JP2000044799A - Polyimide resin solution and preparation of multilayered printed wiring board using the same - Google Patents

Polyimide resin solution and preparation of multilayered printed wiring board using the same

Info

Publication number
JP2000044799A
JP2000044799A JP22860298A JP22860298A JP2000044799A JP 2000044799 A JP2000044799 A JP 2000044799A JP 22860298 A JP22860298 A JP 22860298A JP 22860298 A JP22860298 A JP 22860298A JP 2000044799 A JP2000044799 A JP 2000044799A
Authority
JP
Japan
Prior art keywords
polyimide resin
wiring board
resin
printed wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22860298A
Other languages
Japanese (ja)
Inventor
Shuichi Ogasawara
修一 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP22860298A priority Critical patent/JP2000044799A/en
Publication of JP2000044799A publication Critical patent/JP2000044799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, by a build-up process, a multilayered printed wiring board having improvements in the connection reliability between the inductive layers and bonding strength to a plating skin, and to provide a preparative process for a polyimide resin soln. capable of achieving the high densification, light- weighing, and small-holing and that for a multilayered printed wiring board using this resin soln. SOLUTION: A polyimide resin soln. has a resin particulate of an average particle dia. ranging from 0.01 to 10 μm and of the content of 0.1 to 50 vol.% relative to the resin content of a polyimide resin. In addition, a preparative process for a multilayered printed wiring board in which an insulating base board formed with a conductive circuit thereon forms on at least a part thereof an insulating resin layer and, on the surface of the resin layer, a metal layer is formed by plating, comprises coating on the insulating base board a polyimide resin soln. contg. a solvent soluble-type polyimide resin and a resin particulate having better dissolving ability to an oxidizing agent than that of the polyimide resin, thereafter removing the solvent to thereby give an insulating resin layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度化できかつ
導体層間の接続信頼性を改善したポリイミド樹脂溶液お
よびこれを用いた多層プリント配線板の製造方法の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyimide resin solution having a high density and improved connection reliability between conductor layers, and to an improvement in a method for manufacturing a multilayer printed wiring board using the same.

【0002】[0002]

【従来の技術】多層プリント配線板は導体層と絶縁層が
複数積層されて形成されたものであるが、近年携帯用電
子機器の小型化、薄型化に伴い、その部品となる前記多
層プリント配線板に対しても小型化、薄型化、すなわち
高密度化が要求されているようになってきた。この要求
に応える1つの手法として、多層プリント配線板の導体
層間の導通密度を上げるため、導体層間を導通するため
の孔を従来の貫通型のスルーホールから任意の導体層間
で導通が得られる非貫通型のビアホールを用いて孔の小
径化が図られている。
2. Description of the Related Art A multilayer printed wiring board is formed by laminating a plurality of conductor layers and insulating layers. In recent years, as portable electronic devices have become smaller and thinner, the multilayer printed wiring board has become a component thereof. The size and thickness of the plate have also been required to be high, that is, high density. One technique to meet this demand is to increase the conduction density between the conductor layers of a multilayer printed wiring board by forming a hole for conducting between the conductor layers from a conventional through-type through-hole to provide conduction between any conductor layers. The diameter of the hole is reduced by using a penetrating via hole.

【0003】またこの手法を満足させる多層プリント配
線板の製造方法としてビルドアップ工法が注目されてお
り、この工法の1つとしてコア材となるプリント配線板
の表面に絶縁樹脂層を形成し、必要に応じて所望の箇所
に導体層間の導通を担うスルーホールあるいはビアホー
ルを形成した後、孔の側壁部を含めて絶縁樹脂層表面を
エッチング処理することによって粗面化し、ついで無電
解めっきなどにより導通化処理をした後、必要に応じて
所望の厚さまで電気めっきにより銅皮膜を形成し、その
後パターニングして回路を形成する工程を所望の回数繰
り返すことによって多層プリント配線板を製造する方法
がある。そしてこの方法で得られた多層プリント配線板
は、直径100μm程度のビアホールを導体層間の導通
用の孔とすることが可能であり、従来のドリルなどで機
械加工された直径数百μmのスルーホールのみを導体層
間の導通用の孔とした多層プリント配線板に比べて、大
幅に導体層間の導通密度を高める可能性を有している。
A build-up method has attracted attention as a method of manufacturing a multilayer printed wiring board that satisfies this method. As one of the methods, an insulating resin layer is formed on the surface of a printed wiring board serving as a core material. After forming through-holes or via holes for conducting between conductive layers at desired locations, the surface of the insulating resin layer, including the side walls of the holes, is roughened by etching, and then conductive by electroless plating or the like. There is a method of manufacturing a multilayer printed wiring board by repeating a process of forming a circuit by forming a copper film by electroplating to a desired thickness as required after the formation, and then patterning the circuit as required. In the multilayer printed wiring board obtained by this method, a via hole having a diameter of about 100 μm can be used as a hole for conduction between conductive layers, and a through hole having a diameter of several hundred μm machined by a conventional drill or the like. Compared to a multilayer printed wiring board having only holes for conduction between conductor layers, there is a possibility that conduction density between conductor layers can be greatly increased.

