JP2000059036A - Manufacture of multilayer printed wiring board - Google Patents

Manufacture of multilayer printed wiring board

Info

Publication number
JP2000059036A
JP2000059036A JP22284098A JP22284098A JP2000059036A JP 2000059036 A JP2000059036 A JP 2000059036A JP 22284098 A JP22284098 A JP 22284098A JP 22284098 A JP22284098 A JP 22284098A JP 2000059036 A JP2000059036 A JP 2000059036A
Authority
JP
Japan
Prior art keywords
polyimide resin
wiring board
printed wiring
multilayer printed
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22284098A
Other languages
Japanese (ja)
Inventor
Shuichi Ogasawara
修一 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP22284098A priority Critical patent/JP2000059036A/en
Publication of JP2000059036A publication Critical patent/JP2000059036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a multilayer printed wiring board, which manufactures the wiring board into a multilayer printed wiring board, having high adhesion and high intercircuit insulation properties and also can obtain the wiring board by a build-up technique. SOLUTION: In a method of manufacturing a multilayer printed wiring board of a structure, wherein a polyimide resin solution containing a solvent soluble polyimide resin and fine grains, which are more satisfactory than the polyimide resin in a solubility to an oxidizing agent, is applied on one part of an insulating board formed with a conductor circuit to form a polyimide resin layer through electrodeposition, an insulating layer is formed by removing a solvent from the polyimide resin layer and a metal film is formed on the surface of the insulating layer by plating, the insulating layer is formed of a first polyimide resin film containing lower than 0.1 volume % of fine grains and a second polyimide rein film containing 0.1 to 50 volume % of fine grains on the surface of the first polyimide resin film, the thickness of the first polyimide resin film is 3 μm or larger, the fine grains being contained in the second polyimide resin film are resin fine grains, and the mean grain diameter of the resin fine grains is set in the range of 0.01 to to 10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度化でき、か
つ密着信頼性および回路間絶縁信頼性の優れた多層プリ
ント配線板の製造方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing a multilayer printed wiring board which can be made high in density and has excellent adhesion reliability and inter-circuit insulation reliability.

【0002】[0002]

【従来の技術】多層プリント配線板は導体層と絶縁層が
複数積層されて形成されたものであるが、近年携帯用電
子機器の小型化、薄型化に伴い、その部品である前記多
層プリント配線板に対しても小型化、薄型化、すなわち
高密度化が要求されるようになってきた。この要求に応
える1つの手法として、多層プリント配線板の導体層間
の導通密度を上げるため、導体層間を導通する孔を従来
の貫通型のスルーホールから任意の導体層間で導通が得
られる非貫通型のビアホールを用いて孔の小径化が図ら
れている。
2. Description of the Related Art A multilayer printed wiring board is formed by laminating a plurality of conductor layers and insulating layers. In recent years, as portable electronic devices have become smaller and thinner, the multilayer printed wiring board as a component thereof has been developed. The size and thickness of the plate have also been required to be high, that is, high density. One way to meet this demand is to increase the conduction density between the conductor layers of the multilayer printed wiring board by using a non-penetrating type in which holes conducting between the conductor layers can be obtained from the conventional through-type through-holes between any conductor layers. The diameter of the hole is reduced by using the via hole.

【0003】またこの手法を満足させる多層プリント配
線板の製造方法としてビルドアップ工法が注目されてお
り、この工法の1つとしてコア材となるプリント配線板
の表面に絶縁樹脂層を形成し、必要に応じて所望の箇所
に導体層間の導通を担うスルーホールあるいはビアホー
ルを穿設した後、孔の側壁部も含めて絶縁樹脂層表面を
エッチング処理することによって粗面化し、ついで無電
解めっき法などにより銅皮膜などを形成して導通化処理
をした後、必要に応じて所望の厚みまで電気めっき法に
より前記銅皮膜を厚膜化し、その後パターニングして回
路を形成する工程を所望の回数繰り返すことによって多
層プリント配線板を製造する工法がある。そしてこの方
法で得られる多層プリント配線板は、直径100μm程
度のビアホールを導体層間の導通用の孔とすることが可
能であり、従来のドリルなどの機械加工された直径数百
μmのスルーホールのみを導体層間の導通用の孔とした
多層プリント配線板に比べて、大幅に導体層間の導通密
度を高める可能性を有している。
A build-up method has attracted attention as a method of manufacturing a multilayer printed wiring board that satisfies this method. As one of the methods, an insulating resin layer is formed on the surface of a printed wiring board serving as a core material. After drilling through-holes or via-holes that provide conduction between conductor layers according to the requirements, the surface of the insulating resin layer, including the side walls of the holes, is roughened by etching, and then electroless plating, etc. After forming a copper film or the like and conducting the treatment, a process of increasing the thickness of the copper film by electroplating to a desired thickness, if necessary, and then patterning and forming a circuit is repeated a desired number of times. There is a method of manufacturing a multilayer printed wiring board. In the multilayer printed wiring board obtained by this method, a via hole having a diameter of about 100 μm can be used as a conductive hole between conductive layers, and only a through hole having a diameter of several hundred μm machined by a conventional drill or the like is used. Compared with a multilayer printed wiring board having a hole for conduction between conductive layers, there is a possibility that conduction density between conductive layers can be greatly increased.

