温度を保証でき、生成する酸化物の発生を少な
くし、耐火物に対する負荷を軽減できる。昇温を行った
後の溶鋼12は、吹酸を停止して、浸漬管13及び真空
槽15内を大気圧に複圧して浸漬管13を上昇して精錬
を終了する。このようにして減圧の雰囲気で昇温された
溶鋼12は、連続鋳造等により鋳片にしてから圧延加工
等が行なわれる。
In the process of raising the temperature, the decarburization reaction is caused by the stirring of the molten steel 12 and the reaction of free oxygen in the molten steel 12 and oxygen by the blowing acid with carbon. Not so much as to lower the target carbon concentration of the molten steel 12. In this refining, unlike the conventional case where the carbon concentration and the temperature are each set to a predetermined value using a converter,
Since only the temperature of the molten steel 12 is actively lowered, and it is not necessary to raise the temperature by supplying a large amount of oxygen, the oxidation of iron and valuable metals is small, and the oxides in the generated slag can be reduced. Also, the wear of the refractory of the converter can be greatly reduced. As described above, the temperature of the molten steel 12 is raised in a limited area in the immersion tube 13 under reduced pressure, so that the temperature can be guaranteed with a small amount of blowing acid, the generation of oxides to be generated is reduced, and the refractory material is reduced. Can be reduced. After the temperature is raised, the molten steel 12 stops blowing acid, and the inside of the immersion pipe 13 and the vacuum chamber 15 is double-pressurized to the atmospheric pressure to raise the immersion pipe 13 and finish the refining. The molten steel 12 thus heated in a reduced pressure atmosphere is cast into a slab by continuous casting or the like, and then subjected to rolling or the like.

【0015】[0015]

【実施例】次に、本発明の高炭素溶鋼の精錬方法の実施
例について説明する。表1に示すように、実施例1で
は、転炉で吹酸を行い炭素濃度が0.25重量%、溶鋼
温度が通常の出鋼後の目標温度より15℃低い1550
℃の溶鋼を350トンの容量の取鍋に出鋼した。この取
鍋内にポーラスプラグからアルゴンガスを1NL/(分
・溶鋼トン)吹き込みながら、溶鋼中に直径2.0mの
浸漬管を浸漬して、浸漬管及び真空槽内を500tor
rの低真空度に減圧すると共に、溶鋼を連続して攪拌し
た。そして、浸漬管内にAlを45kg添加して吹酸を
開始し、最初の吹酸を開始してから1分経過後に、浸漬
管内に、さらに135kgのAlを3回に分けて添加
し、合計のAlの添加量を180kgとし、合わせて5
分間の吹酸(昇温精錬)を行って、目標温度である15
65℃に昇温した。この後、浸漬管内を大気圧に複圧
し、溶鋼中から浸漬管を上げて処理を終了した。その結
果、転炉及び減圧精錬装置を含めた総合耐火物損耗指数
が0.7(従来例を1.0とした場合)と大幅に減少で
き、吹酸を行っているにもかかわらず溶鋼の清浄度評価
も介在物等の無い良好(○)な状態であり、減圧精錬装
置の操業トラブル発生指数も0.1(従来例を1.0と
した場合)と良好であり、総合評価として優れた(◎)
結果が得られた。
Next, an embodiment of the method for refining high carbon molten steel of the present invention will be described. As shown in Table 1, in Example 1, the acid was blown in a converter, the carbon concentration was 0.25% by weight, and the molten steel temperature was 1550 ° C. lower than the normal target temperature after tapping.
C. was poured into a ladle having a capacity of 350 tons. While injecting 1 NL / (min / ton of molten steel) of argon gas from a porous plug into this ladle, a 2.0 m diameter immersion tube is immersed in the molten steel, and the inside of the immersion tube and the vacuum chamber is 500 torr.
The pressure was reduced to a low vacuum of r, and the molten steel was continuously stirred. Then, 45 kg of Al was added to the immersion tube to start blowing acid, and after 1 minute from the start of the first blowing acid, 135 kg of Al was further added to the immersion tube in three portions, and the total was added. The amount of Al added was 180 kg, and a total of 5
Acid (heating and refining) for 15 minutes to reach the target temperature of 15
The temperature was raised to 65 ° C. Thereafter, the inside of the immersion tube was double-pressurized to atmospheric pressure, and the immersion tube was raised from the molten steel to finish the treatment. As a result, the total refractory wear index including the converter and the vacuum refining equipment can be significantly reduced to 0.7 (when the conventional example is set to 1.0). The cleanliness evaluation is also in a good (o) state without inclusions and the like, and the operation trouble occurrence index of the decompression smelting apparatus is 0.1 (when the conventional example is set to 1.0), which is excellent as an overall evaluation. (◎)
The result was obtained.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2では、転炉で吹酸を行い炭素濃度
を0.80重量%、溶鋼温度を通常の出鋼後の目標温度
より10℃低い温度である1530℃にした溶鋼を35
0トンの容量の取鍋に出鋼した。この取鍋内にポーラス
プラグからアルゴンガスを2NL/(分・溶鋼トン)吹
き込みながら、溶鋼中に直径2.0mの浸漬管を浸漬し
て、浸漬管及び真空槽内を600torrの低真空度に
減圧すると共に、溶鋼を連続して攪拌した。そして、浸
漬管内にAlを60kg添加して吹酸を開始し、最初の
吹酸を開始してから1分経過後に、浸漬管内に、さらに
60kgのAlを添加し、Alの合計の添加量を120
kgとし、合わせて4分間の吹酸(昇温精錬)を行っ
て、目標温度である1540℃に昇温した。その結果、
転炉及び減圧精錬装置を含めた総合耐火物損耗指数が
0.7(従来例を1.0とした場合)と大幅に減少で
き、吹酸を行ったにもかかわらず溶鋼の清浄度評価も介
在物等の無い良好(○)な状態であり、減圧精錬装置の
操業トラブル発生指数も0.1(従来例を1.0とした
場合)と良好であり、総合評価として優れた(◎)結果
が得られた。
In Example 2, 35% of molten steel having a carbon concentration of 0.80% by weight and a molten steel temperature of 1530 ° C., which is 10 ° C. lower than the target temperature after tapping, was subjected to blowing acid in a converter.
The steel was tapped in a ladle with a capacity of 0 tons. While blowing 2 NL / (min./ton of molten steel) of argon gas from a porous plug into the ladle, a 2.0 m diameter immersion tube is immersed in the molten steel, and the inside of the immersion tube and the vacuum chamber is reduced to a low vacuum of 600 torr. The pressure was reduced and the molten steel was continuously stirred. Then, 60 kg of Al was added to the immersion tube to start the blowing acid, and after 1 minute from the start of the first blowing acid, another 60 kg of Al was added to the immersion tube to reduce the total amount of Al added. 120
kg, followed by blowing acid (heating and refining) for a total of 4 minutes to raise the temperature to 1540 ° C., which is the target temperature. as a result,
The total refractory wear index including the converter and the vacuum refining equipment can be greatly reduced to 0.7 (when the conventional example is set to 1.0). It is in a good (o) state without inclusions and the like, and the operation trouble occurrence index of the decompression refining apparatus is 0.1 (when the conventional example is set to 1.0), which is excellent as a comprehensive evaluation (◎). The result was obtained.

