JP3239691B2 - Arc furnace melting method - Google Patents

Arc furnace melting method

Info

Publication number
JP3239691B2
JP3239691B2 JP15769995A JP15769995A JP3239691B2 JP 3239691 B2 JP3239691 B2 JP 3239691B2 JP 15769995 A JP15769995 A JP 15769995A JP 15769995 A JP15769995 A JP 15769995A JP 3239691 B2 JP3239691 B2 JP 3239691B2
Authority
JP
Japan
Prior art keywords
secondary combustion
oxygen gas
slag bath
molten metal
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15769995A
Other languages
Japanese (ja)
Other versions
JPH08176640A (en
Inventor
秀昭 水上
光夫 鈴木
恵一 中川
峻一 杉山
博嗣 久保
隆弘 細川
道夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP15769995A priority Critical patent/JP3239691B2/en
Publication of JPH08176640A publication Critical patent/JPH08176640A/en
Application granted granted Critical
Publication of JP3239691B2 publication Critical patent/JP3239691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアーク炉溶解法の改良に
関し、特に、鉄スクラップ等の鉄原料を効率良く溶解す
るためのアーク炉における2次燃焼技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an arc furnace melting method, and more particularly to a secondary combustion technique in an arc furnace for efficiently melting an iron raw material such as iron scrap.

【0002】[0002]

【従来の技術】鉄スクラップ、銑鉄、DRI等の鉄原料
を溶解して溶鋼を製造するアーク炉溶解法において、溶
解時間の短縮による生産能率の向上は大きな課題であ
る。上記課題の解決のため、単位時間当りの投入電力量
を増大したUHP操業や、助燃バーナーの利用および酸
素富化操業等がある。
2. Description of the Related Art In an arc furnace melting method for manufacturing molten steel by melting iron raw materials such as iron scrap, pig iron, and DRI, it is a major problem to improve the production efficiency by shortening the melting time. In order to solve the above-mentioned problems, there are UHP operation in which the amount of input electric power per unit time is increased, use of an auxiliary burner, and oxygen-enrichment operation.

【0003】酸素富化操業とは、溶解期途中および溶解
期末期に酸素ガスを炉内の溶湯面に吹き付ける操業であ
る。これと同時に添加される炭素質原料、および溶湯中
に含有される炭素は以下の(3)式に従って燃焼(これ
を1次燃焼という)し、発熱する。
[0003] The oxygen enrichment operation is an operation in which oxygen gas is blown onto the molten metal surface in the furnace during the melting period and at the end of the melting period. At the same time, the carbonaceous raw material added and the carbon contained in the molten metal burn according to the following formula (3) (this is called primary combustion), and generate heat.

【0004】 C+1/2O2 →CO ・・・・・ (3) 同時に溶湯中の成分、Fe、Si、Mn等も酸素ガスに
よって酸化され、その反応熱も加わりスクラップの溶解
が促進され、生産能率の向上を図ることが出来る。
C + 1 / 2O 2 → CO (3) Simultaneously, components in the molten metal, such as Fe, Si, and Mn, are also oxidized by oxygen gas, and the heat of the reaction is also added to promote the dissolution of scrap, thereby increasing production efficiency. Can be improved.

【0005】更に、スクラップの溶解促進を追求した技
術に、上記酸素富化操業等により生じたCOガスを炉内
で積極的に2次燃焼させる技術が提案されている。
Further, as a technique for pursuing the dissolution of scrap, a technique has been proposed in which CO gas generated by the oxygen enrichment operation or the like is actively secondary burned in a furnace.

【0006】特開昭63−93815号公報および特開
平5−98364号公報に記載される技術では、アーク
炉内の空間部に酸素ガスを供給し、溶湯中に炭素質材料
を吹き込むことによって発生するCOガスを、以下の
(4)式(これを2次燃焼という)によって、CO2
2次燃焼させる方法が提案されている。 CO+1/2O2 →CO2 ・・・・・ (4)
In the techniques described in JP-A-63-93815 and JP-A-5-98364, the gas is generated by supplying oxygen gas into a space inside an arc furnace and blowing a carbonaceous material into a molten metal. A method has been proposed in which CO gas to be subjected to secondary combustion is converted into CO 2 by the following equation (4) (this is referred to as secondary combustion). CO + 1 / 2O 2 → CO 2 (4)

【0007】また、特開昭59−104419号公報に
記載される技術は、溶解期および(または)酸化期に溶
湯中に酸素ガスを吹き込んで脱炭させ、炭素含有量0.
20%以下の溶湯を得、これに引き続き、炭素質材料を
キャリアガスと共に溶湯中および(または)スラグ浴中
に吹き込んで、COガスを発生させ、炉内空間および
(または)スラグ浴中に2次燃焼用酸素ガスを吹き込ん
でCOガス発生量の一部をCO2 に2次燃焼させる方法
である。
In the technique described in Japanese Patent Application Laid-Open No. 59-104419, oxygen gas is blown into a molten metal during a melting period and / or an oxidizing period to decarbonize the molten metal, and the carbon content is reduced to 0.1.
20% or less of the molten metal is obtained, and subsequently, the carbonaceous material is blown into the molten metal and / or into the slag bath together with the carrier gas to generate CO gas, and into the furnace space and / or the slag bath. In this method, a part of the amount of generated CO gas is secondarily burned into CO 2 by blowing in oxygen gas for the next combustion.

【0008】[0008]

【発明が解決しようとする課題】しかし、特開昭63−
93815号公報および特開平5−98364号公報の
技術では、2次燃焼場所が炉内空間部であるため、前述
の(4)式の反応によって発生した燃焼熱が十分に溶湯
およびスラグ浴に伝熱(これを着熱という)されない。
これらの方法では、炉蓋や炉壁の水冷部分に伝熱された
り、排ガス中に顕熱として排出されてロスしてしまい、
2次燃焼による燃焼熱が有効に活用されない。
However, Japanese Patent Application Laid-Open No.
In the technology disclosed in Japanese Patent No. 93815 and Japanese Patent Laid-Open No. 5-98364, since the secondary combustion place is the space inside the furnace, the combustion heat generated by the reaction of the above formula (4) is sufficiently transmitted to the molten metal and the slag bath. It is not heated (this is called heating).
In these methods, heat is transferred to the water-cooled part of the furnace lid or the furnace wall, or is lost as sensible heat in the exhaust gas,
The combustion heat from the secondary combustion is not effectively used.

【0009】また、炉内空間部に導入した2次燃焼用酸
素ガスが黒鉛電極と直接反応して電極の酸化消耗につな
がる等の問題を引き起こす。
In addition, the secondary combustion oxygen gas introduced into the furnace space directly reacts with the graphite electrode, causing a problem that the electrode is oxidized and consumed.