【0004】しかしながら前記方法において最も大きな
課題の1つとして、絶縁樹脂層表面に施すめっき皮膜の
密着強度が十分得られないことが挙げられる。この課題
を解決するために、絶縁樹脂層中に該絶縁樹脂と溶解性
が異なる微粒子を含有させ、絶縁樹脂層表面のエッチン
グ処理の際に前記微粒子が選択的に溶出し、絶縁樹脂層
表面に微細で複雑な凹凸部を形成することによって、そ
の後樹脂層表面に形成されるめっき皮膜との間に、いわ
ゆるアンカー効果を生み出す方法が用いられている。ま
たこの際に用いる微粒子として従来は炭酸カルシウムな
どの無機物が用いられていたが、耐湿性、絶縁信頼性の
点で有機物を用いる手法が検討されている。
However, one of the biggest problems in the above method is that the adhesion strength of the plating film applied to the surface of the insulating resin layer cannot be sufficiently obtained. In order to solve this problem, fine particles having different solubility from the insulating resin are contained in the insulating resin layer, and the fine particles are selectively eluted during the etching treatment of the surface of the insulating resin layer, and the surface of the insulating resin layer is selectively dissolved. A method of forming a so-called anchor effect between a fine and complicated uneven portion and a plating film subsequently formed on the surface of the resin layer is used. In addition, although inorganic substances such as calcium carbonate have been conventionally used as the fine particles used at this time, a method using an organic substance in consideration of moisture resistance and insulation reliability has been studied.

【0005】しかしながらこの方法で得られる多層プリ
ント配線板は一部実用化されているものの、一般的に絶
縁樹脂層として用いられる樹脂がエポキシ樹脂であるた
め、長期間に亘る高温耐熱性を要求される用途などで
は、熱により絶縁樹脂層が劣化するなどの問題が生じる
ため、十分な信頼性が得られていない。そこで熱による
劣化などの問題に対処する手段として、絶縁樹脂層とし
てポリイミド樹脂を用いる方法が検討されている。ポリ
イミド樹脂層の形成は、通常ポリイミド樹脂の前駆体で
あるポリアミック酸を塗布し、400℃程度の熱処理で
イミド化することによって行うものである。しかし前記
効果を得るために、ポリイミド前駆体に溶解性に優れた
樹脂微粒子を含有させると、イミド化の際の高温の熱処
理によって樹脂微粒子が融解、劣化、炭化などを引き起
こし、期待する効果が得られないばかりか、場合によっ
ては絶縁樹脂層全体の特性に悪影響を与える可能性があ
った。
[0005] However, although the multilayer printed wiring board obtained by this method has been partially put into practical use, since the resin used as the insulating resin layer is generally an epoxy resin, high-temperature heat resistance for a long period of time is required. In some applications, heat may cause problems such as deterioration of the insulating resin layer, so that sufficient reliability has not been obtained. Therefore, a method using a polyimide resin as the insulating resin layer has been studied as a means for dealing with problems such as deterioration due to heat. The formation of the polyimide resin layer is usually carried out by applying a polyamic acid, which is a precursor of the polyimide resin, and imidizing it by a heat treatment at about 400 ° C. However, in order to obtain the above-mentioned effects, when resin particles having excellent solubility are contained in the polyimide precursor, the resin particles are melted, deteriorated, carbonized, etc. by the high-temperature heat treatment during imidization, and the expected effect is obtained. In addition to this, in some cases, the properties of the entire insulating resin layer may be adversely affected.

【0006】そこでこれを解決する手段として前記樹脂
微粒子を含有させた溶媒可溶型のポリイミド樹脂溶液を
用いてこれを基板に塗布し、ついで溶媒除去のための熱
処理によって絶縁樹脂層を形成する方法が検討された。
In order to solve this problem, a method of applying a solvent-soluble polyimide resin solution containing the above resin fine particles to a substrate and then forming an insulating resin layer by heat treatment for removing the solvent is used. Was considered.

【0007】[0007]

【発明が解決しようとする課題】そしてこの方法は、絶
縁樹脂層の形成に際して必要とする熱処理が、溶媒を除
去できる程度の温度で十分であり、従来ポリアミック酸
を熱縮合によってイミド化する際に必要であった400
℃以上の高温熱処理を必要とせず、本来の目的を十分満
足し、絶縁樹脂層とその表面に形成される金属皮膜との
密着性およびその信頼性を改善するものである。
According to this method, the heat treatment required for forming the insulating resin layer requires a temperature sufficient to remove the solvent, and the conventional method is not suitable for imidizing polyamic acid by thermal condensation. 400 needed
The present invention does not require a high-temperature heat treatment at a temperature of not less than ° C., sufficiently satisfies the intended purpose, and improves the adhesion between an insulating resin layer and a metal film formed on the surface thereof and its reliability.

【0008】他方、多層プリント配線板に対する信頼性
の観点では、回路間の電気絶縁性も重視され、このなか
で特にポリイミド樹脂層に隔てられた回路間の電気絶縁
性、すなわち回路間絶縁抵抗に対しては、前記した絶縁
基板の高密度化、薄型化の要求に伴って回路間絶縁層で
あるポリイミド樹脂層も薄膜化されているため、特に高
い信頼性が要求されている。この場合、前記したような
ポリイミド樹脂層を塗布して得られた多層プリント配線
板は、回路間絶縁信頼性の点で十分なものといい難いも
のであった。具体的には、絶縁基板を85℃で85%の
相対湿度環境下に1000時間保持し、かつその間ポリ
イミド樹脂層に隔てられた回路間に所定の電圧を印加す
ることによって実施する環境試験後において、1010
Ω以上の絶縁抵抗値を有するものとはいい難いものであ
った。
On the other hand, from the viewpoint of the reliability of the multilayer printed wiring board, importance is also placed on the electrical insulation between the circuits. Among them, the electrical insulation between the circuits separated by the polyimide resin layer, that is, the insulation resistance between the circuits is particularly important. On the other hand, since the polyimide resin layer, which is an inter-circuit insulating layer, is also reduced in thickness with the demand for higher density and thinner insulating substrates, particularly high reliability is required. In this case, the multilayer printed wiring board obtained by applying the polyimide resin layer as described above is not sufficiently satisfactory in terms of inter-circuit insulation reliability. Specifically, after an environmental test performed by holding the insulating substrate at 85 ° C. under an environment of 85% relative humidity for 1000 hours and applying a predetermined voltage between circuits separated by the polyimide resin layer during that time, , 10 10
It was hard to say that it had an insulation resistance value of Ω or more.

