JPH029645B2 - - Google Patents

Info

Publication number
JPH029645B2
JPH029645B2 JP7352985A JP7352985A JPH029645B2 JP H029645 B2 JPH029645 B2 JP H029645B2 JP 7352985 A JP7352985 A JP 7352985A JP 7352985 A JP7352985 A JP 7352985A JP H029645 B2 JPH029645 B2 JP H029645B2
Authority
JP
Japan
Prior art keywords
molten steel
ladle
blowing
oxidizing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7352985A
Other languages
Japanese (ja)
Other versions
JPS61235506A (en
Inventor
Mutsuo Nakajima
Ryoichi Sakomura
Kosuke Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7352985A priority Critical patent/JPS61235506A/en
Publication of JPS61235506A publication Critical patent/JPS61235506A/en
Publication of JPH029645B2 publication Critical patent/JPH029645B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は転炉の如き精錬炉において精錬の完了
した取鍋内溶鋼を連続鋳造などに供給し、あるい
は取鍋精錬を行うための溶鋼昇熱法に関する。 (従来の技術) 連続鋳造の普及、高速化に伴ない製鋼炉から連
続鋳造設備への溶鋼供給についての時間的な制約
は極めて厳しいものになつてきており製鋼時間の
短縮等余裕のない操業形態とならざるを得ない。 製鋼時間を短縮する方法としては、この製鋼炉
での作業終了時の分析結果の確認を行なわず作業
末期に採取した試料の分析結果より判断する方法
がとられるが、この場合あくまでも予測による成
分未確認出鋼となるため溶鋼が規格である成分値
を満足しないことがある。さらにこの成分調整、
あるいは精錬炉から出鋼された溶鋼が低温の場合
や、連続鋳造塊などの事故の場合には、従来では
精錬炉に返送されてから再精錬を行なていた。こ
の溶鋼の再精錬は耐火物、添加合金を含めた歩留
損失、時間的にも後工程である連続鋳造の生産休
止を招く等々経済的な損失が極めて大きい。 従つて、従来より特開昭53−149826号公報に示
す如く、取鍋底部のガス吹込孔からガスを吹込ん
で溶鋼を撹拌しつつ保護壁を設けて、該保護壁内
に供給管を介して酸化反応剤を添加しつつ、酸素
吹込管より酸素ガスを吹付けて溶鋼を加熱する方
法(以下単に取鍋内酸素吹精法と称する)が提案
されている。 この取鍋内酸素吹精法は、取鍋保護壁内の溶鋼
に酸化反応剤を添加しつつ、酸素吹込管より酸素
ガスを吹付けてこの酸化反応によつて取鍋内の溶
鋼を加熱するために、酸化反応剤である添加Al、
Si、Ti、Mn等の単なる酸化にとどまらず、本来
溶鋼中に含有された有価元素の一部と溶鉄自体の
酸化損失の急増を招き表面に高酸素含有(高
FeO)の酸化スラグ層を形成する。 この酸化スラグ層は、例えばAl等の酸化反応
剤と吹酸による昇熱を阻害し、あるいは成分調整
剤等の精錬における不必要な酸化とこれによる当
該溶鋼の汚染とをまねき、また精錬用耐火物の過
大な損耗を来たす等の欠点を有している。 (発明が解決しようとする問題点) 本発明は、前述した如き従来法の欠点である取
鍋内溶鋼の昇熱に際して、高酸素含有のスラグ層
の形成を抑制し、そして、該スラグの形成による
酸化反応剤と吹酸による昇熱、成分調整等の阻害
を防止するとともに、溶鋼の酸化損失、耐火物の
損耗をなくして酸化反応剤であるAlもしくはAl
合金の酸化発熱を効果的に溶鋼に伝熱する極めて
優れた溶鋼の昇熱法を提供することにある。 (問題点を解決するための手段) 本発明は取鍋の底部より不活性ガスを吹込み溶
鋼を撹拌しつつ、該取鍋内に浸漬管を挿入して、
浸漬管内の溶鋼表面に上吹ランスを介して酸化性
ガスを吹付ける取鍋内溶鋼の昇熱法において、上
吹ランスによる酸化性ガスの吹酸に先行して該浸
漬管内に酸化反応剤を添加して後に、前記上吹ラ
ンスを介して酸化性ガスの吹酸と酸化反応剤の添
加を連続して行うことを特徴とした取鍋内溶鋼の
昇熱法にある。 以下、本発明の反応剤内溶鋼の昇熱法について
詳述する。 本発明者等は、取鍋内の溶鋼にAl、もしくは
Al合金等の酸化反応剤を添加し吹酸によつて該
溶鋼を昇熱する際、吹酸とAl等の酸化反応剤の
添加を同時に、あるいは吹酸を先行して行うと昇
熱が阻害されることを知見し得た。即ち、酸化反
応剤である例えばAlの添加と吹酸を同時に行う
と浸漬管内で溶鋼とその含有元置素が先行酸化
し、高酸素含有(高FeO)の酸化スラグが形成さ
れる。 この酸化スラグは順次添加されるAlの酸化反
応熱を表層熱となし溶鋼への伝達を悪化し、また
該溶鋼の汚染、脱炭の先行、耐火物の損耗等を来
たし吹酸を阻害する。 本発明は、これ等の知見を基き取鍋吹酸昇熱の
利点を最大に活用した該取鍋吹酸昇熱をAl等の
酸化反応剤の添加条件とこれに適した酸化性ガス
の吹酸を行なうことによつて始めて安定、且つ効
果的に行ない得たものである。 而して、本発明の取鍋の吹酸昇熱においては、
浸漬管内の溶鋼表面に酸化反応剤である例えば
AlもしくはAl合金、Ti、Mg等を0.5Kg/TS以下
初期に投入して該酸化反応剤の溶融層を形成す
る。この溶融層は添加する酸化反応剤の種類にも
よるが通常添加から10〜30秒で形成される。溶融
層が形成された以降に、吹酸と該吹酸と同時に酸
化反応剤を連続的に添加すれば酸化反応剤が優先
して酸化され、形成したスラグは流動して鋼の汚
染及び耐火物を損耗することなく溶鋼への伝達が
極めて良好となる。 ところで、前記の酸化反応剤の溶融層形成後の
吹酸が30秒以降では酸化反応剤が溶鋼へ拡散する
ために溶鋼組成の変動を招くとともに溶鋼の優先
的酸化を招来し酸化スラグによる吹酸障害を生ず
る。さらにまた、送酸速度が0.1Nm3/分・TSよ
り遅い場合には酸化発熱すべきAlが溶鋼中に溶
融拡散して上吹酸素の供給域に高濃度のAl共存
域を形成出来なくなり結果としてAlの効率的な
燃焼発熱が不可能となり熱効率は極めて悪化す
る。又、反面送酸速度が0.25Nm3/分TSより早
い場合には投入されたAl塊は溶鋼表面上で酸化
発熱するため溶鋼への熱移動が悪くこの場合も熱
効率が極めて悪化する。 この様に熱効率が悪い場合には上吹供給酸素の
一部分は溶鋼と反応して高粘性スラグを形成する
とともに炭素と反応して激しいCOガスを発生し、
排ガスダクトの焼損や溶鋼のボイルをまねき操業
続行不可能となる。 (実施例) 本発明による取鍋内溶鋼の昇熱法の一実施例に
ついて述べる。 第1図は本発明の取鍋内溶鋼昇熱法の一実施例
の断面図を示す。 図において、取鍋1内の溶鋼2の上面にキヤツ
プ型浸漬管3(以下単に浸漬管と称する)を設置
して実施する。浸漬管3の上方には副材投入管4
と排煙吸引管5が浸漬管3の上下昇降に追随する
構造体で接続されている。又浸漬管3とは独立し
て昇降する上吹酸素ランス6が設置されている。
取鍋溶鋼2を撹拌する目的のため取鍋1の底部に
ポーラスプラグ7が埋設されている。 上述の如く構成された装置を用いて実際の昇熱