【0004】しかしながら前記方法において最も大きな
課題の1つとして、絶縁樹脂層表面に施すめっき皮膜の
密着強度が十分得られないことが挙げられる。この課題
を解決するために絶縁樹脂中に該絶縁樹脂と溶解性が異
なる微粒子を含有させ、該絶縁樹脂層表面のエッチング
処理の際に前記微粒子が選択的に溶出して、絶縁樹脂層
表面に微細で複雑な凹凸を形成させることによって、そ
の後絶縁樹脂層表面に形成されるめっき皮膜との間に、
いわゆるアンカー効果を生み出す方法が用いられてい
る。またこの際に用いる微粒子としては従来は炭酸カル
シウムなどの無機質が用いられていたが、耐湿性や絶縁
信頼性の点で有機物を用いる手法が検討されている。
However, one of the biggest problems in the above method is that the adhesion strength of the plating film applied to the surface of the insulating resin layer cannot be sufficiently obtained. In order to solve this problem, fine particles having different solubility from the insulating resin are contained in the insulating resin, and the fine particles are selectively eluted during the etching treatment of the surface of the insulating resin layer, so that the fine particles are dissolved on the surface of the insulating resin layer. By forming fine and complicated irregularities, between the plating film formed on the surface of the insulating resin layer,
A method of producing a so-called anchor effect is used. In addition, as the fine particles used at this time, inorganic substances such as calcium carbonate have been conventionally used, but a method using an organic substance in consideration of moisture resistance and insulation reliability has been studied.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこの方法
で得られる多層プリント配線板は一部実用化されている
ものの、一般的に絶縁樹脂層として用いられる樹脂がエ
ポキシ樹脂であるため、長期間に亘る高温耐熱性を要求
される用途などでは、熱により絶縁樹脂層が劣化するな
どの問題が生じるため、導体層間の接続信頼性が十分に
得られていないのが現状である。
However, although the multilayer printed wiring board obtained by this method has been partially put into practical use, since the resin generally used as the insulating resin layer is an epoxy resin, it takes a long time. In applications that require high-temperature heat resistance, problems such as deterioration of the insulating resin layer due to heat occur, so that at present, sufficient connection reliability between conductor layers has not been obtained.

【0006】そこで熱による劣化などの問題に対処する
手段として、絶縁樹脂層としてポリイミド樹脂を用いる
方法が検討されている。ポリイミド樹脂膜の形成は、通
常ポリイミド樹脂の前駆体であるポリアミック酸を塗布
し、400℃程度の熱処理でイミド化することによって
行うものである。しかし前記効果を得るためにポリイミ
ド前躯体に溶解性に優れた樹脂微粒子を含有させると、
イミド化の際の高温の熱処理によって樹脂微粒子が融
解、劣化、炭化などを引き起こし、期待する効果が得ら
れないばかりか、場合によっては絶縁樹脂層全体の特性
に悪影響を与える可能性があった。
Therefore, as a means for dealing with problems such as deterioration due to heat, a method using a polyimide resin as an insulating resin layer has been studied. The formation of the polyimide resin film is usually performed by applying a polyamic acid, which is a precursor of the polyimide resin, and imidizing it by a heat treatment at about 400 ° C. However, when the polyimide precursor contains resin particles having excellent solubility in order to obtain the above effect,
The high-temperature heat treatment at the time of imidization causes the resin fine particles to melt, degrade, carbonize, and the like, so that not only the expected effect is not obtained, but also, in some cases, the properties of the entire insulating resin layer may be adversely affected.

【0007】本発明は、導体層間の接続信頼性やめっき
皮膜の密着強度を向上せしめた多層プリント配線板を従
来困難であったビルドアップ工法で得ることを可能とす
るとともに、この多層プリント配線板の高密度化、軽量
化、小径化を達成できるポリイミド樹脂溶液およびこれ
を用いた多層プリント配線板の製造方法を提供すること
を目的とするものである。
The present invention makes it possible to obtain a multilayer printed wiring board having improved connection reliability between conductor layers and improved adhesion strength of a plating film by a build-up method, which has been difficult in the past, and to provide this multilayer printed wiring board. It is an object of the present invention to provide a polyimide resin solution capable of achieving high density, light weight, and small diameter of the same, and a method for manufacturing a multilayer printed wiring board using the same.

【0008】[0008]

【課題を解決するための手段】本発明者は、絶縁樹脂層
の母材として用いるポリイミド樹脂として、成膜時に高
温の熱処理を必要としない特定のポリイミド樹脂溶液を
用いることによって、前記課題を解決できることを見出
し本発明に完成するに至った。
The present inventor has solved the above-mentioned problem by using a specific polyimide resin solution which does not require a high-temperature heat treatment at the time of film formation as a polyimide resin used as a base material of the insulating resin layer. We have found out what we can do and completed the present invention.

【0009】すなわち前記目的を達成するため本発明の
第1の実施態様は、溶媒可溶型ポリイミド樹脂と、酸化
剤に対し該ポリイミド樹脂より溶解性に優れた樹脂微粒
子とを含有するポリイミド樹脂溶液を特徴とするもので
あり、また前記樹脂微粒子の平均粒径を0.01〜10
μmの範囲とし、かつ前記樹脂微粒子の含有量をポリイ
ミド樹脂含有量に対して0.1〜50体積%の範囲とす
ることを特徴とするものである。
That is, in order to achieve the above object, a first embodiment of the present invention provides a polyimide resin solution containing a solvent-soluble polyimide resin and resin fine particles having higher solubility in an oxidizing agent than the polyimide resin. Wherein the average particle size of the resin fine particles is 0.01 to 10
μm, and the content of the resin fine particles is in the range of 0.1 to 50% by volume based on the polyimide resin content.

【0010】また本発明の第2の実施態様は、導体回路
を形成した絶縁基板の少くとも一部に絶縁樹脂層を形成
し、該絶縁樹脂層表面にめっきによって金属層を形成す
ることによって得られる多層プリント配線板の製造方法
において、前記絶縁基板に溶媒可溶型のポリイミド樹脂
と酸化剤に対し該ポリイミド樹脂より溶解性に優れた樹
脂微粒子とを含有するポリイミド樹脂溶液を塗布し、つ
いで溶媒を除去することによって絶縁樹脂層を形成する
多層プリント配線板の製造方法を特徴とするものであ
る。
A second embodiment of the present invention is obtained by forming an insulating resin layer on at least a part of an insulating substrate on which a conductor circuit is formed, and forming a metal layer on the surface of the insulating resin layer by plating. In the method for manufacturing a multilayer printed wiring board, a polyimide resin solution containing a solvent-soluble polyimide resin and resin fine particles having higher solubility than the polyimide resin with respect to an oxidizing agent is applied to the insulating substrate, and then the solvent is applied. And a method for manufacturing a multilayer printed wiring board in which an insulating resin layer is formed by removing the resin.