【0009】本発明は、従来困難であった高い密着性お
よび回路間絶縁性をともに有するとともに、ビルドアッ
プ工法で得ることができる多層プリント配線板の製造方
法を提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a multilayer printed wiring board which has both high adhesion and inter-circuit insulation, which have been difficult in the past, and which can be obtained by a build-up method. is there.

【0010】[0010]

【課題を解決するための手段】本発明者は、ポリイミド
樹脂層に隔てられた回路間の絶縁信頼性が、ポリイミド
樹脂層中に共析させた微粒子に左右されることを見出し
本発明を完成するに至った。
Means for Solving the Problems The present inventor has found that the reliability of insulation between circuits separated by a polyimide resin layer depends on fine particles co-deposited in the polyimide resin layer, and has completed the present invention. I came to.

【0011】上記課題を解決するための本発明は、導体
回路を形成した絶縁基板の少くとも一部に、溶媒可溶型
のポリイミド樹脂と酸化剤に対しポリイミド樹脂より溶
解性に優れた微粒子とを含有したポリイミド樹脂溶液を
塗布してポリイミド樹脂層を電着により形成し、該ポリ
イミド樹脂層より溶媒を除去することによって絶縁層を
形成し、該絶縁層表面にめっきによって金属皮膜を形成
する多層プリント配線板の製造方法において、前記絶縁
基板の少くとも一部に、前記微粒子を0.1%体積未満
含有する第1のポリイミド樹脂膜と、該第1のポリイミ
ド樹脂膜表面に前記微粒子を0.1〜50体積%含有す
る第2のポリイミド樹脂膜とにより前記絶縁層を形成し
てなる多層プリント配線板の製造方法を特徴とするもの
であり、前記第1のポリイミド樹脂膜の厚さが3μm以
上であり、また前記第2のポリイミド樹脂膜に含有され
る微粒子が樹脂微粒子であり、さらに前記第2のポリイ
ミド樹脂膜に含有される微粒子の平均粒径が0.01〜
10μmの範囲であることを特徴とする。
[0011] The present invention for solving the above-mentioned problems is to provide at least a part of an insulating substrate on which a conductor circuit is formed, with fine particles which are more soluble in a solvent-soluble polyimide resin and an oxidizing agent than the polyimide resin. A polyimide resin solution containing is applied to form a polyimide resin layer by electrodeposition, a solvent is removed from the polyimide resin layer to form an insulating layer, and a metal film is formed by plating on the surface of the insulating layer. In the method for manufacturing a printed wiring board, at least a part of the insulating substrate has a first polyimide resin film containing less than 0.1% by volume of the fine particles, and the fine particles are coated on the surface of the first polyimide resin film. A method for producing a multilayer printed wiring board, wherein the insulating layer is formed by a second polyimide resin film containing 1 to 50% by volume. The thickness of the polyimide resin film is 3 μm or more, the fine particles contained in the second polyimide resin film are resin fine particles, and the fine particles contained in the second polyimide resin film have an average particle diameter of 0 μm. .01-
It is characterized by a range of 10 μm.

【0012】[0012]

【発明の実施の形態】本発明は、ポリイミド樹脂絶縁層
とその表面に形成した金属皮膜の密着強度およびその信
頼性を改良するためにポリイミド樹脂絶縁層表面に微細
で複雑な凹凸部を形成するようポリイミド樹脂層を電着
する際に、そのポリイミド樹脂層中にポリイミド樹脂と
溶解性の異なる微粒子を共析させる技術から出発するも
のである。そして前記微粒子がポリイミド樹脂より酸化
剤に対し溶解性に優れているという特性は、ポリイミド
樹脂絶縁層と金属皮膜との密着強度を生み出すアンカー
効果を得るためには必要であるが、一般にポリイミド樹
脂に比べて化学的な安定性に劣るため、例えば回路形成
処理などにおいてポリイミド樹脂絶縁層表面に不純物な
どが残留した場合には、前記した環境試験においてポリ
イミド樹脂絶縁層に残留する前記微粒子とポリイミド樹
脂の界面などを介して前記不純物のマイグレーションが
生じる可能性が高くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention forms fine and complicated irregularities on the surface of a polyimide resin insulating layer in order to improve the adhesion strength and reliability of the polyimide resin insulating layer and the metal film formed on the surface. When the polyimide resin layer is electrodeposited as described above, the technique is started from a technique in which fine particles having different solubility from the polyimide resin are co-deposited in the polyimide resin layer. The property that the fine particles are more soluble in the oxidizing agent than the polyimide resin is necessary to obtain an anchor effect that produces the adhesion strength between the polyimide resin insulating layer and the metal film, but generally the polyimide resin is Because the chemical stability is inferior, for example, when impurities and the like remain on the surface of the polyimide resin insulating layer in a circuit forming process, for example, the fine particles and the polyimide resin remaining on the polyimide resin insulating layer in the above-described environmental test The possibility that the migration of the impurity occurs via an interface or the like increases.