作業方法を述べる。 浸漬管を溶鋼内に浸漬するに先立ち取鍋底ポー
ラスプラグ7からArあるいはN2等の不活性ガス
を吹込み浸漬管3下方の取鍋溶鋼2の上面に浮遊
したスラグ8を排除した後に浸漬管3を溶鋼2に
浸漬する。これはAlの酸化発熱を効率よく溶鋼
2に伝播させるためである。この段階で浸漬管3
の内部の溶鋼2はポーラスプラグ7から吹込まれ
るArガスの上昇により激しく撹拌されている。 次いで副材投入管4から、例えばAlを一定速
度で初期投入して後に連続的に吹酸に合せ添加す
る。この際Al投入速度は上吹酸素で完全に燃焼
する量でかつ連続的に供給する必要がある。この
ようにして350Tの取鍋内溶鋼のAl−Siキルド鋼
の昇熱吹酸を第1表に示す条件で行なつたが7分
間の吹酸により1615℃から1650℃まで35℃の昇熱
ができた。
(Industrial Application Field) The present invention relates to a method for heating molten steel for supplying molten steel in a ladle that has been refined in a refining furnace such as a converter to continuous casting or for performing ladle refining. (Conventional technology) With the spread of continuous casting and increased speed, time constraints on supplying molten steel from steelmaking furnaces to continuous casting equipment have become extremely severe, and operational forms that do not have the luxury of shortening steelmaking time, etc. I have no choice but to do so. One way to shorten the steelmaking time is to make judgments based on the analysis results of samples taken at the end of the work without checking the analysis results at the end of the work in the steelmaking furnace, but in this case, the ingredients are not confirmed based on predictions. Since the molten steel is tapped, the molten steel may not meet the standard component values. Furthermore, this component adjustment,
Alternatively, when the molten steel discharged from the smelting furnace is at a low temperature, or in the case of an accident such as continuous casting, conventionally the molten steel is returned to the smelting furnace and then re-smelted. Re-smelting of this molten steel causes extremely large economic losses, such as yield loss of refractories and additive alloys, and production suspension of continuous casting, which is a subsequent process. Therefore, as shown in Japanese Unexamined Patent Publication No. 53-149826, a protective wall has been provided while stirring the molten steel by blowing gas through the gas blowing hole at the bottom of the ladle, and a supply pipe is passed through the inside of the protective wall. A method has been proposed in which molten steel is heated by spraying oxygen gas from an oxygen blowing pipe while adding an oxidizing reactant (hereinafter simply referred to as the in-ladle oxygen blowing method). This in-ladle oxygen blowing method involves adding an oxidizing agent to the molten steel in the ladle protective wall, and then blowing oxygen gas from an oxygen blowing pipe to heat the molten steel in the ladle through this oxidation reaction. For the addition of Al, which is an oxidation reactant,
Not only does it cause simple oxidation of Si, Ti, Mn, etc., but it also causes a rapid oxidation loss of some of the valuable elements originally contained in the molten steel and the molten iron itself, resulting in high oxygen content (high oxygen content) on the surface.
FeO) forms an oxidized slag layer. This oxidized slag layer inhibits the heat increase caused by oxidizing reactants such as Al and blowing acid, or causes unnecessary oxidation of component regulators during refining and contamination of the molten steel. It has drawbacks such as excessive wear and tear on materials. (Problems to be Solved by the Invention) The present invention suppresses the formation of a slag layer containing high oxygen content during heating of molten steel in a ladle, which is a drawback of the conventional method as described above, and the formation of the slag. In addition to preventing heat rise caused by oxidizing reactants and blowing acid and inhibiting component adjustment, it also eliminates oxidation loss of molten steel and damage to refractories, and eliminates Al or Al, which is an oxidizing reactant.