【0011】[0011]

【発明の実施の形態】本発明では、導体回路を形成した
絶縁基板に溶媒可溶型のポリイミド樹脂と酸化剤に対し
該ポリイミド樹脂より溶解性に優れた樹脂微粒子とを含
有したポリイミド樹脂溶液を塗布し、ついで溶媒を除去
することによって絶縁樹脂層を形成して多層プリント配
線板を製造するものである。前記のように多層プリント
配線板の導体層間の絶縁樹脂層として、従来のポリイミ
ド樹脂を用いた場合このポリイミド樹脂中に樹脂微粒子
を含有させることは極めて困難であった。これはポリイ
ミド樹脂以外の通常の樹脂は、ポリアミック酸をイミド
化する際に必要な400℃程度の高温の熱処理によっ
て、融解、劣化、炭化などの変成を引き起こすからであ
る。また前記熱処理に対して耐熱性を有する樹脂微粒子
としては、ポリイミド樹脂以外に殆ど存在しない。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a polyimide resin solution containing a solvent-soluble polyimide resin and resin fine particles having higher solubility than an oxidizing agent than the polyimide resin is provided on an insulating substrate on which a conductive circuit is formed. The multi-layer printed wiring board is manufactured by coating and then removing the solvent to form an insulating resin layer. As described above, when a conventional polyimide resin is used as an insulating resin layer between conductor layers of a multilayer printed wiring board, it is extremely difficult to incorporate resin fine particles into the polyimide resin. This is because ordinary resins other than polyimide resins cause transformation such as melting, deterioration, and carbonization by a high-temperature heat treatment of about 400 ° C. necessary for imidizing polyamic acid. In addition, resin fine particles having heat resistance to the heat treatment hardly exist other than the polyimide resin.

【0012】そこで本発明ではポリイミド樹脂膜を成膜
するに際して、従来のポリアミック酸を用いて加熱縮合
する方法ではなく、溶媒に予め溶解している、いわゆる
溶媒可溶型のポリイミド樹脂を用い、後工程でこの溶媒
を除去することによって行うこととしたものである。こ
の方法では用いる溶媒の種類にもよるが、例えば高沸点
溶媒であるN−メチル−2−ピロリドンを用いた場合で
も200℃程度の熱処理で十分である。そして本発明で
用いるポリイミド樹脂溶液は、溶液中にポリイミド樹脂
および樹脂微粒子が含有されたものであり、この際にポ
リイミド樹脂としては前記した通り溶媒に可溶なポリイ
ミド樹脂を用いるが、その構造は特に限定されない。
Therefore, in the present invention, when a polyimide resin film is formed, a so-called solvent-soluble polyimide resin which has been dissolved in a solvent in advance, is used instead of a conventional method of heat condensation using a polyamic acid. This is done by removing this solvent in the process. In this method, depending on the type of the solvent used, for example, even when N-methyl-2-pyrrolidone which is a high boiling point solvent is used, a heat treatment at about 200 ° C. is sufficient. The polyimide resin solution used in the present invention is a solution containing a polyimide resin and resin fine particles in the solution, and in this case, as the polyimide resin, a polyimide resin soluble in a solvent is used as described above. There is no particular limitation.

【0013】一方樹脂微粒子は、母材となるポリイミド
樹脂に比べてある種の溶液に対し溶解され易い構造であ
ればよく、その構造は特に限定されないがポリイミド樹
脂は通常の酸化剤に対して高い耐性を有するため、樹脂
微粒子が酸化剤に対して溶解され易い構造であることが
肝要であり、例えばゴム変性エポキシ樹脂、ブタジエン
ゴムなどが挙げられる。また前記樹脂微粒子の平均粒径
は0.01〜10μmの範囲であることが好ましく、そ
の理由は樹脂微粒子の平均粒径が0.01μm未満で
は、エッチング処理した後樹脂層表面に形成される凹凸
のサイズおよび形状が、十分なアンカー効果を得るため
には不十分であり、一方10μmを超えるとアンカー効
果の点では問題ないが、絶縁樹脂層表面の凹凸が激しく
なるため回路パターニングの際のエッチング残などの問
題が生じ易くなり、また絶縁樹脂層としての厚さが十分
得られない場合があるからである。さらにポリイミド樹
脂溶液中の樹脂微粒子の含有量は、ポリイミド樹脂の含
有量に対して0.1〜50体積%の範囲であることが好
ましい。その理由は含有量が0.1体積%未満では、エ
ッチング処理により樹脂層表面に形成される凹凸の密度
が、十分なアンカー効果を得るためには不十分であり、
また含有量が50体積%を超えると、樹脂微粒子を含ん
だ絶縁樹脂層の特性が本来ポリイミド樹脂が持つ特性を
十分生かし切れないためである。
On the other hand, the resin fine particles need only have a structure which is more easily dissolved in a certain kind of solution than the polyimide resin as a base material, and the structure is not particularly limited, but the polyimide resin is high in ordinary oxidizing agents. It is important that the resin fine particles have a structure that is easily dissolved in an oxidizing agent because of having resistance, and examples thereof include a rubber-modified epoxy resin and butadiene rubber. The average particle diameter of the resin fine particles is preferably in the range of 0.01 to 10 μm. The reason is that if the average particle diameter of the resin fine particles is less than 0.01 μm, the irregularities formed on the surface of the resin layer after the etching treatment are performed. Is insufficient to obtain a sufficient anchoring effect. On the other hand, if it exceeds 10 μm, there is no problem in terms of the anchoring effect. This is because problems such as residue are likely to occur, and the thickness of the insulating resin layer may not be sufficiently obtained. Further, the content of the resin fine particles in the polyimide resin solution is preferably in the range of 0.1 to 50% by volume based on the content of the polyimide resin. The reason is that if the content is less than 0.1% by volume, the density of irregularities formed on the resin layer surface by the etching treatment is insufficient to obtain a sufficient anchor effect,
If the content exceeds 50% by volume, the characteristics of the insulating resin layer containing the resin fine particles cannot fully utilize the characteristics inherent to the polyimide resin.