【0013】そこで本発明では、塗布によって形成する
ポリイミド樹脂絶縁層を2つの樹脂膜に分割することに
よって該絶縁層に形成される金属皮膜との密着信頼性お
よびポリイミド樹脂絶縁層に隔てられた回路間の絶縁信
頼性を両立させることを可能としたことを特徴とするも
のである。すなわち金属箔表面に最初に形成される第1
のポリイミド樹脂膜は、高い回路間絶縁信頼性を確保す
るために、化学的に安定性に劣る微粒子を可能な限り含
有しない必要があり、その含有率は0.1体積%未満と
することが肝要である。これ以上微粒子が含有すると十
分な回路間絶縁信頼性が得難くなる。またその厚さは3
μm以上が好ましく、3μm未満では十分な回路間絶縁
信頼性が得難くなる。
Therefore, in the present invention, the polyimide resin insulating layer formed by coating is divided into two resin films, whereby the adhesion reliability with the metal film formed on the insulating layer and the circuit separated by the polyimide resin insulating layer are separated. The present invention is characterized in that it is possible to achieve both insulation reliability between them. That is, the first formed first on the metal foil surface
In order to ensure high inter-circuit insulation reliability, it is necessary that the polyimide resin film does not contain fine particles having chemically inferior stability as much as possible, and the content thereof should be less than 0.1% by volume. It is important. If the fine particles are contained more than this, it becomes difficult to obtain sufficient inter-circuit insulation reliability. The thickness is 3
μm or more is preferable, and if it is less than 3 μm, it becomes difficult to obtain sufficient inter-circuit insulation reliability.

【0014】一方前記第1のポリイミド樹脂膜表面に形
成される第2のポリイミド樹脂膜は、その表面に形成さ
れる金属皮膜との密着強度に関する信頼性を確保するた
めに所定範囲の平均粒径の微粒子を含有する必要があ
る。本発明ではポリイミド樹脂膜の成膜法として、従来
のポリアミック酸を用い、加熱縮合する方法ではなく、
溶媒に予め溶解しているポリイミド樹脂溶液を用い、溶
媒を熱処理により除去することによって実施する。この
方法では用いる溶媒の種類にもよるが、例えば高沸点溶
媒であるN−メチル−2−ピロリドンを用いた場合でも
200℃程度の熱処理で十分である。
On the other hand, the second polyimide resin film formed on the surface of the first polyimide resin film has an average particle diameter within a predetermined range in order to secure reliability regarding adhesion strength with a metal film formed on the surface. Fine particles must be contained. In the present invention, as a method of forming a polyimide resin film, using a conventional polyamic acid, instead of a method of heat condensation,
This is performed by using a polyimide resin solution previously dissolved in a solvent and removing the solvent by heat treatment. In this method, depending on the type of the solvent used, for example, even when N-methyl-2-pyrrolidone which is a high boiling point solvent is used, a heat treatment at about 200 ° C. is sufficient.

【0015】本発明で第2のポリイミド樹脂膜に含有さ
せる微粒子は、母材となるポリイミド樹脂に比べてある
種の溶液に対し溶解され易い構造であればよく、その構
造は特に限定されないが、ポリイミド樹脂は通常の酸化
剤に対して高い耐性を有するため、微粒子が酸化剤に対
して溶解され易い構造であることが好ましい。また母材
のポリイミド樹脂との相溶性や絶縁信頼性などの観点か
ら、微粒子としてはゴム変性エポキシ樹脂やブタジエン
ゴムなどの樹脂を用いることが好ましい。また微粒子の
平均粒径は0.01〜10μmの範囲であることが望ま
しい。該微粒子の平均粒径が0.01μmに満たない場
合は、エッチング処理後にポリイミド樹脂絶縁層表面に
形成される凹凸部のサイズおよび形状が、十分なアンカ
ー効果を得るためには不十分であり、一方平均粒径が1
0μmを超えると、アンカー効果の点では問題ないが、
絶縁樹脂層表面の凹凸部が激しくなるため、回路パター
ニングの際のエッチング加工残などの問題が生じ易くな
り、また絶縁層としての厚さが十分得られない場合があ
る。なお平均粒径が3μmを超える微粒子の第1のポリ
イミド樹脂膜への混入はできるだけ避けるようにするこ
とが好ましい。
The fine particles contained in the second polyimide resin film in the present invention may have any structure as long as they can be easily dissolved in a certain kind of solution as compared with the polyimide resin as a base material, and the structure is not particularly limited. Since the polyimide resin has high resistance to an ordinary oxidizing agent, it is preferable that the fine particles have a structure in which the fine particles are easily dissolved in the oxidizing agent. Further, from the viewpoints of compatibility with the polyimide resin of the base material and insulation reliability, it is preferable to use a resin such as a rubber-modified epoxy resin or butadiene rubber as the fine particles. The average particle size of the fine particles is preferably in the range of 0.01 to 10 μm. If the average particle size of the fine particles is less than 0.01 μm, the size and shape of the uneven portion formed on the surface of the polyimide resin insulating layer after the etching treatment is insufficient to obtain a sufficient anchor effect, On the other hand, when the average particle size is 1
If it exceeds 0 μm, there is no problem in terms of the anchor effect,
Since the irregularities on the surface of the insulating resin layer become severe, problems such as residual etching during circuit patterning are likely to occur, and a sufficient thickness of the insulating layer may not be obtained. Note that it is preferable to avoid mixing of fine particles having an average particle diameter exceeding 3 μm into the first polyimide resin film as much as possible.