The object of the present invention is to provide an extremely excellent method for heating molten steel that effectively transfers heat generated by oxidation of an alloy to molten steel. (Means for Solving the Problems) The present invention involves inserting an immersion pipe into the ladle while stirring the molten steel by blowing inert gas into the bottom of the ladle.
In the heating method for molten steel in a ladle, in which oxidizing gas is sprayed onto the surface of the molten steel in the immersion tube through a top blowing lance, an oxidizing reactant is introduced into the immersion tube prior to the blowing of the oxidizing gas with the top blowing lance. The method of heating molten steel in a ladle is characterized in that after the addition, blowing acid of an oxidizing gas and adding an oxidizing reactant are successively performed via the top blowing lance. Hereinafter, the method of heating molten steel in a reactant according to the present invention will be described in detail. The present inventors added Al or Al to the molten steel in the ladle.
When adding an oxidizing agent such as Al alloy and heating the molten steel with blowing acid, heating will be inhibited if the blowing acid and the oxidizing agent such as Al are added at the same time or before the blowing acid is added. I was able to understand that this would happen. That is, when adding an oxidizing agent such as Al and blowing acid are performed simultaneously, the molten steel and the elements contained therein are oxidized in advance in the immersion tube, and oxidized slag with high oxygen content (high FeO) is formed. This oxidized slag converts the heat of the oxidation reaction of Al, which is successively added, into surface heat, impairs the transfer to the molten steel, and causes contamination of the molten steel, precedes decarburization, wears out refractories, etc., and inhibits acid blowing. Based on these findings, the present invention has developed a ladle blown acid heating process that takes full advantage of the advantages of ladle blown acid heating, based on the addition conditions of an oxidizing reactant such as Al, and the blowing of an oxidizing gas suitable for this. This method was only achieved stably and effectively by using an acid. Therefore, in heating the blowing acid in the ladle of the present invention,
For example, there is an oxidizing agent on the surface of the molten steel in the immersion tube.
Al or Al alloy, Ti, Mg, etc. are introduced at an initial stage of 0.5 Kg/TS or less to form a molten layer of the oxidizing reactant. This molten layer is usually formed within 10 to 30 seconds after addition, although it depends on the type of oxidation reactant added. After the molten layer is formed, if blowing acid and an oxidizing reactant are added continuously at the same time as the blowing acid, the oxidizing reactant will be preferentially oxidized, and the formed slag will flow, causing contamination