【0010】2次燃焼熱による溶湯への着熱効率が高い
点では、スラグ浴中で2次燃焼させる方法が好ましく、
この技術は特開昭59−104419号公報の中でも開
示されているし、鉄の溶融還元プロセスでも数多く開示
されている。(例えば、加圧転炉型溶融還元炉内の2次
燃焼技術の開発;鉄と鋼76(1990)、p.1887 ) しかし、3m以上のスラグ浴を容易に確保出来る転炉法
に比較して、電気炉法ではその炉体構造からスラグ浴の
深さはせいぜい50〜100cm程度しか確保出来ない
ため、スラグ浴中で効率良く2次燃焼させるのは困難で
ある。
In view of the high heat transfer efficiency to the molten metal by the heat of secondary combustion, a method of performing secondary combustion in a slag bath is preferable.
This technique is disclosed in Japanese Patent Application Laid-Open No. 59-104419, and numerous disclosures are also made in the smelting reduction process of iron. (For example, development of secondary combustion technology in a pressure converter type smelting reduction furnace; iron and steel 76 (1990), p. 1887) However, compared with the converter method which can easily secure a slag bath of 3 m or more. In addition, in the electric furnace method, the depth of the slag bath can be at most only about 50 to 100 cm from the furnace body structure, so that it is difficult to efficiently perform secondary combustion in the slag bath.

【0011】一方、上記従来技術では、スクラップバッ
チ装入法において2次燃焼技術が適用されている。この
場合、1ヒートのスクラップ溶解量は2〜4回に分割し
て装入される。従って、1回当たりの装入量は数十トン
(通常10〜70トン)と多く、スラグ浴中で2次燃焼
させるための条件、言い換えると、平滑な溶湯面ならび
にフォーミング可能な溶湯温度を得るまでに長時間を要
し、この間、2次燃焼技術を適用出来ない。この結果、
2次燃焼適用時間が短く、期待される程のスクラップ溶
解促進効果は得られない。
On the other hand, in the above prior art, a secondary combustion technique is applied in a scrap batch charging method. In this case, the amount of scrap dissolved in one heat is charged in two to four times. Therefore, the charging amount per operation is as large as several tens tons (usually 10 to 70 tons), and the conditions for secondary combustion in the slag bath, in other words, a smooth molten metal surface and a molten metal temperature capable of forming are obtained. It takes a long time to complete the process, during which time the secondary combustion technology cannot be applied. As a result,
The secondary combustion application time is short, and the expected effect of dissolving scrap is not obtained.

【0012】本発明は、かかる問題点を解決するために
提案されたものであって、アーク炉内で2次燃焼させて
鉄原料を溶解する際に、十分なスラグ浴厚みを確保出来
ないアーク炉内で効率良く2次燃焼させて、スクラップ
溶解速度を促進する技術を提供することを目的とする。
更に、1ヒート溶製中における2次燃焼適用時間を増大
させて、実質的にスクラップ溶解促進効果を達成出来る
技術を提供する。
The present invention has been proposed in order to solve the above problems, and an arc which cannot secure a sufficient slag bath thickness when secondary iron is melted by secondary combustion in an arc furnace. It is an object of the present invention to provide a technique for efficiently performing secondary combustion in a furnace to promote a scrap melting rate.
Further, the present invention provides a technique capable of increasing the application time of the secondary combustion during one heat melting to substantially achieve the scrap melting acceleration effect.

【0013】[0013]

【課題を解決するための手段】本発明は、炭素質材料お
よび1次燃焼用酸素ガスを溶湯中に吹き込んでCOガス
を発生させスラグ浴をフォーミングさせつつ、2次燃焼
用酸素ガスをスラグ浴中に吹き込んでCOガスを2次燃
焼させるアーク炉溶解法において、スラグ浴の厚みを5
00mm以上とし、少なくとも1孔以上の吐出孔を有す
るランスの吐出孔の位置を溶湯面より400mm以上に
保持しつつ、1孔当りから吹き込まれる2次燃焼用酸素
ガス流量Q(Nm3 /min)および吐出角度θ(度)
を以下の(1)式及び(2)式を満足する範囲に制御
し、吐出孔をスラグ浴中に浸漬させるかまたはスラグ浴
の上方に配置して、スラグ浴中に2次燃焼用酸素ガスを
供給することを特徴とするアーク炉溶解法である。
According to the present invention, a carbonaceous material and an oxygen gas for the primary combustion are blown into a molten metal to generate a CO gas to form a slag bath, while the oxygen gas for the secondary combustion is formed in the slag bath. In the arc furnace melting method in which CO gas is blown into the secondary combustion, the thickness of the slag bath is 5
The secondary combustion oxygen gas flow rate Q (Nm 3 / min) blown from each hole while maintaining the position of the discharge hole of the lance having at least one discharge hole at least 400 mm from the molten metal surface. And discharge angle θ (degree)
Is controlled so as to satisfy the following formulas (1) and (2), and the discharge port is immersed in the slag bath or placed above the slag bath, and oxygen gas for secondary combustion is supplied in the slag bath. Is an arc furnace melting method.

【0014】 Q≧7.5・・・・・・・・・・・・・・(1) 10≦θ≦56ー1.55×Q・・・・・(2) 但し、吐出角度θは2次燃焼用酸素ガスが吐出される方
向と溶湯面とのなす角度とする。
Q ≧ 7.5 (1) 10 ≦ θ ≦ 56−1.55 × Q (2) However, the discharge angle θ is The angle between the direction in which the secondary combustion oxygen gas is discharged and the surface of the molten metal is defined.

【0015】また、その際に鉄原料を炉内に連続して装
入しつつアーク溶解するアーク炉溶解法である。
An arc furnace melting method in which an iron raw material is continuously charged into the furnace at this time and arc melting is performed.

【0016】[0016]

【作用】本発明では、炭素質材料(通常、キャリアーガ
スとしてArガス等の不活性ガスと共にランスを使用し
て吹き込まれる。以下、炭材という。)および1次燃焼
用酸素ガスを吹き込むためのランスを溶湯中に浸漬させ
るか、または溶湯面上に配置して溶湯面に向かって吹き
付けることにより、炭材および1次燃焼用酸素ガスを溶
湯中に吹き込む。
According to the present invention, a carbonaceous material (usually blown using a lance together with an inert gas such as Ar gas as a carrier gas; hereinafter referred to as a carbon material) and an oxygen gas for the primary combustion are blown. By immersing the lance in the molten metal or by disposing the lance on the molten metal surface and spraying the lance toward the molten metal surface, the carbon material and the oxygen gas for the primary combustion are blown into the molten metal.