【0016】さらに第2のポリイミド樹脂膜中に含有さ
れる微粒子の量は0.1〜50体積%の範囲とすること
が肝要であり、この微粒子の含有量が0.1体積%に満
たない場合は、エッチング処理後に絶縁樹脂層表面に形
成される凹凸部の密度が、十分なアンカー効果を得るた
めには不十分であり、一方含有量が50体積%を超える
と、微粒子を含んだ絶縁樹脂層の特性が本来ポリイミド
樹脂が持つ特性を十分生かし切れないためである。
Further, it is important that the amount of the fine particles contained in the second polyimide resin film is in the range of 0.1 to 50% by volume, and the content of the fine particles is less than 0.1% by volume. In such a case, the density of the concavo-convex portions formed on the surface of the insulating resin layer after the etching treatment is insufficient to obtain a sufficient anchoring effect. This is because the characteristics of the resin layer cannot fully utilize the characteristics inherent to the polyimide resin.

【0017】つぎに本発明で実施する、2つのポリイミ
ド樹脂膜からなるポリイミド樹脂絶縁層表面への金属皮
膜の形成法は特に限定されず、スパッタリング法や蒸着
法も採用できるが、ポリイミド樹脂絶縁層表面に形成さ
れた微細な凹凸部内に金属皮膜を緻密に充填させアンカ
ー効果を十分得るためには、無電解めっき法が特に推奨
される。また無電解めっき法は特に限定されず、ポリイ
ミド樹脂絶縁層を形成後、酸化剤などの溶液を用い適切
なエッチング処理を施し、ついでめっき触媒となるパラ
ジウムなどの触媒金属を吸着させた後、公知の手法で無
電解めっきを行えばよく、必要に応じて電気めっき法で
金属皮膜の厚膜化を行うことができる。そして本発明で
絶縁樹脂層表面に形成された金属皮膜に回路をパターニ
ングした後、さらにその表面に絶縁樹脂層を形成し、め
っきを所望の回数繰り返すことによって、プリント配線
板の多層化を所望なだけ行うことができ、また公知の方
法にしたがって絶縁樹脂層にスルーホールおよびビアホ
ールなどの導通用の孔を形成し、孔の側壁部を含めてめ
っき皮膜を形成することによって、導体層間の導通を得
ることができることはいうまでもない。
Next, the method of forming a metal film on the surface of the polyimide resin insulating layer composed of two polyimide resin films, which is carried out in the present invention, is not particularly limited, and a sputtering method or a vapor deposition method can be employed. In order to densely fill the metal film in the fine irregularities formed on the surface and sufficiently obtain the anchor effect, an electroless plating method is particularly recommended. In addition, the electroless plating method is not particularly limited, and after forming a polyimide resin insulating layer, performing an appropriate etching treatment using a solution such as an oxidizing agent, and then adsorbing a catalytic metal such as palladium serving as a plating catalyst, followed by a known method. The electroless plating may be performed by the above method, and the thickness of the metal film can be increased by an electroplating method as necessary. Then, after patterning the circuit on the metal film formed on the surface of the insulating resin layer in the present invention, an insulating resin layer is further formed on the surface, and plating is repeated a desired number of times, whereby a multilayered printed wiring board is desired. In addition, by forming a conductive hole such as a through hole and a via hole in the insulating resin layer according to a known method, and forming a plating film including a side wall of the hole, the conductive layer can be electrically connected. It goes without saying that it can be obtained.

【0018】[0018]

【実施例】つぎに本発明の実施例を比較例とともに説明
する。 [実施例1]縦335mm、横510mm、厚さ0.4
mm(銅厚18μm)の両面銅張ガラスエポキシ樹脂基
板を用い、銅皮膜を塩化第2鉄でパターニングすること
によって最小ピッチ100μmの回路を有する両面プリ
ント配線板を得、これをコア材とした。得られたコア材
の表面に、70体積%のブロック共重合型ポリイミド
『キュービロン』(ピーアイ技術研究所製:商品名)、
および溶媒としてN−メチル−2−ピロリドンからなる
ポリイミド樹脂溶液を塗布し、90℃で30分間乾燥し
た後、200℃で30分間熱処理してポリイミド樹脂膜
中のN−メチル−2−ピロリドンを完全に除去すること
によって厚さ10μmの第1のポリイミド樹脂膜を形成
した。
Next, examples of the present invention will be described together with comparative examples. [Example 1] Length 335 mm, width 510 mm, thickness 0.4
A double-sided printed wiring board having a circuit with a minimum pitch of 100 μm was obtained by patterning a copper film with ferric chloride using a double-sided copper-clad glass epoxy resin substrate having a thickness of 18 μm (copper thickness: 18 μm). On the surface of the obtained core material, 70% by volume of a block copolymer type polyimide “Cubilon” (trade name, manufactured by PI Technology Research Institute),
And a polyimide resin solution comprising N-methyl-2-pyrrolidone as a solvent, dried at 90 ° C. for 30 minutes, and then heat-treated at 200 ° C. for 30 minutes to completely remove N-methyl-2-pyrrolidone in the polyimide resin film. Then, a first polyimide resin film having a thickness of 10 μm was formed.