of the steel and refractories. The transmission to the molten steel is extremely good without causing any loss. By the way, after 30 seconds of blowing acid after forming the molten layer of the oxidizing reactant, the oxidizing reactant diffuses into the molten steel, causing a change in the composition of the molten steel, as well as preferential oxidation of the molten steel, resulting in blowing acid due to oxidized slag. cause trouble. Furthermore, if the oxygen supply rate is slower than 0.1Nm 3 /min・TS, Al that should generate heat due to oxidation will melt and diffuse into the molten steel, making it impossible to form a high-concentration Al coexistence region in the top-blown oxygen supply region. As a result, efficient combustion heat generation of Al becomes impossible, and thermal efficiency deteriorates extremely. On the other hand, if the oxygen supply rate is faster than 0.25 Nm 3 /min TS, the introduced Al ingot will oxidize and generate heat on the surface of the molten steel, resulting in poor heat transfer to the molten steel and, in this case, the thermal efficiency will also be extremely poor. When thermal efficiency is poor as described above, a portion of the top-blown oxygen reacts with the molten steel to form highly viscous slag, and also reacts with carbon to generate intense CO gas.
The exhaust gas duct would burn out and the molten steel would boil, making it impossible to continue operations. (Example) An example of the heating method for molten steel in a ladle according to the present invention will be described. FIG. 1 shows a sectional view of an embodiment of the method for heating molten steel in a ladle according to the present invention. In the figure, a cap-type immersion tube 3 (hereinafter simply referred to as immersion tube) is installed on the upper surface of molten steel 2 in a ladle 1. Above the immersion pipe 3 is an auxiliary material input pipe 4.
and the exhaust gas suction pipe 5 are connected by a structure that follows the up and down movement of the immersion pipe 3. Additionally, a top-blowing oxygen lance 6 that moves up and down independently of the immersion tube 3 is installed.
A porous plug 7 is embedded in the bottom of the ladle 1 for the purpose of stirring the molten steel 2 in the ladle. An actual heating operation method using the apparatus configured as described above will be described. Before immersing the immersion tube into molten steel, an inert gas such as Ar or N 2 is blown into the porous plug 7 at the bottom of the ladle to remove the slag 8 floating on the upper surface of the ladle molten steel 2 below the immersion tube 3. 3 is immersed in molten steel 2. This is to efficiently propagate the heat generated by oxidation of Al to the molten steel 2. At this stage, dip tube 3
The molten steel 2 inside the molten steel 2 is vigorously stirred by the rising Ar gas blown from the porous plug 7. Next, from the auxiliary material input pipe 4, for example, Al is initially introduced at a constant rate, and then added continuously along with the blown acid. At this time, the Al injection rate must be such that it can be completely burned with top-blown oxygen, and must be supplied continuously. In this way, heating and blowing of Al-Si killed steel in molten steel in a 350T ladle was carried out under the conditions shown in Table 1. was completed.