【0018】これに対して、従来例では、転炉で吹酸を
行い炭素濃度を0.25重量%、溶鋼温度を通常の出鋼
温度1570℃にした溶鋼を350トンの容量の取鍋に
出鋼した。この取鍋内の溶鋼の昇温を行うことなく、直
径2.0mの浸漬管を浸漬して、浸漬管及び真空槽内を
減圧しない状態(大気圧)で、ポーラスプラグからアル
ゴンガスを3NL/(分・溶鋼トン)供給しながら、浸
漬管内に、Alを50kg添加して吹酸を4分間の吹酸
(昇温精錬)を行って、目標温度である1575℃に昇
温した。その結果、転炉及び減圧精錬装置を含めた総合
耐火物損耗指数が1.0となり、転炉の補修や稼働時間
の低下、転炉の寿命が短くなり、減圧精錬装置の排気系
にCOガスに起因した小爆発が発生して減圧精錬装置の
操業トラブル発生指数も1.0と高くなり、溶鋼の清浄
度評価に差異はなかったが総合評価としては悪い(×)
結果となった。
On the other hand, in the conventional example, molten steel having a carbon concentration of 0.25% by weight and a molten steel temperature of a normal tapping temperature of 1570.degree. Steel tapping. Without raising the temperature of the molten steel in the ladle, a dipping tube having a diameter of 2.0 m was immersed, and argon gas was supplied from the porous plug at a rate of 3 NL / g in a state where the pressure in the dipping tube and the vacuum chamber was not reduced (atmospheric pressure). While supplying (minute / ton of molten steel), 50 kg of Al was added into the immersion tube, and blowing acid was added to the blowing acid (heating refining) for 4 minutes to raise the temperature to the target temperature of 1575 ° C. As a result, the total refractory wear index including the converter and the decompression smelter becomes 1.0, the repair and the operation time of the converter are shortened, the life of the converter is shortened, and CO gas is exhausted to the exhaust system of the decompression smelter. A small explosion caused by blasting caused the operation trouble occurrence index of the vacuum refining equipment to be as high as 1.0, and there was no difference in the cleanliness evaluation of the molten steel, but the overall evaluation was bad (×)
The result was.