【0019】その後前記第1のポリイミド樹脂膜表面
に、70体積%のブロック共重合型ポリイミド『キュー
ビロン』(ピーアイ技術研究所製:商品名)、前記ポリ
イミド樹脂に対して10体積%の平均粒径2μmの球状
のゴム変性エポキシ樹脂、および溶媒としてN−メチル
−2−ピロリドンからなるポリイミド樹脂溶液を塗布
し、90℃で30分間乾燥した後、200℃で30分間
熱処理してポリイミド樹脂膜中のN−メチル−2−ピロ
リドンを完全に除去することによって厚さ10μmの第
2のポリイミド樹脂膜を形成した。
Thereafter, 70% by volume of a block copolymer type polyimide "Cubilon" (trade name, manufactured by PI Technology Co., Ltd.) on the surface of the first polyimide resin film, and an average particle diameter of 10% by volume based on the polyimide resin. A 2 μm spherical rubber-modified epoxy resin, and a polyimide resin solution containing N-methyl-2-pyrrolidone as a solvent are applied, dried at 90 ° C. for 30 minutes, and then heat-treated at 200 ° C. for 30 minutes to form a polyimide resin film. A second polyimide resin film having a thickness of 10 μm was formed by completely removing N-methyl-2-pyrrolidone.

【0020】ついで炭酸ガスレーザーを用い、加工エネ
ルギー210J/cm、ショット数3でコア材との導
通を担う直径50μmのビアホールを基板の所望の箇所
に形成した。またドリル加工によって直径400μmの
スルーホールを前記基板の所望の箇所に形成した。その
後50g/リットルの過マンガン酸カリウムおよび40
g/リットルの水酸化ナトリウムを含有する70℃の水
溶液に前記基板を10分間浸漬し、ポリイミド樹脂絶縁
層表面のエッチング処理およびビアホールとコア材の回
路間に残存する樹脂の除去を行った。
Then, using a carbon dioxide laser, a via hole having a processing energy of 210 J / cm 2 , a number of shots of 3, and a diameter of 50 μm for conducting to the core material was formed at a desired position on the substrate. Further, through holes having a diameter of 400 μm were formed at desired locations on the substrate by drilling. Then 50 g / l potassium permanganate and 40 g / l
The substrate was immersed in a 70 ° C. aqueous solution containing g / liter of sodium hydroxide for 10 minutes to etch the surface of the polyimide resin insulating layer and remove the resin remaining between the circuit between the via hole and the core material.

【0021】引き続いて基板に残留したマンガンを還元
除去し、さらに該基板を触媒付与液『OPC−80キャ
タリストM』(奥野製薬(社)製:商品名)に25℃で
5分間浸漬し、水洗した後、触媒活性促進液『OPC−
555 アクセラレーター』(奥野製薬(社)製:商品
名)に25℃で5分間浸漬し、水洗した。ついで硫酸銅
5水和物を10g/リットル、エチレンジアミン4酢酸
2ナトリウムを30g/リットル、37%ホルムアルデ
ヒド溶液を5ミリリットル/リットル、ポリエチレング
リコール(分子量1000)を0.5g/リットル、
2,2′−ビピリジルを10mg/リットル含有し、p
Hを12.5に調整した65℃の無電解銅めっき液にこ
の基板を20分間浸漬することによって、ビアホールお
よびスルーホール側壁部を含めて基板表面に厚さ0.5
μmの銅めっき皮膜を形成した。
Subsequently, the manganese remaining on the substrate was reduced and removed, and the substrate was further immersed in a catalyst application liquid “OPC-80 Catalyst M” (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.) at 25 ° C. for 5 minutes. After washing with water, the catalyst activity promoting solution “OPC-
555 Accelerator ”(trade name, manufactured by Okuno Pharmaceutical Co., Ltd.) at 25 ° C. for 5 minutes and washed with water. Then, 10 g / l of copper sulfate pentahydrate, 30 g / l of disodium ethylenediaminetetraacetate, 5 ml / l of a 37% formaldehyde solution, 0.5 g / l of polyethylene glycol (molecular weight 1000),
It contains 10 mg / l of 2,2'-bipyridyl and contains p
The substrate was immersed for 20 minutes in an electroless copper plating solution at 65 ° C. in which H was adjusted to 12.5, so that the surface of the substrate including the via hole and the side wall of the through hole had a thickness of 0.5 mm.
A μm copper plating film was formed.

【0022】その後硫酸銅5水和物を80g/リット
ル、硫酸を180g/リットル、塩素イオンを60mg
/リットル、光沢剤を10ミリリットル/リットル含有
する23℃の電気銅めっき液に浸漬し、含リン銅板をア
ノードとし、陰極電流密度3A/dmで30分間電気
銅めっきを行い、ビアホールおよびスルーホール側壁部
を含めて前記基板表面に厚さ18μmの電気銅めっき皮
膜を形成した。さらに電気銅めっき皮膜表面に従来法に
従ってフォトリソグラフィー技法を用い、最小ピッチ1
00μmのエッチングレジストをパターニングした後、
40ボーメの塩化第2鉄溶液を用いて温度50℃、シャ
ワー圧2kg/cmで40秒間エッチング処理を行っ
た後、前記レジスト層を剥離することによって回路形成
を行った。以上の工程を経ることによって4層のプリン
ト配線板を得ることができた。
Thereafter, 80 g / l of copper sulfate pentahydrate, 180 g / l of sulfuric acid, and 60 mg of chloride ion
Immersion in an electrolytic copper plating solution at 23 ° C./liter containing a brightener at 10 ml / liter, using a phosphorus-containing copper plate as an anode, performing electrolytic copper plating at a cathode current density of 3 A / dm 2 for 30 minutes, and forming a via hole and a through hole. An electrolytic copper plating film having a thickness of 18 μm was formed on the surface of the substrate including the side wall. Furthermore, using a photolithography technique on the surface of the electrolytic copper plating film according to the conventional method, the minimum pitch 1
After patterning the 00 μm etching resist,
After performing an etching treatment with a ferric chloride solution of 40 Baume at a temperature of 50 ° C. and a shower pressure of 2 kg / cm 2 for 40 seconds, a circuit was formed by removing the resist layer. Through the above steps, a four-layer printed wiring board was obtained.