【0017】この際に、炭材および溶湯中に含有される
炭素と1次燃焼用酸素ガスとは、溶湯中で(3)式によ
る1次燃焼による発熱反応を起してCOガスを発生させ
る。このCOガスは、スラグ浴中を浮上する過程で気泡
となってスラグ浴を攪拌させ、スラグ浴の加熱昇温、ス
ラグ浴温度の均一化、ならびに滓化促進を図って、スラ
グ浴をフォーミングさせる。
At this time, the carbon contained in the carbon material and the molten metal and the oxygen gas for the primary combustion cause an exothermic reaction by the primary combustion according to the equation (3) in the molten metal to generate a CO gas. . This CO gas forms bubbles in the process of floating in the slag bath, stirs the slag bath, heats the slag bath, makes the slag bath temperature uniform, and promotes slagging, and forms the slag bath. .

【0018】その際に、副原料の組成およびその投入
量、1次燃焼用酸素ガス吹き込み流量等を適宜選択する
ことにより、本発明では500mm以上のスラグ浴厚み
を確保し、2次燃焼用酸素ランスの吐出孔位置を溶湯面
から400mm以上確保するため、スラグ浴中を浮上す
るCOガスは十分な浮上時間が確保される。
At this time, by appropriately selecting the composition of the auxiliary raw materials, the amount of the auxiliary raw materials, the flow rate of the oxygen gas for the primary combustion, and the like, the slag bath thickness of 500 mm or more is secured in the present invention, and the oxygen for the secondary combustion is secured. In order to secure the position of the discharge hole of the lance at least 400 mm from the surface of the molten metal, a sufficient floating time of the CO gas floating in the slag bath is ensured.

【0019】本発明では、スラグ浴厚みおよび吐出孔位
置を前述した範囲に制御しつつ、1次燃焼用酸素ガスと
は別に2次燃焼用酸素ガスを、吐出孔をスラグ浴中に浸
漬させて吹き込むか、またはスラグ浴の上方に配置しス
ラグ浴面に吹き付けてスラグ浴中に吹き込むため、2次
燃焼用酸素ガスはスラグ浴中を広範囲に亘って拡散しス
ラグ浴中を浮上するCOガスと接触して、(4)式によ
る2次燃焼反応を起こす。
In the present invention, the secondary combustion oxygen gas is immersed in the slag bath separately from the primary combustion oxygen gas while controlling the slag bath thickness and the discharge hole position within the aforementioned ranges. The secondary combustion oxygen gas is diffused over a wide area in the slag bath and blown up in the slag bath because the gas is blown or placed above the slag bath and blown into the slag bath to blow into the slag bath. Upon contact, a secondary combustion reaction occurs according to equation (4).

【0020】この際に、吐出孔1孔当りから吹き込まれ
る2次燃焼用酸素ガス流量Q(Nm 3 /min)および
吐出角度θ(度)を、図2に示す斜線範囲、言い換える
と、(1)式及び(2)式を満たす範囲に制御すること
により、2次燃焼効率の増大を図る。以下この作用を説
明する。
At this time, the air is blown in from each discharge hole.
Secondary combustion oxygen gas flow rate Q (Nm Three/ Min) and
The discharge angle θ (degree) is defined by the shaded area shown in FIG.
And control within a range satisfying the expressions (1) and (2).
Thereby, the secondary combustion efficiency is increased. The following describes this effect.
I will tell.

【0021】(1)式で規制される範囲、即ち、酸素ガ
ス流量Qが7.5Nm3 /min以上確保されると、吐
出される酸素ガスの運動エネルギーは大きく、スラグ浴
中を広範囲に亘って拡散して、スラグ浴中を浮上するC
Oガスと接触して2次燃焼する。この燃焼は発熱反応で
あり、前述したようにスラグ浴中で十分な反応時間が確
保され、また発熱量は直接スラグ浴を経由して溶湯に伝
達されるので、スクラップの溶解は促進されて、2次燃
焼効率が増大する。
When the range regulated by the equation (1), that is, the oxygen gas flow rate Q is maintained at 7.5 Nm 3 / min or more, the kinetic energy of the discharged oxygen gas is large, and the kinetic energy of the discharged oxygen gas is wide in the slag bath. Diffuses and floats in the slag bath C
Secondary combustion occurs in contact with O gas. This combustion is an exothermic reaction, and as described above, a sufficient reaction time is secured in the slag bath, and the calorific value is directly transmitted to the molten metal via the slag bath, so that the dissolution of the scrap is promoted, Secondary combustion efficiency increases.

【0022】7.5Nm3 /min未満では、前述の運
動エネルギーが不足して、酸素ガスはすぐに減速して浮
上しスラグ浴面から炉内空間に抜け出てしまう。このた
め、スラグ浴中でCOガスと広範囲に亘って接触するこ
とが出来ず、2次燃焼効率は改善されない。
At less than 7.5 Nm 3 / min, the above-mentioned kinetic energy is insufficient, and the oxygen gas decelerates immediately and floats up and escapes from the slag bath surface into the furnace space. For this reason, it cannot come into contact with the CO gas in the slag bath over a wide range, and the secondary combustion efficiency is not improved.

【0023】(2)式の左辺で規制される範囲、即ち、
吐出角度θが10度以上確保されると、酸素ガスがスラ
グ浴中を深く侵入して、スラグ浴中で広範囲に亘ってC
Oガスと接触することが出来るため、2次燃焼効率は増
大する。
The range restricted by the left side of equation (2), that is,
When the discharge angle θ is secured to 10 degrees or more, oxygen gas penetrates deeply into the slag bath, and C
Since it can come into contact with O gas, the secondary combustion efficiency increases.

【0024】しかし、吐出角度θが10度未満では、酸
素ガスの侵入深さは浅く、すぐに浮上してスラグ浴から
抜け出てしまい、2次燃焼時間が確保されず2次燃焼効
率は改善されない。
However, if the discharge angle θ is less than 10 degrees, the penetration depth of the oxygen gas is shallow, and the oxygen gas immediately floats and escapes from the slag bath, so that the secondary combustion time is not secured and the secondary combustion efficiency is not improved. .

【0025】(2)式の右辺で規制される範囲、即ち、
吐出角度θを56−1.55×Q以下とする範囲では、
2次燃焼用酸素ガス流量Qの増加に従って、吐出角度θ
は直線的に減少する。言い換えると、酸素ガス流量Qの
増加に従って、運動エネルギーは増大するが、これに伴
って侵入深さは浅くなるので、酸素ガスはスラグ浴中を
通抜けて溶湯中に達することはなく、スラグ浴中でCO
ガスと広い範囲に亘って接触出来るため、2次燃焼効率
は増大する。
The range restricted by the right side of equation (2), that is,
In the range where the ejection angle θ is 56-1.55 × Q or less,
As the oxygen gas flow rate Q for the secondary combustion increases, the discharge angle θ
Decreases linearly. In other words, the kinetic energy increases with an increase in the oxygen gas flow rate Q, but the penetration depth becomes shallower with this, so that the oxygen gas does not pass through the slag bath and reach the molten metal. CO inside
Since the gas can be contacted over a wide range, the secondary combustion efficiency is increased.