【0014】一方本発明においてポリイミド樹脂膜表面
へ金属層を形成するためのめっき処理は特に限定されな
いが、ポリイミド樹脂膜を形成した後、酸化剤などの溶
液を用い適切なエッチング処理を施した後、めっき触媒
となるパラジウムなどの触媒金属を吸着させた後、無電
解めっきを行い、必要に応じてさらに電気めっきによっ
て金属層の厚膜化を計る。さらに回路パターニングは、
従来公知の方法を用いればよく、例えばサブトラクティ
ブ法、セミアディティブ法、フルアディティブ法などの
方法によって行うことができる。そして本発明で絶縁樹
脂層表面に回路層をパターニングした後、さらにその表
面に絶縁樹脂層を形成し、めっきを所望の回数繰り返す
ことによってプリント配線板の多層化を所望なだけ行う
ことができ、また公知の方法にしたがって、絶縁樹脂層
にスルーホールおよびビアホールなどの導通用の孔を形
成し、孔の側壁部を含めてめっき皮膜を形成することに
よって、導体層間の導通を得ることができることはいう
までもない。
On the other hand, in the present invention, the plating treatment for forming a metal layer on the surface of the polyimide resin film is not particularly limited, but after forming the polyimide resin film and subjecting it to an appropriate etching treatment using a solution such as an oxidizing agent. After adsorbing a catalytic metal such as palladium as a plating catalyst, electroless plating is performed, and if necessary, the metal layer is made thicker by electroplating. In addition, circuit patterning
A conventionally known method may be used. For example, the method can be performed by a method such as a subtractive method, a semi-additive method, or a full-additive method. Then, after patterning the circuit layer on the surface of the insulating resin layer in the present invention, an insulating resin layer is further formed on the surface, and the plating can be repeated a desired number of times, whereby the printed wiring board can be multilayered as many times as desired. Also, according to a known method, it is possible to form conduction holes such as through holes and via holes in the insulating resin layer and form a plating film including the side wall portions of the holes, whereby conduction between the conductor layers can be obtained. Needless to say.

【0015】[0015]

【実施例】つぎに本発明の実施例を、比較例とともに詳
細に説明する [実施例1]縦335mm、横510mm、厚さ0.4
mm(銅厚18μm)の両面銅張ガラスエポキシ樹脂基
板を用いて、銅皮膜を塩化第2鉄でパターニングするこ
とによって最小ピッチ100μmの回路を有する両面プ
リント配線板を調製し、これをコア材とした。得られた
コア材の表面に、70体積%のブロック共重合型ポリイ
ミド『キュービロン』(ピーアイ技術研究所製:商品
名)、該ポリイミド樹脂に対して10体積%の平均粒径
2μmの球状のゴム変性エポキシ樹脂、および溶媒とし
てN−メチル−2−ピロリドンからなるポリイミド樹脂
溶液を塗布し、90℃で30分間乾燥した後、200℃
で30分間熱処理することによってポリイミド樹脂膜中
のN−メチル−2−ピロリドンを完全に除去した。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. [Example 1] 335 mm in length, 510 mm in width, and 0.4 in thickness
A double-sided printed wiring board having a circuit with a minimum pitch of 100 μm is prepared by patterning a copper film with ferric chloride using a double-sided copper-clad glass epoxy resin substrate having a thickness of 18 μm (copper thickness: 18 μm). did. On the surface of the obtained core material, 70% by volume of a block copolymer type polyimide “Cubilon” (trade name, manufactured by PI Technology), 10% by volume based on the polyimide resin, and a spherical rubber having an average particle diameter of 2 μm A modified epoxy resin and a polyimide resin solution comprising N-methyl-2-pyrrolidone as a solvent are applied, dried at 90 ° C. for 30 minutes, and then dried at 200 ° C.
For 30 minutes to completely remove N-methyl-2-pyrrolidone in the polyimide resin film.

【0016】以上の処理によってコア材表面に厚さ30
μmのポリイミド樹脂膜を形成した。その後炭酸ガスレ
ーザーを用いて、加工エネルギー210J/cm、シ
ョット数3でコア材との導通を担う直径50μmのビア
ホールを基板の所望の箇所に形成した。またドリル加工
によって直径400μmのスルーホールを基板の所望の
箇所に形成した。その後50g/リットルの過マンガン
酸カリウムおよび40g/リットルの水酸化ナトリウム
を含有する70℃の水溶液に前記基板を10分間浸漬
し、ポリイミド樹脂膜表面のエッチング処理およびビア
ホールとコア材の回路間に残存する樹脂の除去を行っ
た。
By the above processing, a thickness of 30
A μm polyimide resin film was formed. Thereafter, using a carbon dioxide laser, a via hole having a processing energy of 210 J / cm 2 , a number of shots of 3, and a diameter of 50 μm for conducting with the core material was formed at a desired position on the substrate. Further, through holes having a diameter of 400 μm were formed at desired positions on the substrate by drilling. Thereafter, the substrate is immersed in a 70 ° C. aqueous solution containing 50 g / l of potassium permanganate and 40 g / l of sodium hydroxide for 10 minutes to etch the surface of the polyimide resin film and to leave a residue between the via hole and the core material circuit. Was removed.