【0019】以上、本発明の一実施の形態を説明した
が、本発明は、上記した形態に限定されるものでなく、
要旨を逸脱しない条件の変更等は全て本発明の適用範囲
である。例えば、発熱剤として、Alを用いた場合につ
いて説明したが、Al合金、フェロシリコン合金やその
他のSi合金等を用いることができる。また、浸漬管の
形状についても円筒状の他に楕円状の断面形状を有する
ものを用いることができ、真空槽の形状についても浸漬
管と同じ直径のもの以外に、真空槽の一部、又は、真空
槽の全体を浸漬管の直径よりも大きくしたものを用いる
ことができる。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment.
All changes in conditions that do not depart from the gist are within the scope of the present invention. For example, although the case where Al is used as the heat generating agent has been described, an Al alloy, a ferrosilicon alloy, another Si alloy, or the like can be used. In addition, the shape of the dip tube may be an elliptical cross-sectional shape in addition to the cylindrical shape, and the shape of the vacuum tank may be the same diameter as the dip tube, a part of the vacuum tank, or Alternatively, a vacuum chamber whose entire diameter is larger than the diameter of the dip tube can be used.

【0020】[0020]

【発明の効果】請求項1〜4記載の高炭素溶鋼の精錬方
法においては、精錬炉により脱炭精錬を行なって、高炭
素濃度の溶鋼を目標温度より低く溶製して、取鍋に受鋼
した後、溶鋼内に浸漬した浸漬管内を減圧して、浸漬管
内の溶鋼に発熱剤を添加して吹酸を行って、溶鋼の温度
を目標温度に高めるので、COガスに起因した操業阻害
を防止し、溶鋼の昇温を容易に、かつ効率良く行うこと
ができ、精錬炉及び減圧精錬装置の地金付着や耐火物の
損耗を少なくし、高清浄の溶鋼の溶製が可能となる。
According to the method for refining high carbon molten steel according to claims 1 to 4, decarburization refining is performed in a refining furnace to melt molten steel having a high carbon concentration below a target temperature and receive it in a ladle. After steel, the pressure in the immersion pipe immersed in the molten steel is reduced, and a heating agent is added to the molten steel in the immersion pipe to perform blowing acid to raise the temperature of the molten steel to a target temperature. , The temperature of the molten steel can be raised easily and efficiently, the adhesion of ingots on refining furnaces and vacuum refining equipment and the wear of refractories are reduced, and the production of highly clean molten steel becomes possible. .

【0021】特に、請求項2記載の高炭素溶鋼の精錬方
法においては、取鍋に受鋼する溶鋼の温度を目標温度よ
りも10〜90℃低くしているので、溶鋼の昇温を効率
良く行ない、しかも、溶鋼中に混入する酸化物を抑制で
き、精錬炉の耐火物の損耗を少なくして減圧精錬装置を
含めた総合の耐火物の消費を低減できる。
In particular, in the method for refining high carbon molten steel according to the second aspect, the temperature of the molten steel received in the ladle is set at 10 to 90 ° C. lower than the target temperature, so that the temperature of the molten steel can be raised efficiently. In addition, oxides mixed in the molten steel can be suppressed, and wear of refractories in the smelting furnace can be reduced, so that consumption of total refractories including the vacuum refining device can be reduced.

【0022】請求項3記載の高炭素溶鋼の精錬方法にお
いては、精錬炉により脱炭精錬した溶鋼の炭素濃度を
0.20〜1.2重量%にしているので、精錬炉の負荷
の軽減が可能となり、耐火物の損耗を抑制することがで
きる。
In the method for refining high carbon molten steel according to the third aspect, since the carbon concentration of the molten steel decarburized and refined by the refining furnace is set to 0.20 to 1.2% by weight, the load on the refining furnace can be reduced. It becomes possible, and wear of the refractory can be suppressed.

【0023】請求項4記載の高炭素溶鋼の精錬方法にお
いては、発熱剤としてAlあるいはAl合金を連続して
添加するので、少ない添加量により溶鋼の温度を上げる
ことができ、しかも、生成した酸化物による溶鋼の品質
の低下を防止できる。
In the refining method of high carbon molten steel according to the present invention, since Al or an Al alloy is continuously added as a heat generating agent, the temperature of the molten steel can be raised with a small amount of addition, and the generated oxidation Deterioration of the quality of molten steel by the material can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る高炭素溶鋼の精錬
方法を適用する減圧精錬装置の全体図である。
FIG. 1 is an overall view of a vacuum refining apparatus to which a method for refining high carbon molten steel according to an embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