【0026】しかし、吐出角度θがこの範囲を満足しな
いと、酸素ガスがスラグ浴を貫通して溶湯中にまで到達
し、溶湯と直接反応してしまう。この結果、酸素ガスは
溶湯中の炭素、Si、Mnを酸化するために作用してし
まい、2次燃焼効率は改善されない。
However, if the discharge angle θ does not satisfy this range, oxygen gas penetrates the slag bath and reaches the molten metal, and directly reacts with the molten metal. As a result, the oxygen gas acts to oxidize carbon, Si, and Mn in the molten metal, and the secondary combustion efficiency is not improved.

【0027】また、スラグ浴厚みが500mm以下、吐
出孔の位置が溶湯面より400mm以下であると、たと
え(1)及び(2)式の範囲に吐出角度及び2次燃焼用
酸素ガス流量を制御しても、酸素ガスは溶湯中に侵入し
てしまい、この場合も溶湯中に含有される炭素、Si、
Mnと酸化するために作用してしまい、2次燃焼効率の
増大には寄与しない。
When the thickness of the slag bath is 500 mm or less and the position of the discharge hole is 400 mm or less from the surface of the molten metal, the discharge angle and the oxygen gas flow rate for the secondary combustion are controlled within the range of equations (1) and (2). Even so, oxygen gas penetrates into the molten metal, and also in this case, carbon, Si,
It acts to oxidize with Mn and does not contribute to an increase in secondary combustion efficiency.

【0028】更に、本発明では鉄原料を炉内に連続して
供給しつつアーク溶解して、2次燃焼適用時間を増大す
る。
Furthermore, in the present invention, arc melting is performed while the iron raw material is continuously supplied into the furnace, so that the secondary combustion application time is increased.

【0029】ここで、連続して装入することの意味する
所は、鉄原料を一定の供給速度で途切れることなく連続
装入するか、または途切れてもその途切れる間隔が短い
場合、例えば、プッシャー等で断続的に装入する場合を
も含む。
Here, the meaning of the continuous charging means that the iron raw material is charged continuously at a constant supply rate without interruption, or when the interval between interruptions is short, for example, when a pusher is used. This includes the case of intermittent charging.

【0030】また、その鉄原料の供給速度は、単位時間
当たりに供給されるアーク電力エネルギーと2次燃焼に
よって鉄原料に付与される熱エネルギーとの合計値を、
連続供給される鉄原料の溶解エネルギーに対して同等
か、またはそれ以上となる速度とする。
The supply rate of the iron raw material is represented by the sum of the arc power energy supplied per unit time and the heat energy given to the iron raw material by the secondary combustion.
The speed should be equal to or higher than the melting energy of the continuously supplied iron raw material.

【0031】このため、1ヒート溶製中、鉄原料を供給
しても溶湯温度は一定で変動することがないか、または
少なくとも低下しないので、溶解初期から平滑な溶湯面
ならびにフォーミング可能な溶湯温度を安定して確保で
き、本発明に係わるフォーミング厚みを確保できる。
For this reason, even if the iron raw material is supplied during the one-heat smelting, the molten metal temperature is constant and does not fluctuate, or at least does not decrease. And the forming thickness according to the present invention can be secured.

【0032】更には、大量の未溶解のスクラップが炉内
に存在または堆積しないので、2次燃焼用ランスはこれ
らと接触することがなく、溶解初期から本発明に係わる
吐出口高さを確保出来る。
Further, since a large amount of unmelted scrap does not exist or accumulate in the furnace, the secondary combustion lance does not come into contact with them, and the discharge port height according to the present invention can be secured from the initial stage of melting. .

【0033】特に、種湯と称してヒート出鋼時に数十ト
ンの溶湯を炉内に残すことにより、溶解開始から出鋼ま
でのほぼ全溶製期間に亘り、本発明に係わる2次燃焼条
件が確保され、1ヒート溶製中の2次燃焼適用時間を大
幅に増大でき、スクラップ溶解速度を更に増大出来る。
In particular, by leaving several tens of tons of molten metal in the furnace at the time of heat tapping, which is referred to as seed water, the secondary combustion conditions according to the present invention can be maintained over almost the entire melting period from the start of melting to tapping. , The application time for secondary combustion during one heat melting can be greatly increased, and the scrap melting speed can be further increased.

【0034】[0034]

【実施例】【Example】

確認試験(1): 吐出角度θおよび2次燃焼用ランス
高さの影響調査 図1は、本発明の効果を確認するため、容量120トン
の直流アーク電気炉を使用して、2次燃焼試験を実施し
ている状況を示す。
Confirmation test (1): Investigation of the effects of the discharge angle θ and the height of the secondary combustion lance FIG. 1 shows a secondary combustion test using a 120 ton capacity DC arc electric furnace to confirm the effect of the present invention. Shows the situation where

【0035】ここで、1はアーク炉炉体、2は側壁、3
は炉蓋、4は黒鉛電極、5は炉底電極、6は1次燃焼用
酸素ランス、7は炭材吹き込み用ランス、8は2次燃焼
用酸素ランス、9は炉内空間、11は溶湯、12はスラ
グ浴である。
Here, 1 is an arc furnace body, 2 is a side wall, 3
Is a furnace lid, 4 is a graphite electrode, 5 is a furnace bottom electrode, 6 is a primary combustion oxygen lance, 7 is a carbon material injection lance, 8 is a secondary combustion oxygen lance, 9 is a furnace space, and 11 is molten metal. , 12 are slag baths.

【0036】表1は、本試験における2次燃焼試験条件
およびスクラップ溶解速度を調査した結果を示す。
Table 1 shows the results of the examination of the secondary combustion test conditions and the scrap dissolution rate in this test.

【0037】本試験では、アーク炉内で脱硫精練や成分
調整を実施せず、スクラップ溶解後、溶湯温度が155
0℃に達した時点を溶解終了と判定し出鋼した。従っ
て、1ヒートのスクラップ装入量120トンを溶解する
ために、溶解開始から出鋼までに要した時間(ただし、
装入時間は除く)で割った値をスクラップ溶解速度(t
on/min)と定義する。
In this test, desulfurization scouring and component adjustment were not performed in the arc furnace, and after melting the scrap, the temperature of the molten metal was 155.
When the temperature reached 0 ° C., the melting was judged to be completed, and the steel was removed. Therefore, the time required from the start of melting to tapping to melt 120 tons of scrap charged in one heat (however,
The value obtained by dividing by the scrap dissolution rate (t)
on / min).

【0038】[0038]

【表1】 [Table 1]

【0039】本試験では、主原料として鉄スクラップ7
0トン、石灰石を主成分とする副原料3トンを初装入
し、アーク電圧550V、アーク電流120KAで溶解
を開始した。その後、溶解途中で鉄スクラップ50トン
を追装入した。
In this test, iron scrap 7 was used as the main raw material.
0 tons and 3 tons of auxiliary material mainly composed of limestone were initially charged, and melting was started at an arc voltage of 550 V and an arc current of 120 KA. Thereafter, 50 tons of iron scrap were additionally charged during melting.