【0017】その後基板に残留したマンガンを還元除去
し、さらに基板を触媒付与液『OPC−80 キャタリ
ストM』(奥野製薬(社)製:商品名)に25℃で5分
間浸漬し、水洗した後、触媒活性促進液『OPC−55
5 アクセラレーター』(奥野製薬(社)製:商品名)
に25℃で5分間浸漬し、ついで水洗した。その後硫酸
銅5水和物を10g/リットル、エチレンジアミン4酢
酸2ナトリウムを30g/リットル、37%ホルムアル
デヒド溶液を5ミリリットル/リットル、ポリエチレン
グリコール(分子量1000)を0.5g/リットル、
2,2′−ビピリジルを10mg/リットル含有し、p
Hを12.5に調整した65℃の無電解銅めっき液に基
板を20分間浸漬することによって、ビアホールおよび
スルーホール側壁部を含めて基板表面に厚さ0.5μm
の銅めっき皮膜を形成した。
Thereafter, the manganese remaining on the substrate was reduced and removed, and the substrate was immersed in a catalyst application liquid "OPC-80 Catalyst M" (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.) at 25 ° C. for 5 minutes and washed with water. Then, the catalyst activity promoting liquid “OPC-55
5 Accelerator ”(Okuno Pharmaceutical Co., Ltd .: trade name)
For 5 minutes at 25 ° C., and then washed with water. Thereafter, 10 g / l of copper sulfate pentahydrate, 30 g / l of disodium ethylenediaminetetraacetate, 5 ml / l of a 37% formaldehyde solution, 0.5 g / l of polyethylene glycol (molecular weight 1000),
It contains 10 mg / l of 2,2'-bipyridyl and contains p
The substrate was immersed in an electroless copper plating solution at 65 ° C. with H adjusted to 12.5 for 20 minutes to form a 0.5 μm thick film on the surface of the substrate including the via hole and the side wall of the through hole.
Was formed.

【0018】ついで硫酸銅5水和物を80g/リット
ル、硫酸を180g/リットル、塩素イオンを60mg
/リットル、光沢剤を10ミリリットル/リットル含有
する23℃の電気銅めっき液に浸漬し、含リン銅板をア
ノードとし、陰極電流密度3A/dmで30分間電気
銅めっきを行い、ビアホールおよびスルーホール側壁部
を含めて基板表面に厚さ18μmの銅めっき皮膜を形成
した。さらに銅めっき皮膜表面に従来法にしたがってフ
ォトリソグラフィー技法を用いて最小ピッチ100μm
のエッチングレジスト層をパターニングした後、40ボ
ーメの塩化第2鉄溶液を用いて、温度50℃、シャワー
圧2kg/cmで40秒間エッチング処理を行った
後、前記レジスト層を剥離することによって回路の形成
を行った。以上の工程を経ることによって4層のプリン
ト配線板を得た。
Then, 80 g / l of copper sulfate pentahydrate, 180 g / l of sulfuric acid, and 60 mg of chloride ion
/ L, immersed in a 23 ° C. electrolytic copper plating solution containing 10 ml / L of a brightener, subjected to electrolytic copper plating at a cathode current density of 3 A / dm 2 for 30 minutes using a phosphorous-containing copper plate as an anode, via holes and through holes A copper plating film having a thickness of 18 μm was formed on the surface of the substrate including the side wall portions. Furthermore, a minimum pitch of 100 μm is applied to the copper plating film surface using a photolithography technique according to a conventional method.
After patterning the etching resist layer, an etching process is performed using a ferric chloride solution of 40 Baume at a temperature of 50 ° C. and a shower pressure of 2 kg / cm 2 for 40 seconds, and the resist layer is peeled off. Was formed. Through the above steps, a four-layer printed wiring board was obtained.

【0019】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.5kgf/cm、回路間の絶縁抵抗
値は2×1012Ω、ポリイミド樹脂膜に隔てられた回
路間の絶縁抵抗値は2×1012Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に50Vの電圧を印加し続けた。そして前記環境下に1
000時間保持した後のめっき皮膜の密着強度は1.0
kgf/cm、回路間の絶縁抵抗値は1×1011Ω、
ポリイミド樹脂膜に隔てられた回路間の絶縁抵抗値は1
×1011Ωであった。一方前記の工程で得られたプリ
ント配線板を150℃の大気中に1000時間保持した
後のめっき皮膜の密着強度は1.0kgf/cmであ
り、以上の結果から前記製法により得られた多層プリン
ト配線板は、十分な接続信頼性を有するものということ
ができる。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.5 kgf / cm, the insulation resistance between the circuits is 2 × 10 12 Ω, and the insulation resistance between the circuits separated by the polyimide resin film is The value was 2 × 10 12 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And 1
The adhesion strength of the plating film after holding for 000 hours is 1.0
kgf / cm, insulation resistance between circuits is 1 × 10 11 Ω,
The insulation resistance between circuits separated by the polyimide resin film is 1
× 10 11 Ω. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the atmosphere at 150 ° C. for 1,000 hours was 1.0 kgf / cm, and from the above results, the multilayer printed sheet obtained by the above manufacturing method was used. It can be said that the wiring board has sufficient connection reliability.

【0020】[実施例2]実施例1において、ゴム変成
エポキシ樹脂として平均粒径0.01μmのものを用い
てポリイミド樹脂溶液中の含有量をポリイミド樹脂に対
して50体積%とした以外は実施例1と同様な手順で4
層のプリント配線板を得た。
Example 2 The procedure of Example 1 was repeated except that a rubber-modified epoxy resin having an average particle diameter of 0.01 μm was used and the content in the polyimide resin solution was set to 50% by volume with respect to the polyimide resin. 4 by the same procedure as in Example 1.
A layered printed wiring board was obtained.

【0021】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.3kgf/cm、回路間の絶縁抵抗
値は1×1012Ω、ポリイミド樹脂膜に隔てられた回
路間の絶縁抵抗値は1×1012Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に50Vの電圧を印加し続けた。そして前記環境下に1
000時間保持した後、めっき皮膜の密着強度は1.0
kgf/cm、回路間の絶縁抵抗値は1×1011Ω、
ポリイミド樹脂膜に隔てられた回路間の絶縁抵抗値は1
×1011Ωであった。一方前記の工程で得られたプリ
ント配線板を150℃の大気中に1000時間保持した
後のめっき皮膜の密着強度は1.0kgf/cmであ
り、以上の結果から前記方法で得られた多層プリント配
線板は、十分な接続信頼性を有するものということがで
きる。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.3 kgf / cm, the insulation resistance between the circuits is 1 × 10 12 Ω, and the insulation resistance between the circuits separated by the polyimide resin film. The value was 1 × 10 12 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And 1
After holding for 000 hours, the adhesion strength of the plating film is 1.0
kgf / cm, insulation resistance between circuits is 1 × 10 11 Ω,
The insulation resistance between circuits separated by the polyimide resin film is 1
× 10 11 Ω. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the atmosphere at 150 ° C. for 1,000 hours is 1.0 kgf / cm, and the multilayer print obtained by the above method from the above results. It can be said that the wiring board has sufficient connection reliability.