【0023】得られた4層のプリント配線板のめっき皮
膜の密着強度は1.5kgf/cm、回路間の絶縁抵抗
値は1×1013Ω、ポリイミド樹脂層に隔てられた回
路間の絶縁抵抗値は1×1013Ωであった。さらにこ
のプリント配線板を85℃で85%の相対湿度環境下に
保持された恒温恒湿槽に静置し、その間前記の各回路間
に100Vの電圧を印加し続けた。そして前記環境下に
1000時間保持した後のめっき皮膜の密着強度は1.
0kgf/cm、回路間の絶縁抵抗値は1×10
12Ω、ポリイミド樹脂層に隔てられた回路間の絶縁抵
抗値は1×1012Ωであった。
The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.5 kgf / cm, the insulation resistance between the circuits is 1 × 10 13 Ω, and the insulation resistance between the circuits separated by the polyimide resin layer. The value was 1 × 10 13 Ω. Further, the printed wiring board was allowed to stand still in a constant temperature and humidity chamber maintained at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the respective circuits during that time. Then, the adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.
0kgf / cm, insulation resistance between circuits is 1 × 10
The insulation resistance between the circuits separated by 12 Ω and the polyimide resin layer was 1 × 10 12 Ω.

【0024】以上の結果から前記製法で得られた多層プ
リント配線板は、十分な密着信頼性および回路間絶縁信
頼性を有するものということができる。
From the above results, it can be said that the multilayer printed wiring board obtained by the above method has sufficient adhesion reliability and inter-circuit insulation reliability.

【0025】[実施例2]実施例1において、ゴム変性
エポキシ樹脂として平均粒径0.01μmのものを用
い、ポリイミド樹脂溶液中の含有量をポリイミド樹脂に
対して50体積%とした以外は実施例1と同様な手順で
4層のプリント配線板を得た。得られた4層のプリント
配線板のめっき皮膜の密着強度は1.3kgf/cm、
回路間の絶縁抵抗値は1×1013Ω、ポリイミド樹脂
層に隔てられた回路間の絶縁抵抗値は1×1013Ωで
あった。さらにこのプリント配線板を85℃で85%の
相対湿度環境下に保持された恒温恒湿槽に静置し、その
間前記の各回路間に100Vの電圧を印加し続けた。そ
して前記環境下に1000時間保持した後のめっき皮膜
の密着強度は1.0kgf/cm、回路間の絶縁抵抗値
は1×1012Ω、ポリイミド樹脂層に隔てられた回路
間の絶縁抵抗値は1×1012Ωであった。
Example 2 The procedure of Example 1 was repeated except that a rubber-modified epoxy resin having an average particle size of 0.01 μm was used and the content in the polyimide resin solution was set to 50% by volume based on the polyimide resin. A four-layer printed wiring board was obtained in the same procedure as in Example 1. The adhesion strength of the plating film of the obtained four-layer printed wiring board was 1.3 kgf / cm,
The insulation resistance between the circuits was 1 × 10 13 Ω, and the insulation resistance between the circuits separated by the polyimide resin layer was 1 × 10 13 Ω. Further, the printed wiring board was allowed to stand still in a constant temperature and humidity chamber maintained at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the respective circuits during that time. The adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.0 kgf / cm, the insulation resistance value between the circuits is 1 × 10 12 Ω, and the insulation resistance value between the circuits separated by the polyimide resin layer is It was 1 × 10 12 Ω.

【0026】以上の結果から前記製法で得られた多層プ
リント配線板は、十分な密着信頼性および回路間絶縁信
頼性を有するものということができる。
From the above results, it can be said that the multilayer printed wiring board obtained by the above method has sufficient adhesion reliability and inter-circuit insulation reliability.

【0027】[実施例3]実施例1において、ゴム変性
エポキシ樹脂として平均粒径10μmのものを用い、ポ
リイミド樹脂溶液中の含有量をポリイミド樹脂に対して
0.1体積%とした以外は実施例1と同様な手順で4層
のプリント配線板を得た。得られた4層のプリント配線
板のめっき皮膜の密着強度は1.3kgf/cm、回路
間の絶縁抵抗値は1×1012Ω、ポリイミド樹脂層に
隔てられた回路間の絶縁抵抗値は1×1012Ωであっ
た。さらにこのプリント配線板を85℃で85%の相対
湿度環境下に保持された恒温恒湿槽に静置し、その間前
記の各回路間に100Vの電圧を印加し続けた。そして
前記環境下に1000時間保持した後のめっき皮膜の密
着強度は1.0kgf/cm、回路間の絶縁抵抗値は1
×1011Ω、ポリイミド樹脂層に隔てられた回路間の
絶縁抵抗値は1×1011Ωであった。
Example 3 The procedure of Example 1 was repeated except that the rubber-modified epoxy resin used had an average particle diameter of 10 μm and the content in the polyimide resin solution was 0.1% by volume with respect to the polyimide resin. A four-layer printed wiring board was obtained in the same procedure as in Example 1. The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.3 kgf / cm, the insulation resistance between the circuits is 1 × 10 12 Ω, and the insulation resistance between the circuits separated by the polyimide resin layer is 1 × 10 12 Ω. Further, the printed wiring board was allowed to stand still in a constant temperature and humidity chamber maintained at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the respective circuits during that time. The adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.0 kgf / cm, and the insulation resistance between circuits is 1 kgf / cm.
× 10 11 Ω, and the insulation resistance between circuits separated by the polyimide resin layer was 1 × 10 11 Ω.