【0040】図1に示すように、溶解開始直後から出鋼
直前までの全溶製期間に亘り、アーク炉炉体1の側壁2
に設けた作業口から溶湯11に向けて、炭材吹き込み用
ランス7および1次燃焼用酸素ランス6を炉内に差し込
み、炭材吹き込み用ランス7からキャリアーガスと共に
炭材を50kg/min、1次燃焼用酸素ランス6から
酸素ガスを60Nm3 /minの供給速度で溶湯11に
向けて吹き付けた。
As shown in FIG. 1, the side wall 2 of the arc furnace furnace body 1 extends from the start of melting to immediately before tapping for the entire melting period.
A lance 7 for injecting carbonaceous material and an oxygen lance 6 for primary combustion are inserted into the furnace from the working port provided in the furnace to the molten metal 11, and the carbonaceous material is injected with the carrier gas through the lance 7 for injecting carbonaceous material at 50 kg / min. Oxygen gas was blown from the next combustion oxygen lance 6 toward the molten metal 11 at a supply speed of 60 Nm 3 / min.

【0041】スクラップの溶解に伴い副原料の滓化が進
行して、スラグ浴が形成された後、ランス7から吹き込
まれた炭材と、ランス6から吹き込まれた1次燃焼用酸
素ガスとは溶湯中で燃焼し、この燃焼によって発生した
COガスによりスラグ浴は膨張しフォーミングした。
After the slag bath is formed due to the progress of slagging of the auxiliary raw material with the dissolution of the scrap, the carbon material blown from the lance 7 and the oxygen gas for the primary combustion blown from the lance 6 are: The slag bath was burned in the molten metal, and the slag bath was expanded and formed by the CO gas generated by the burning.

【0042】溶解開始から約40分間で平滑な溶湯11
およびスラグ浴12が形成された後、作業口からスラグ
浴12内に向けて2次燃焼用酸素ランス8を2本(図1
では1本のみを図示する)差し込み、酸素ガスを供給速
度30Nm3 /min(1本当り、15Nm3 /mi
n)で約15分間吹き込んだ。
In about 40 minutes from the start of melting, a smooth molten metal 11
After the slag bath 12 is formed, two oxygen lances 8 for secondary combustion are introduced from the working port into the slag bath 12 (FIG. 1).
In this case, only one is shown), and the supply rate of oxygen gas is 30 Nm 3 / min (15 Nm 3 / mi per one)
In step n), the mixture was blown for about 15 minutes.

【0043】この2次燃焼用酸素ガス吹き込み中のスラ
グ浴12の厚みをおよそ800mmに、酸素ランス8の
吐出孔位置を溶湯面より600mmに保持し、600±
30mmの範囲内に制御した。
The thickness of the slag bath 12 during the injection of the oxygen gas for secondary combustion is maintained at about 800 mm, and the position of the discharge hole of the oxygen lance 8 is maintained at 600 mm from the surface of the molten metal.
The control was performed within a range of 30 mm.

【0044】酸素ランス8は単管状で、ランス先端に孔
径20mmの吐出孔を1本当り1個設けた。従って、こ
の吐出孔より吐出される酸素ガス流速は、計算上796
m/sec(音速の約2倍)となり、2次燃焼用酸素ガ
スはジェッティング状態(これを酸素ガスジェットとい
い、この状態では減速し難くなる)となってスラグ浴中
を広範囲に亘って拡散しスラグ浴と接触した。
The oxygen lance 8 is a single tube, and has one discharge hole with a diameter of 20 mm at the tip of the lance. Therefore, the flow rate of oxygen gas discharged from this discharge hole is calculated to be 796
m / sec (approximately twice the speed of sound), and the oxygen gas for secondary combustion is in a jetting state (this is called an oxygen gas jet, in which state it is difficult to decelerate), and extends over a wide range in the slag bath. Diffused and contacted with slag bath.

【0045】実施例1は、2次燃焼用酸素ガスの吐出角
度θを溶湯面に対して下向き方向25度に設定した場合
であり、フォーミングしたスラグ浴12内で高い着熱効
率が得られ、スクラップ溶解速度は2.38ton/m
inの高い値が得られた。
Example 1 is a case where the discharge angle θ of the oxygen gas for secondary combustion is set to 25 degrees in the downward direction with respect to the molten metal surface. Dissolution rate is 2.38 ton / m
High values of in were obtained.

【0046】一方、比較例1および比較例2は、吐出角
度θを45度および7度(本発明の範囲外に設定)とし
た場合であり、スクラップ溶解速度は2.09および
2.08ton/minとなり、実施例1に比べ低い値
が得られた。この理由は、比較例1では吐出角度θが大
きいため、酸素ガスジェットは溶湯11内に深く浸透
し、一部の酸素ガスは(4)式に示す2次燃焼用に使用
されるものの、大部分の酸素ガスが溶湯11内に含有す
る炭素、Fe,Si,Mn等を燃焼するために消費され
て2次燃焼に使用されず、スクラップの溶解促進に働か
なかったためである。
On the other hand, in Comparative Examples 1 and 2, the discharge angle θ was 45 ° and 7 ° (set outside the range of the present invention), and the scrap dissolution rate was 2.09 and 2.08 ton / min, and a lower value than that of Example 1 was obtained. The reason is that in Comparative Example 1, the discharge angle θ is large, so that the oxygen gas jet penetrates deeply into the molten metal 11 and some oxygen gas is used for the secondary combustion shown in the equation (4). This is because a part of the oxygen gas was consumed to burn carbon, Fe, Si, Mn, etc. contained in the molten metal 11 and was not used for the secondary combustion, and did not work to promote the dissolution of scrap.

【0047】他方、比較例2では吐出角度θが小さいた
め、浸透深さは浅く、大部分の酸素ガスは未反応のまま
浮上して炉内空間に飛び出してしまい、スラグ浴12内
で2次燃焼せず、スクラップの溶解促進に働かなかった
ためである。
On the other hand, in Comparative Example 2, since the discharge angle θ was small, the depth of penetration was shallow, and most of the oxygen gas levitated without reacting and jumped out into the furnace space. This is because they did not burn and did not work to promote the dissolution of scrap.

【0048】比較例3は、実施例1と同じく吐出角度θ
を25度とするが、ランス8の吐出孔位置を溶湯面より
250±30mm範囲内に制御して2次燃焼させた場合
であり、スクラップ溶解速度は2.09ton/min
の低い値を得た。この理由は、溶湯面からのランス高さ
が低いため、酸素ガスは溶湯11内に深く侵入してしま
い、大部分の酸素ガスが比較例1の場合と同様に2次燃
焼のために消費されず、スクラップの溶解促進に働かな
かったためである。
In Comparative Example 3, the discharge angle θ was the same as in Example 1.
Is 25 degrees, but the secondary combustion is performed by controlling the position of the discharge hole of the lance 8 within a range of 250 ± 30 mm from the surface of the molten metal, and the scrap melting rate is 2.09 ton / min.
Low values were obtained. The reason is that the oxygen gas penetrates deeply into the molten metal 11 because the lance height from the molten metal surface is low, and most of the oxygen gas is consumed for secondary combustion as in the case of Comparative Example 1. And did not work to promote the dissolution of scrap.