10 減圧精錬装置 11 取鍋 11a 底部 12 溶鋼 13 浸漬管 14 フランジ 15 真空槽 16 排気ダク
ト 17 シュート 18 貯蔵ホッ
パー 19 溶鋼面 19a 湯面 20 ランス 21 ポーラス
プラグ
DESCRIPTION OF SYMBOLS 10 Decompression refining apparatus 11 Ladle 11a Bottom part 12 Molten steel 13 Immersion pipe 14 Flange 15 Vacuum tank 16 Exhaust duct 17 Chute 18 Storage hopper 19 Molten steel surface 19a Metal surface 20 Lance 21 Porous plug

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 精錬炉により脱炭精錬を行なって、高炭
素濃度の溶鋼を目標温度より低く溶製して、該溶鋼を取
鍋に受鋼した後、前記溶鋼内に浸漬した浸漬管内を減圧
して、該浸漬管内の溶鋼に発熱剤を添加して吹酸を行っ
て、前記溶鋼の温度を前記目標温度に高めることを特徴
とする高炭素溶鋼の精錬方法。
1. A decarburization refining is performed by a refining furnace to melt molten steel having a high carbon concentration lower than a target temperature, and the molten steel is received in a ladle. A method for refining high carbon molten steel, comprising reducing the pressure, adding an exothermic agent to the molten steel in the immersion tube and performing blowing acid to raise the temperature of the molten steel to the target temperature.
【請求項2】 前記取鍋に受鋼する溶鋼の温度を前記目
標温度よりも10〜90℃低くしていることを特徴とす
る請求項1記載の高炭素溶鋼の精錬方法。
2. The method for refining high carbon molten steel according to claim 1, wherein the temperature of the molten steel received in the ladle is lower by 10 to 90 ° C. than the target temperature.
【請求項3】 前記精錬炉により脱炭精錬した前記溶鋼
の炭素濃度が0.20〜1.2重量%であることを特徴
とする請求項1又は2記載の高炭素溶鋼の精錬方法。
3. The method for refining high carbon molten steel according to claim 1, wherein the carbon concentration of the molten steel decarburized and refined by the refining furnace is 0.20 to 1.2% by weight.
【請求項4】 前記発熱剤としてAlあるいはAl合金
を連続して添加することを特徴とする請求項1〜3のい
ずれか1項に記載の高炭素溶鋼の精錬方法。
4. The method for refining high carbon molten steel according to claim 1, wherein Al or an Al alloy is continuously added as the exothermic agent.
JP10229421A 1998-07-29 1998-07-29 Method for refining molten high carbon steel Withdrawn JP2000054020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10229421A JP2000054020A (en) 1998-07-29 1998-07-29 Method for refining molten high carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10229421A JP2000054020A (en) 1998-07-29 1998-07-29 Method for refining molten high carbon steel

Publications (1)

Publication Number Publication Date
JP2000054020A true JP2000054020A (en) 2000-02-22

Family

ID=16891971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10229421A Withdrawn JP2000054020A (en) 1998-07-29 1998-07-29 Method for refining molten high carbon steel

Country Status (1)

Country Link
JP (1) JP2000054020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116117095A (en) * 2023-01-06 2023-05-16 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116117095A (en) * 2023-01-06 2023-05-16 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and preparation method thereof
CN116117095B (en) * 2023-01-06 2023-06-20 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101055899B1 (en) Ultra Low Sulfur Low Nitrogen High Cleanness Solvent Method
JP5063966B2 (en) Manufacturing method of molten steel
JP4207820B2 (en) How to use vacuum degassing equipment
JP6551626B2 (en) Method of melting high manganese steel
WO2020228240A1 (en) Method for smelting high-quality steel using zinc-containing scrap steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JPH0510406B2 (en)
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP6969707B2 (en) Method of casting molten steel, method of manufacturing continuously cast slabs, and method of manufacturing steel materials for bearings.
JP6726777B1 (en) Method for producing low carbon ferromanganese
JP4360270B2 (en) Method for refining molten steel
JP2000054020A (en) Method for refining molten high carbon steel
JPS6014812B2 (en) Method for preventing slopping during subsurface gas injection refining of steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JPH07103416B2 (en) High carbon steel wire manufacturing method
JP2000017324A (en) Method for refining molten steel
JPH029645B2 (en)
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP3225747B2 (en) Vacuum degassing of molten steel
JP3918695B2 (en) Method for producing ultra-low sulfur steel
JP2009084672A (en) Method of heating molten steel, and method for production of rolled steel material
JP3902446B2 (en) Converter blowing method
JP2001032009A (en) Method for refining molten steel containing chromium
JPS63130746A (en) Manufacture of low-silicon medium-or low-carbon ferromanganese
JPH0557349B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004