【表】 (発明の効果) 以上述べた如く、本発明による溶鋼の昇熱法を
用いることにより、溶鋼あるいは有価元素の酸化
損耗と高酸化スラグの形成による昇熱阻害をなく
して、昇熱吹酸自体を可能にするとともに、耐火
物の損耗等が極めて少なくしかも安定した極めて
高い昇熱を得ることができる優れた昇熱法であ
る。
[Table] (Effects of the invention) As described above, by using the heating method for molten steel according to the present invention, the inhibition of heating up due to oxidation loss of molten steel or valuable elements and the formation of highly oxidized slag can be eliminated, and heating blowing can be achieved. It is an excellent heating method that allows the acid itself to be used, causes very little wear and tear on refractories, and can obtain stable and extremely high heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による取鍋昇熱法の一実施例の
断面図を示す。 符号の説明 1……取鍋、2……溶鋼、3……
浸漬管、6……上吹ランス、7……ポーラスプラ
グ、8……スラグ。
FIG. 1 shows a cross-sectional view of an embodiment of the ladle heating method according to the present invention. Explanation of symbols 1... Ladle, 2... Molten steel, 3...
Immersion tube, 6...Top-blown lance, 7...Porous plug, 8...Slag.

Claims (1)

【特許請求の範囲】[Claims] 1 取鍋の底部より不活性ガスを吹込み溶鋼を撹
拌しつつ、該取鍋内に浸漬管を挿入して、浸漬管
内の溶鋼表面に上吹ランスを介して酸化性ガスを
吹付ける取鍋内溶鋼の昇熱法において、上吹ラン
スによる酸化性ガスの吹酸に先行して該浸漬管内
に酸化反応剤を添加して後に、前記上吹ランスを
介して酸化性ガスの吹酸と酸化反応剤の添加を連
続して行うことを特徴とした取鍋内溶鋼の昇熱
法。
1 A ladle in which an inert gas is blown from the bottom of the ladle to stir the molten steel, a dipping tube is inserted into the ladle, and an oxidizing gas is sprayed onto the surface of the molten steel in the dipping tube via a top blowing lance. In the heating method for internally molten steel, an oxidizing reactant is added into the immersion tube prior to the blowing of oxidizing gas with acid using a top blowing lance, and then the oxidizing agent is added to the immersion tube via the top blowing lance. A heating method for molten steel in a ladle, characterized by continuous addition of a reactant.
JP7352985A 1985-04-09 1985-04-09 Heating up method for molten steel in ladle Granted JPS61235506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352985A JPS61235506A (en) 1985-04-09 1985-04-09 Heating up method for molten steel in ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352985A JPS61235506A (en) 1985-04-09 1985-04-09 Heating up method for molten steel in ladle

Publications (2)

Publication Number Publication Date
JPS61235506A JPS61235506A (en) 1986-10-20
JPH029645B2 true JPH029645B2 (en) 1990-03-02

Family

ID=13520851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352985A Granted JPS61235506A (en) 1985-04-09 1985-04-09 Heating up method for molten steel in ladle

Country Status (1)

Country Link
JP (1) JPS61235506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105051A (en) * 2006-10-25 2008-05-08 Shinagawa Refract Co Ltd Exothermic material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456816A (en) * 1987-08-27 1989-03-03 Sumitomo Metal Ind Heating method for molten steel in ladle
JPH07103415B2 (en) * 1990-05-29 1995-11-08 新日本製鐵株式会社 Heating method of molten acid in molten steel in ladle
GB0010393D0 (en) * 2000-04-28 2000-06-14 Qual Chem Limited Steel making
JP5119528B2 (en) * 2007-08-09 2013-01-16 新日鐵住金株式会社 Method of controlling the temperature of molten steel in the pan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105051A (en) * 2006-10-25 2008-05-08 Shinagawa Refract Co Ltd Exothermic material
JP4684981B2 (en) * 2006-10-25 2011-05-18 品川リフラクトリーズ株式会社 Heating material

Also Published As

Publication number Publication date
JPS61235506A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
US5902374A (en) Vacuum refining method for molten steel
JPH029645B2 (en)
JPH0510406B2 (en)
CA1157276A (en) Method for preventing slopping during subsurface pneumatic refining of steel
JPS55158208A (en) Refining method of steel
JPH0233779B2 (en)
US3860418A (en) Method of refining iron melts containing chromium
KR100334945B1 (en) Simple ladle refining method
JP3604311B2 (en) How to add carbon material to molten steel in ladle
US4726033A (en) Process to improve electric arc furnace steelmaking by bottom gas injection
KR20000042528A (en) Method for refining electric furnace to produce steel having less amount of phosphorous
JP3239691B2 (en) Arc furnace melting method
JP3655512B2 (en) Blowing acid heating method for medium and high carbon steel
RU1319561C (en) Method for blasting low-manganese iron in converter
KR20020005741A (en) Method of decarburisation and dephosphorisation of a melten metal
JPH01100216A (en) Ladle refining method for molten steel
JPH07268438A (en) Method for raising temperature of molten steel
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JPH07103415B2 (en) Heating method of molten acid in molten steel in ladle
SU1708863A1 (en) Method of steel making in open-hearth furnace
JP3861618B2 (en) Dephosphorization method of hot metal using converter.
JP2000054020A (en) Method for refining molten high carbon steel
JPH0348247B2 (en)
JPS62116752A (en) Manufacture of low-or medium-carbon ferroalloy
JPH08225823A (en) Refining of molten metal