【0049】2次燃焼技術を適用しない従来例では、こ
れら比較例と比較して更に低い結果、2.00ton/
minを得た。
In the conventional example to which the secondary combustion technique is not applied, the result is still lower than those of the comparative examples.
min.

【0050】確認試験(2): 1孔当りの2次燃焼用
酸素ガス流量Qの影響調査 図3は、ランス1本当り、吐出孔を2孔または3孔設け
た多孔ランスを使用して2次燃焼試験を実施している状
況を示す。
Confirmation test (2): Investigation of the influence of the flow rate Q of oxygen gas for secondary combustion per hole FIG. 3 shows the results obtained by using a porous lance having two or three discharge holes per lance. This shows the situation where the next combustion test is being performed.

【0051】本試験で使用したランス8の吐出孔径は、
全て20mmとし、2孔ランスでは180度毎、3孔の
ランスでは120度毎、同一円周上に穿孔した。また、
ランス8が溶湯面に対して垂直方向に配置された場合
に、吐出角度θが下向き方向25度になるように吐出孔
を穿孔した。
The discharge hole diameter of the lance 8 used in this test was:
The holes were all 20 mm, and were drilled on the same circumference every 180 degrees with a two-hole lance and every 120 degrees with a three-hole lance. Also,
When the lance 8 was arranged in a direction perpendicular to the surface of the molten metal, the discharge holes were drilled so that the discharge angle θ was 25 degrees in the downward direction.

【0052】そして、炉蓋3に貫通孔を設け、ランス8
をこの貫通孔を通して炉蓋3の上方からスラグ浴12内
に差し込み浸漬させた。この他の試験条件は確認試験
(1)と同じとし、表1に示す。
Then, a through hole is provided in the furnace lid 3 and the lance 8
Was immersed into the slag bath 12 from above the furnace lid 3 through this through hole. Other test conditions are the same as in the confirmation test (1), and are shown in Table 1.

【0053】実施例2は、2次燃焼用酸素ガス流量30
Nm3 /minを2孔ランスを1本使用して吹き込み、
1孔当りの酸素ガス流量を実施例1と同じ15Nm3
minとした場合であり、スクラップ溶解速度は実施例
1と同等の2.37ton/minを得た。
In the second embodiment, the secondary combustion oxygen gas flow rate 30
Nm 3 / min is blown in using one two-hole lance,
The oxygen gas flow rate per hole was 15 Nm 3 /
min, and a scrap dissolution rate of 2.37 ton / min equivalent to that of Example 1 was obtained.

【0054】この結果、吐出角度θおよび1孔当りの酸
素ガス流量が同じであれば、ランス8の吐出孔の構造や
形状によらず、同等の2次燃焼効率が得られることが確
認できた。
As a result, it was confirmed that if the discharge angle θ and the oxygen gas flow rate per hole were the same, the same secondary combustion efficiency could be obtained regardless of the structure and shape of the discharge hole of the lance 8. .

【0055】実施例3は、2孔ランスを2本使用し、1
孔当りの酸素ガス流量は7.5Nm 3 /min(実施例
2の1/2であるが、酸素ガス流速は398m/sec
で音速を越える)とした場合である。この結果、実施例
2と同等の2次燃焼効率が得られ、スクラップ溶解速度
は2.36ton/minを得た。
In Example 3, two two-hole lances were used, and
The oxygen gas flow rate per hole is 7.5 Nm Three/ Min (Example
2, but the oxygen gas flow rate is 398 m / sec.
Exceeds the speed of sound). As a result,
Secondary combustion efficiency equivalent to 2 is obtained, and scrap dissolution rate
Obtained 2.36 ton / min.

【0056】比較例4は、3孔ランスを2本使用し、1
孔当りの2次燃焼用酸素ガス流量Qを5.0Nm3 /m
in(実施例2の1/3とした場合で、酸素ガス流速は
265m/secで音速を下回る)とした場合である。
この結果、スクラップ溶解速度は2.10ton/mi
nで低い値を得た。この理由は、5.0Nm3 /min
では音速を下回るため、酸素ガスジェットが形成され
ず、広範囲に亘って拡散しないため十分な2次燃焼効率
が確保出来ないためである。
In Comparative Example 4, two three-hole lances were used.
The oxygen gas flow rate Q for secondary combustion per hole is 5.0 Nm 3 / m
In (in the case of 1/3 of the second embodiment, the oxygen gas flow rate is 265 m / sec, which is lower than the sound velocity).
As a result, the scrap dissolution rate was 2.10 ton / mi.
Low values were obtained with n. The reason is 5.0 Nm 3 / min.
In this case, since the velocity is lower than the sound speed, an oxygen gas jet is not formed, and the oxygen gas jet does not diffuse over a wide range, so that sufficient secondary combustion efficiency cannot be secured.

【0057】確認試験(3): フォーミングスラグ厚
みの影響調査 本試験では、フォーミングスラグ厚みが2次燃焼効率、
言い換えると、スクラップ溶解速度に及ぼす影響を調査
した。
Confirmation test (3): Investigation of the influence of the forming slag thickness In this test, the forming slag thickness was changed to the secondary combustion efficiency,
In other words, the effect on the scrap dissolution rate was investigated.

【0058】実施例4は、表1に示すようにフォーミン
グスラグ浴厚みを800mm、2次燃焼用酸素ランス8
の吐出口位置を溶湯面より550mm、単管ランス2本
を使用し、吐出角度θを20度、酸素ガス流量を40N
3 /min、1孔当りの酸素ガス流量を20Nm3
min(酸素ガス流速は1061m/secで、音速の
約3倍)とした場合である。この結果、実施例1〜実施
例3と同等のスクラップ溶解速度2.41ton/mi
nを得た。
In Example 4, as shown in Table 1, the forming slag bath thickness was 800 mm, and the oxygen lance 8 for the secondary combustion was used.
The discharge port position is 550 mm from the surface of the molten metal, using two single tube lances, the discharge angle θ is 20 degrees, and the oxygen gas flow rate is 40 N.
m 3 / min, the flow rate of oxygen gas per hole is 20 Nm 3 / min.
min (oxygen gas flow rate is 1061 m / sec, about three times the speed of sound). As a result, a scrap dissolution rate equivalent to that of Examples 1 to 3 was 2.41 ton / mi.
n was obtained.