【0022】[実施例3]実施例1において、ゴム変成
エポキシ樹脂として平均粒径10μmのものを用いてポ
リイミド樹脂溶液中の含有量をポリイミド樹脂に対して
0.1体積%とした以外は実施例1と同様な手順で4層
のプリント配線板を得た。
Example 3 The procedure of Example 1 was repeated except that a rubber-modified epoxy resin having an average particle size of 10 μm was used and the content in the polyimide resin solution was set to 0.1% by volume based on the polyimide resin. A four-layer printed wiring board was obtained in the same procedure as in Example 1.

【0023】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.3kgf/cm、回路間の絶縁抵抗
値は2×1012Ω、ポリイミド樹脂膜に隔てられた回
路間の絶縁抵抗値は5×1012Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に50Vの電圧を印加し続けた。そして前記環境下に1
000時間保持した後、めっき皮膜の密着強度は1.0
kgf/cm、回路間の絶縁抵抗値は1×1011Ω、
ポリイミド樹脂膜に隔てられた回路間の絶縁抵抗値は1
×1012Ωであった。一方前記の工程で得られたプリ
ント配線板を150℃の大気中に1000時間保持した
後のめっき皮膜の密着強度は1.0kgf/cmであ
り、以上の結果から前記方法で得られた多層プリント配
線板は、十分な接続信頼性を有するものということがで
きる。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.3 kgf / cm, the insulation resistance between the circuits is 2 × 10 12 Ω, and the insulation resistance between the circuits separated by the polyimide resin film. The value was 5 × 10 12 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And 1
After holding for 000 hours, the adhesion strength of the plating film is 1.0
kgf / cm, insulation resistance between circuits is 1 × 10 11 Ω,
The insulation resistance between circuits separated by the polyimide resin film is 1
× 10 12 Ω. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the atmosphere at 150 ° C. for 1,000 hours is 1.0 kgf / cm, and the multilayer print obtained by the above method from the above results. It can be said that the wiring board has sufficient connection reliability.

【0024】[比較例1]実施例1において、ゴム変成
エポキシ樹脂として平均粒径0.01μm未満のものを
用いた以外は実施例1と同様な手順で4層のプリント配
線板を得た。
Comparative Example 1 A four-layer printed wiring board was obtained in the same manner as in Example 1 except that a rubber-modified epoxy resin having an average particle diameter of less than 0.01 μm was used.

【0025】得られた4層のプリント配線板のめっき皮
膜の密着強度は0.7kgf/cm、回路間の絶縁抵抗
値は2×1013Ω、ポリイミド樹脂膜に隔てられた回
路間の絶縁抵抗値は2×1013Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に50Vの電圧を印加し続けた。そして前記環境下に1
000時間保持した後、めっき皮膜の密着強度は0.5
kgf/cm、回路間の絶縁抵抗値は1×1012Ω、
ポリイミド樹脂膜に隔てられた回路間の絶縁抵抗値は1
×1012Ωであった。一方前記の工程で得られたプリ
ント配線板を150℃の大気中に1000時間保持した
後のめっき皮膜の密着強度は0.5kgf/cmであ
り、以上の結果から前記方法で得られた多層プリント配
線板は、めっき皮膜の密着性の点で十分な信頼性を有す
るものではなかった。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 0.7 kgf / cm, the insulation resistance between the circuits is 2 × 10 13 Ω, and the insulation resistance between the circuits separated by the polyimide resin film. The value was 2 × 10 13 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And 1
After holding for 000 hours, the adhesion strength of the plating film is 0.5
kgf / cm, insulation resistance between circuits is 1 × 10 12 Ω,
The insulation resistance between circuits separated by the polyimide resin film is 1
× 10 12 Ω. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the atmosphere at 150 ° C. for 1000 hours is 0.5 kgf / cm, and the multilayer print obtained by the above method from the above results. The wiring board did not have sufficient reliability in terms of the adhesion of the plating film.

【0026】[比較例2]実施例1において、ゴム変成
エポキシ樹脂として平均粒径15μmで最大直径30μ
mのものを用いた以外は実施例1と同様な手順で4層の
プリント配線板を得た。
[Comparative Example 2] In Example 1, the rubber modified epoxy resin had an average particle diameter of 15 μm and a maximum diameter of 30 μm.
A four-layer printed wiring board was obtained in the same manner as in Example 1 except that m was used.

【0027】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.4kgf/cm、回路間の絶縁抵抗
値は1×10Ω、ポリイミド樹脂膜に隔てられた回路
間の絶縁抵抗値は2×10Ωであった。さらにこのプ
リント配線板を85℃で85%の相対湿度環境下に保持
された恒温恒湿槽に静置し、その間前記の各回路間に5
0Vの電圧を印加し続けた。そして前記環境下に100
0時間保持した後、めっき皮膜の密着強度は1.0kg
f/cm、回路間の絶縁抵抗値およびポリイミド樹脂膜
に隔てられた回路間の絶縁抵抗値はいずれも1×10Ω
以下であった。一方前記の工程で得られたプリント配線
板を150℃の大気中に1000時間保持した後のめっ
き皮膜の密着強度は0.9kgf/cmであり、以上の
結果から前記方法で得られた多層プリント配線板は、特
に絶縁性の点で十分な信頼性を有するものではなかっ
た。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.4 kgf / cm, the insulation resistance between the circuits is 1 × 10 8 Ω, and the insulation resistance between the circuits separated by the polyimide resin film. The value was 2 × 10 7 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%.
The voltage of 0 V was continuously applied. And 100 under the environment
After holding for 0 hours, the adhesion strength of the plating film is 1.0 kg
f / cm, the insulation resistance between circuits and the insulation resistance between circuits separated by a polyimide resin film are all 1 × 10Ω
It was below. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the atmosphere at 150 ° C. for 1,000 hours is 0.9 kgf / cm, and the multilayer print obtained by the above method from the above results. The wiring board does not have sufficient reliability particularly in terms of insulation.