【0059】比較例5は、副原料の装入量を調整してス
ラグ浴厚みを300mmとし、その他の試験条件は実施
例4と同じとした。この結果、スクラップ溶解速度は
2.10ton/minで低い値を得た。この理由は、
スラグ浴厚みが300mmと薄いため、スラグ浴中での
2次燃焼時間が確保されず2次燃焼効率が減少したため
である。
In Comparative Example 5, the thickness of the slag bath was adjusted to 300 mm by adjusting the amount of the auxiliary material charged, and the other test conditions were the same as in Example 4. As a result, the scrap dissolution rate was a low value of 2.10 ton / min. The reason for this is
This is because the secondary combustion time in the slag bath was not secured because the slag bath thickness was as thin as 300 mm, and the secondary combustion efficiency was reduced.

【0060】確認試験(4): スクラップ連続供給法
との組合わせによる効果 本試験では、確認試験(1)から確認試験(3)までの
バッチ装入法に代わりスクラップ連続供給法を採用し、
これと本発明に係わる2次燃焼技術を組合わせてスクラ
ップの溶解促進効果に及ぼす影響を調査した。
Confirmation test (4): Effect of combination with continuous scrap supply method In this test, the continuous scrap supply method was adopted instead of the batch charging method from confirmation test (1) to confirmation test (3).
By combining this with the secondary combustion technique according to the present invention, the effect on the dissolution accelerating effect of scrap was investigated.

【0061】図4は、120トンの直流アーク電気炉の
側壁2に貫通してスクラップ連続供給設備13を設け、
搬送コンベア14を駆動してスクラップ15をアーク炉
本体1に連続装入しアーク溶解しつつ、炉内で2次燃焼
させてスクラップ溶解を促進している状況を示す。
FIG. 4 shows a continuous scrap supplying facility 13 penetrating the side wall 2 of the 120 ton DC arc electric furnace.
A situation in which the scrap conveyor 15 is continuously charged into the arc furnace main body 1 by driving the transport conveyor 14 to melt the arc, and secondary burning in the furnace to promote the melting of the scrap is shown.

【0062】なお、スクラップ連続供給法におけるスク
ラップ溶解速度は、アーク電力量(本試験の場合、アー
ク電圧550V、アーク電流120KA)を供給し、さ
らに2次燃焼させた場合、スクラップ供給中に溶湯温度
が低下せず、溶残りの発生しないスクラップ供給速度、
言い換えると、この電力供給量と2次燃焼により付与さ
れる熱エネルギー量の合計量にバランスするスクラップ
供給速度で定義する。
The scrap melting rate in the continuous scrap supply method is determined by measuring the temperature of the molten metal during the supply of the scrap when the arc power (in this test, the arc voltage is 550 V and the arc current is 120 KA) and the secondary combustion is performed. Does not decrease, and the scrap supply speed does not cause residual melting,
In other words, the scrap supply speed is defined as a balance between the power supply amount and the total amount of heat energy provided by the secondary combustion.

【0063】実施例5は、前チャージの出鋼時、炉内に
30トンの溶鋼を残し、次チャージのスクラップを毎分
2.9トンの一定の供給速度で、溶解開始から出鋼まで
の31分間、合計90トン供給した。
In the fifth embodiment, at the time of tapping of the pre-charge, 30 tons of molten steel is left in the furnace, and the scrap of the next charge is supplied from the start of melting to tapping at a constant supply rate of 2.9 tons per minute. A total of 90 tons was fed for 31 minutes.

【0064】スクラップ供給開始と同時に、石灰石を主
成分とする副原料3トンを搬送コンベア14を駆動して
装入し、上記アーク溶解条件で溶解を開始した。2次燃
焼は溶解開始から出鋼までの全溶製期間に亘り、実施例
3と同じ条件で実施した。
Simultaneously with the start of the supply of the scrap, 3 tons of auxiliary material mainly composed of limestone was charged by driving the conveyor 14 and melting was started under the above-mentioned arc melting conditions. The secondary combustion was performed under the same conditions as in Example 3 over the entire melting period from the start of melting to tapping.

【0065】この結果、スクラップ溶解速度は2.90
ton/minと高い値が得られた。この値はバッチ装
入法と2次燃焼技術とを組合わせによる実施例3に比
べ、更に約23%高い溶解速度であり、2次燃焼適用時
間比率の増大による溶解促進効果である。
As a result, the scrap dissolution rate was 2.90.
A high value of ton / min was obtained. This value is about 23% higher than that of Example 3 in which the batch charging method and the secondary combustion technique are combined, and is a dissolution promoting effect due to an increase in the secondary combustion application time ratio.

【0066】比較例6は、スクラップ連続供給法のみを
採用し、2次燃焼技術を適用しなかった場合であり、ス
クラップ溶解速度は2.31ton/minであった。
Comparative Example 6 was a case where only the scrap continuous supply method was employed and the secondary combustion technique was not applied, and the scrap dissolution rate was 2.31 ton / min.

【0067】本発明では、2次燃焼用酸素ガス流量Qが
大きい場合、2孔以上の多孔ランスを使用すれば、少な
い本数で大流量を流せるのでランス操作が簡便に出来
る。
In the present invention, when the secondary combustion oxygen gas flow rate Q is large, the use of a porous lance having two or more holes allows a large flow rate to be supplied with a small number of lances, so that the lance operation can be simplified.

【0068】本発明により、2次燃焼効率は増大するた
め、炉内空間に排出される2次燃焼用酸素ガス量も減少
するので、電極酸化量も低減出来る。
According to the present invention, since the secondary combustion efficiency is increased, the amount of oxygen gas for secondary combustion discharged into the furnace space is also reduced, so that the amount of electrode oxidation can be reduced.

【0069】[0069]

【発明の効果】本発明によれば、スラグ浴厚み、2次燃
焼用酸素ガスの吐出位置、1孔当りの酸素ガス流量およ
びその吐出角度を適切な範囲に制御することにより、ス
ラグ浴内で効率よく2次燃焼させることが可能となり、
アーク炉におけるスクラップ溶解速度を大幅に増大出来
る。更に、本発明に係わる2次燃焼技術とスクラップ連
続供給法を組み合わせることにより、2次燃焼適用時間
比率を大幅に増大してスクラップ溶解速度を促進出来
る。
According to the present invention, by controlling the thickness of the slag bath, the discharge position of the oxygen gas for secondary combustion, the flow rate of oxygen gas per hole and the discharge angle thereof within an appropriate range, the inside of the slag bath is controlled. Secondary combustion can be performed efficiently,
The scrap melting speed in the arc furnace can be greatly increased. Furthermore, by combining the secondary combustion technology according to the present invention with the continuous scrap supply method, the secondary combustion application time ratio can be greatly increased, and the scrap dissolution rate can be promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】確認試験(1)における2次燃焼試験の実施状
況を示す図である。
FIG. 1 is a diagram showing an implementation state of a secondary combustion test in a confirmation test (1).

【図2】2次燃焼用酸素ガス流量Q、吐出角度θが
(1)式及び(2)式を満足する本発明の範囲を示した
図である。
FIG. 2 is a diagram showing a range of the present invention in which a secondary combustion oxygen gas flow rate Q and a discharge angle θ satisfy Expressions (1) and (2).

【図3】確認試験(2)における2次燃焼試験の実施状
況を示す図である。
FIG. 3 is a diagram showing an implementation state of a secondary combustion test in a confirmation test (2).

【図4】確認試験(4)における2次燃焼試験の実施状
況を示す図である。
FIG. 4 is a diagram showing an implementation state of a secondary combustion test in a confirmation test (4).

【符号の説明】[Explanation of symbols]

1 アーク炉炉体 2 側壁 3 炉蓋 4 黒鉛電極 6 1次燃焼用酸素ランス 7 炭材吹き込み用ランス 8 2次燃焼用酸素ランス 9 炉内空間 11 溶湯 12 スラグ浴 DESCRIPTION OF SYMBOLS 1 Arc furnace furnace body 2 Side wall 3 Furnace lid 4 Graphite electrode 6 Primary combustion oxygen lance 7 Carbon material injection lance 8 Secondary combustion oxygen lance 9 Furnace space 11 Melt 12 Slag bath

フロントページの続き (72)発明者 杉山 峻一 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 久保 博嗣 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 細川 隆弘 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 中山 道夫 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (58)調査した分野(Int.Cl.7,DB名) C21C 5/52 F27D 3/16 F27D 3/18 Continuation of the front page (72) Inventor Shunichi Sugiyama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hiroshi Kubo 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Takahiro Hosokawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Michio Nakayama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) C21C 5/52 F27D 3/16 F27D 3/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素質材料および1次燃焼用酸素
ガスを溶湯中に吹き込んでCOガスを発生させスラグ浴
をフォーミングさせつつ、2次燃焼用酸素ガスをスラグ
浴中に吹き込んでCOガスを2次燃焼させるアーク炉溶
解法において、スラグ浴の厚みを500mm以上とし、
少なくとも1孔以上の吐出孔を有するランスの吐出孔の
位置を溶湯面より400mm以上に保持しつつ、1孔当
りから吹き込まれる2次燃焼用酸素ガス流量Q(Nm3
/min)および吐出角度θ(度)を以下の(1)式及
び(2)式を満足する範囲に制御し、吐出孔をスラグ浴
中に浸漬させるかまたはスラグ浴の上方に配置して、ス
ラグ浴中に2次燃焼用酸素ガスを供給することを特徴と
するアーク炉溶解法。 Q≧7.5・・・・・・・・・・・・・・(1) 10≦θ≦56ー1.55×Q・・・・・(2) 但し、吐出角度θは2次燃焼用酸素ガスが吐出される方
向と溶湯面とのなす角度とする。
1. A secondary combustion oxygen gas is blown into a slag bath while a carbonaceous material and a primary combustion oxygen gas are blown into a molten metal to generate a CO gas and form a slag bath. In the arc furnace melting method for the next combustion, the thickness of the slag bath is 500 mm or more,
While maintaining the position of the discharge hole of the lance having at least one discharge hole at 400 mm or more from the molten metal surface, the secondary combustion oxygen gas flow rate Q (Nm 3
/ Min) and the discharge angle θ (degree) are controlled so as to satisfy the following expressions (1) and (2), and the discharge holes are immersed in the slag bath or arranged above the slag bath, An arc furnace melting method comprising supplying oxygen gas for secondary combustion into a slag bath. Q ≧ 7.5 (1) 10 ≦ θ ≦ 56−1.55 × Q (2) However, the discharge angle θ is secondary combustion. The angle between the direction in which the service oxygen gas is discharged and the surface of the molten metal.
【請求項2】 鉄原料を炉内に連続して装入しつ
つアーク溶解することを特徴とする請求項1に記載のア
ーク炉溶解法。
2. The arc furnace melting method according to claim 1, wherein the arc melting is performed while continuously charging the iron raw material into the furnace.
JP15769995A 1994-10-27 1995-06-23 Arc furnace melting method Expired - Fee Related JP3239691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15769995A JP3239691B2 (en) 1994-10-27 1995-06-23 Arc furnace melting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-263891 1994-10-27
JP26389194 1994-10-27
JP15769995A JP3239691B2 (en) 1994-10-27 1995-06-23 Arc furnace melting method

Publications (2)

Publication Number Publication Date
JPH08176640A JPH08176640A (en) 1996-07-09
JP3239691B2 true JP3239691B2 (en) 2001-12-17

Family

ID=26485062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15769995A Expired - Fee Related JP3239691B2 (en) 1994-10-27 1995-06-23 Arc furnace melting method

Country Status (1)

Country Link
JP (1) JP3239691B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9706510A (en) * 1997-12-30 2000-03-14 White Martins Sa Method for oxygen injection in electric arc furnaces for steel production.
ITMI20050626A1 (en) * 2005-04-13 2006-10-14 Technit Compagnia Tecnica Inte APPARATUS FOR MEASURING AND MONITORING THE FEEDING OF CHARGING OR SCRAPPING MATERIAL AT A OVEN AND ITS PROCEDURE
KR101257270B1 (en) * 2011-05-30 2013-04-23 현대제철 주식회사 Lance device for supplying oxygen and carbon source in electric furnace

Also Published As

Publication number Publication date
JPH08176640A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
KR930001125B1 (en) Method for manufacturing molten metal containing ni & cr
US6289034B1 (en) Process and an apparatus for producing metals and metal alloys
EP0308925B1 (en) Method and apparatus for smelting and reducing iron ores
EP1067201A3 (en) Start-up procedure for direct smelting process
JPH0726318A (en) Operation of electric furnace for steelmaking
US4961784A (en) Method of smelting reduction of chromium raw materials and a smelting reduction furnace thereof
JP2602573B2 (en) Metal refining method
JP3239691B2 (en) Arc furnace melting method
US4740242A (en) Method for transferring heat to molten metal, and apparatus therefor
JPH10500455A (en) Method of producing steel in electric arc furnace and electric arc furnace therefor
JPS61127835A (en) Blowing method of copper converter
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
JP2638861B2 (en) Melt reduction method
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP2596003B2 (en) Smelting reduction method
JPH029645B2 (en)
KR100340570B1 (en) Manufacturing method of molten steel using twin shell electric furnace
JPS62247014A (en) Carburizing, melting and refining method
JP4857830B2 (en) Converter steelmaking method
JP2638840B2 (en) Smelting reduction method
JPH1046226A (en) Production of low nitrogen molten steel with arc electric furnace
JPH09202912A (en) Method for dephosphorizing molten iron under condition excellent in scrap melting capacity
JP4103503B2 (en) Hot phosphorus dephosphorization method
JP2002256324A (en) Method for melting high carbon and high chromium steel
SU1022994A1 (en) Steel melting process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

LAPS Cancellation because of no payment of annual fees