【0028】[比較例3]実施例1において、ゴム変成
エポキシ樹脂の含有量をポリイミド樹脂に対して0.0
5体積%とした以外は実施例1と同様な手順で4層のプ
リント配線板を得た。
[Comparative Example 3] In Example 1, the content of the rubber-modified epoxy resin was 0.0
A four-layer printed wiring board was obtained in the same procedure as in Example 1 except that the volume was 5% by volume.

【0029】得られた4層のプリント配線板のめっき皮
膜の密着強度は0.8kgf/cm、回路間の絶縁抵抗
値は1×1013Ω、ポリイミド樹脂膜に隔てられた回
路間の絶縁抵抗値は1×1013Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に50Vの電圧を印加し続けた。そして前記環境下に1
000時間保持した後、めっき皮膜の密着強度は0.6
kgf/cm、回路間の絶縁抵抗値は1×1012Ω、
ポリイミド樹脂膜に隔てられた回路間の絶縁抵抗値は1
×1012Ωであった。一方前記の工程で得られたプリ
ント配線板を150℃の大気中に1000時間保持した
後のめっき皮膜の密着強度は0.6kgf/cmであ
り、以上の結果から前記方法で得られた多層プリント配
線板は、特にめっき皮膜の密着強度の点で十分な信頼性
を有するものではなかった。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 0.8 kgf / cm, the insulation resistance between the circuits is 1 × 10 13 Ω, and the insulation resistance between the circuits separated by the polyimide resin film. The value was 1 × 10 13 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And 1
After holding for 000 hours, the adhesion strength of the plating film is 0.6
kgf / cm, insulation resistance between circuits is 1 × 10 12 Ω,
The insulation resistance between circuits separated by the polyimide resin film is 1
× 10 12 Ω. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the atmosphere at 150 ° C. for 1,000 hours is 0.6 kgf / cm, and the multilayer print obtained by the above method from the above results. The wiring board did not have sufficient reliability, particularly in terms of the adhesion strength of the plating film.

【0030】[比較例4]実施例1において、ゴム変成
エポキシ樹脂の含有量をポリイミド樹脂に対して60体
積%とした以外は実施例1と同様な手順で4層のプリン
ト配線板を得た。
Comparative Example 4 A four-layer printed wiring board was obtained in the same manner as in Example 1, except that the content of the rubber-modified epoxy resin was changed to 60% by volume based on the polyimide resin. .

【0031】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.5kgf/cm、回路間の絶縁抵抗
値は5×1011Ω、ポリイミド樹脂膜に隔てられた回
路間の絶縁抵抗値は5×1011Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に50Vの電圧を印加し続けた。そして前記環境下に1
000時間保持した後、めっき皮膜の密着強度は1.2
kgf/cm、回路間の絶縁抵抗値は1×1010Ω、
ポリイミド樹脂膜に隔てられた回路間の絶縁抵抗値は1
×10Ωであった。一方前記の工程で得られたプリン
ト配線板を150℃の大気中に1000時間保持した後
のめっき皮膜の密着強度は1.1kgf/cmであり、
以上の結果から前記方法で得られた多層プリント配線板
は、特に絶縁性の点で十分な信頼性を有するものではな
かった。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.5 kgf / cm, the insulation resistance between the circuits is 5 × 10 11 Ω, and the insulation resistance between the circuits separated by the polyimide resin film. The value was 5 × 10 11 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And 1
After holding for 000 hours, the adhesion strength of the plating film is 1.2
kgf / cm, insulation resistance between circuits is 1 × 10 10 Ω,
The insulation resistance between circuits separated by the polyimide resin film is 1
× 10 7 Ω. On the other hand, the adhesion strength of the plating film after holding the printed wiring board obtained in the above step in the air at 150 ° C. for 1,000 hours is 1.1 kgf / cm,
From the above results, the multilayer printed wiring board obtained by the above method did not have sufficient reliability particularly in terms of insulation.

【0032】[比較例5]実施例1において、絶縁樹脂
層を平均粒径2μmのゴム変成エポキシ樹脂を10体積
%含有するガラス転位点が130℃のエポキシ樹脂膜と
した以外は実施例1と同様な手順で4層のプリント配線
板を得た。
Comparative Example 5 Example 1 was the same as Example 1 except that the insulating resin layer was an epoxy resin film containing 10% by volume of a rubber-modified epoxy resin having an average particle size of 2 μm and having a glass transition point of 130 ° C. A four-layer printed wiring board was obtained in the same procedure.

【0033】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.5kgf/cm、回路間の絶縁抵抗
値は1×1012Ω、エポキシ樹脂膜に隔てられた回路
間の絶縁抵抗値は1×1012Ωであった。さらにこの
プリント配線板を85℃で85%の相対湿度環境下に保
持された恒温恒湿槽に静置し、その間前記の各回路間に
50Vの電圧を印加し続けた。そしてこの環境下に10
00時間保持した後、めっき皮膜の密着強度は0.2k
gf/cm、回路間の絶縁抵抗値は1×1012Ω、エ
ポキシ樹脂膜に隔てられた回路間の絶縁抵抗値は1×1
Ωであった。一方前記の工程で得られたプリント配
線板を150℃の大気中に1000時間保持したとこ
ろ、エポキシ樹脂層が炭化および変形した。以上の結果
から前記方法で得られた多層プリント配線板は、十分な
信頼性を有するものではなかった。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.5 kgf / cm, the insulation resistance between the circuits is 1 × 10 12 Ω, and the insulation resistance between the circuits separated by the epoxy resin film. The value was 1 × 10 12 Ω. Further, this printed wiring board was allowed to stand still in a thermo-hygrostat kept at 85 ° C. and a relative humidity environment of 85%, during which time a voltage of 50 V was continuously applied between the above-mentioned circuits. And in this environment 10
After holding for 00 hours, the adhesion strength of the plating film is 0.2k
gf / cm, insulation resistance between circuits is 1 × 10 12 Ω, insulation resistance between circuits separated by epoxy resin film is 1 × 1
It was 0 8 Ω. On the other hand, when the printed wiring board obtained in the above step was kept in the atmosphere at 150 ° C. for 1000 hours, the epoxy resin layer was carbonized and deformed. From the above results, the multilayer printed wiring board obtained by the above method did not have sufficient reliability.

【0034】[0034]

【発明の効果】以上述べた通り本発明によれば、導体層
間の接続信頼性やめっき皮膜の密着強度を向上せしめた
多層プリント配線板を従来困難であったビルドアップ工
法で得ることを可能とするとともに、この多層プリント
配線板の高密度化、軽量化、小径化を達成できるポリイ
ミド樹脂溶液およびこれを用いた多層プリント配線板の
製造方法を提供することができる。
As described above, according to the present invention, it is possible to obtain a multilayer printed wiring board with improved connection reliability between conductor layers and improved adhesion strength of a plating film by a build-up method which has been difficult in the past. In addition, it is possible to provide a polyimide resin solution capable of achieving high density, light weight, and small diameter of the multilayer printed wiring board, and a method for manufacturing a multilayer printed wiring board using the same.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 63:00 9:00) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C08L 63:00 9:00)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶媒可溶型ポリイミド樹脂と、酸化剤に
対し該ポリイミド樹脂より溶解性に優れた樹脂微粒子と
を含有することを特徴とするポリイミド樹脂溶液。
1. A polyimide resin solution comprising: a solvent-soluble polyimide resin; and resin fine particles having better solubility in an oxidizing agent than the polyimide resin.
【請求項2】 前記樹脂微粒子の平均粒径が0.01〜
10μmの範囲であることを特徴とする請求項1記載の
ポリイミド樹脂溶液。
2. The resin fine particles having an average particle size of 0.01 to 0.01.
2. The polyimide resin solution according to claim 1, wherein the thickness is in a range of 10 [mu] m.
【請求項3】 前記樹脂微粒子の含有量がポリイミド樹
脂含有量に対して0.1〜50体積%の範囲であること
を特徴とする請求項1または2記載のポリイミド樹脂溶
液。
3. The polyimide resin solution according to claim 1, wherein the content of the resin fine particles is in the range of 0.1 to 50% by volume based on the content of the polyimide resin.
【請求項4】 導体回路を形成した絶縁基板の少くとも
一部に絶縁樹脂層を形成し、該絶縁樹脂層表面にめっき
によって金属層を形成することによって得られる多層プ
リント配線板の製造方法において、前記絶縁基板に溶媒
可溶型のポリイミド樹脂と酸化剤に対し該ポリイミド樹
脂より溶解性に優れた樹脂微粒子とを含有するポリイミ
ド樹脂溶液を塗布し、ついで溶媒を除去することによっ
て絶縁樹脂層を形成することを特徴とする多層プリント
配線板の製造方法。
4. A method of manufacturing a multilayer printed wiring board obtained by forming an insulating resin layer on at least a part of an insulating substrate on which a conductor circuit is formed, and forming a metal layer on the surface of the insulating resin layer by plating. A polyimide resin solution containing a solvent-soluble polyimide resin and an oxidizing agent and fine resin particles having higher solubility than the polyimide resin is applied to the insulating substrate, and then the solvent is removed to form the insulating resin layer. Forming a multilayer printed wiring board.
JP22860298A 1998-07-29 1998-07-29 Polyimide resin solution and preparation of multilayered printed wiring board using the same Pending JP2000044799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22860298A JP2000044799A (en) 1998-07-29 1998-07-29 Polyimide resin solution and preparation of multilayered printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22860298A JP2000044799A (en) 1998-07-29 1998-07-29 Polyimide resin solution and preparation of multilayered printed wiring board using the same

Publications (1)

Publication Number Publication Date
JP2000044799A true JP2000044799A (en) 2000-02-15

Family

ID=16878934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22860298A Pending JP2000044799A (en) 1998-07-29 1998-07-29 Polyimide resin solution and preparation of multilayered printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP2000044799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110540172A (en) * 2019-09-03 2019-12-06 西安增材制造国家研究院有限公司 bonding method of MEMS wafer in MEMS packaging process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110540172A (en) * 2019-09-03 2019-12-06 西安增材制造国家研究院有限公司 bonding method of MEMS wafer in MEMS packaging process

Similar Documents

Publication Publication Date Title
WO2001011932A1 (en) Electroplating solution, method for fabricating multilayer printed wiring board using the solution, and multilayer printed wiring board
JP4388611B2 (en) Printed wiring board having wiring made of copper coating, manufacturing method thereof, and circuit board having circuit made of copper coating
JPH11186728A (en) Multilayered printed wiring board
JP2003304068A (en) Resin-attached metal foil for printed wiring board and multilayer printed wiring board using the same
JPH11214846A (en) Multilayer printed wiring board
JP2000044799A (en) Polyimide resin solution and preparation of multilayered printed wiring board using the same
US4968398A (en) Process for the electrolytic removal of polyimide resins
JPH033297A (en) Multilayer printed circuit board and manufacture thereof
JP2003096593A (en) Roughening treatment method and copper electroplating device
JP2004244674A (en) In-pore plating method and wiring board
JPH05283865A (en) Manufacture of multilayer flexible printed-circuit board
JPH10275983A (en) Mutilayer printed-wiring board
JP2000143967A (en) Resin composite, printed circuit board and multilayer printed circuit board
JP2005251894A (en) Method of manufacturing printed circuit board
JP3936781B2 (en) Multilayer printed wiring board
JP3222097B2 (en) Manufacturing method of printed wiring board
JP2000059036A (en) Manufacture of multilayer printed wiring board
JPS60214594A (en) Method of producing printed circuit board
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JP2005191080A (en) Laminate plate and multilayer printed circuit board using it and these manufacturing method
JPH09232756A (en) Manufacture of multilayered printed-wiring board
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JPH1168325A (en) Manufacture of multi-layer printed wiring board
JP2004103979A (en) Method for forming plated through-hole
JP2003046245A (en) Manufacturing method of multilayer printed wiring board