【0028】以上の結果から前記製法で得られた多層プ
リント配線板は、十分な密着信頼性および回路間絶縁信
頼性を有するものということができる。
From the above results, it can be said that the multilayer printed wiring board obtained by the above method has sufficient adhesion reliability and inter-circuit insulation reliability.

【0029】[実施例4]実施例1において、第1のポ
リイミド樹脂膜の厚さを3μmとした以外は実施例1と
同様な手順で4層のプリント配線板を得た。得られた4
層のプリント配線板のめっき皮膜の密着強度は1.5k
gf/cm、回路間の絶縁抵抗値は1×1013Ω、ポ
リイミド樹脂層に隔てられた回路間の絶縁抵抗値は1×
1012Ωであった。さらにこのプリント配線板を85
℃で85%の相対湿度環境下に保持された恒温恒湿槽に
静置し、その間前記の各回路間に100Vの電圧を印加
し続けた。そして前記環境下に1000時間保持した後
のめっき皮膜の密着強度は1.0kgf/cm、回路間
の絶縁抵抗値は1×1012Ω、ポリイミド樹脂層に隔
てられた回路間の絶縁抵抗値は1×1011Ωであっ
た。
Example 4 A four-layer printed wiring board was obtained in the same manner as in Example 1, except that the thickness of the first polyimide resin film was changed to 3 μm. 4 obtained
The adhesion strength of the plating film on the printed wiring board is 1.5k
gf / cm, insulation resistance between circuits is 1 × 10 13 Ω, insulation resistance between circuits separated by a polyimide resin layer is 1 ×
It was 10 12 Ω. Further, this printed wiring board is
The sample was allowed to stand still in a thermo-hygrostat kept at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the above-mentioned circuits. The adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.0 kgf / cm, the insulation resistance value between the circuits is 1 × 10 12 Ω, and the insulation resistance value between the circuits separated by the polyimide resin layer is It was 1 × 10 11 Ω.

【0030】以上の結果から前記製法で得られた多層プ
リント配線板は、十分な密着信頼性および回路間絶縁信
頼性を有するものということができる。
From the above results, it can be said that the multilayer printed wiring board obtained by the above method has sufficient adhesion reliability and inter-circuit insulation reliability.

【0031】[比較例1]実施例1において、ゴム変性
エポキシ樹脂として平均粒径が0.01μm未満のもの
を用いた以外は実施例1と同様な手順で4層のプリント
配線板を得た。得られた4層のプリント配線板のめっき
皮膜の密着強度は0.7kgf/cm、回路間の絶縁抵
抗値は2×1013Ω、ポリイミド樹脂層に隔てられた
回路間の絶縁抵抗値は2×1013Ωであった。さらに
このプリント配線板を85℃で85%の相対湿度環境下
に保持された恒温恒湿槽に静置し、その間前記の各回路
間に100Vの電圧を印加し続けた。そして前記環境下
に1000時間保持した後のめっき皮膜の密着強度は
0.5kgf/cm、回路間の絶縁抵抗値は5×10
12Ω、ポリイミド樹脂層に隔てられた回路間の絶縁抵
抗値は1×1012Ωであった。
Comparative Example 1 A four-layer printed wiring board was obtained in the same procedure as in Example 1, except that a rubber-modified epoxy resin having an average particle diameter of less than 0.01 μm was used. . The adhesion strength of the plating film of the obtained four-layer printed wiring board is 0.7 kgf / cm, the insulation resistance between the circuits is 2 × 10 13 Ω, and the insulation resistance between the circuits separated by the polyimide resin layer is 2 × 10 13 Ω. Further, the printed wiring board was allowed to stand still in a constant temperature and humidity chamber maintained at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the respective circuits during that time. The adhesion strength of the plating film after being held for 1000 hours in the above environment is 0.5 kgf / cm, and the insulation resistance between circuits is 5 × 10
The insulation resistance between the circuits separated by 12 Ω and the polyimide resin layer was 1 × 10 12 Ω.

【0032】以上の結果から前記製法で得られた多層プ
リント配線板は、めっき皮膜の密着性の点で十分な信頼
性を有するものではなかった。
From the above results, the multilayer printed wiring board obtained by the above-mentioned production method did not have sufficient reliability in terms of the adhesion of the plating film.

【0033】[比較例2]実施例1において、ゴム変性
エポキシ樹脂として平均粒径15μmで最大粒径30μ
mのものを用いた以外は実施例1と同様な手順で4層の
プリント配線板を得た。得られた4層のプリント配線板
のめっき皮膜の密着強度は1.4kgf/cm、回路間
の絶縁抵抗値は1×10Ω、ポリイミド樹脂層に隔て
られた回路間の絶縁抵抗値は2×10Ωであった。さ
らにこのプリント配線板を85℃で85%の相対湿度環
境下に保持された恒温恒湿槽に静置し、その間前記の各
回路間に100Vの電圧を印加し続けた。そして前記環
境下に1000時間保持した後のめっき皮膜の密着強度
は1.0kgf/cm、回路間の絶縁抵抗値およびポリ
イミド樹脂層に隔てられた回路間の絶縁抵抗値はいずれ
も1×10Ω以下であった。
Comparative Example 2 In Example 1, the rubber-modified epoxy resin had an average particle size of 15 μm and a maximum particle size of 30 μm.
A four-layer printed wiring board was obtained in the same manner as in Example 1 except that m was used. The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.4 kgf / cm, the insulation resistance between the circuits is 1 × 10 8 Ω, and the insulation resistance between the circuits separated by the polyimide resin layer is 2 × 10 7 Ω. Further, the printed wiring board was allowed to stand still in a constant temperature and humidity chamber maintained at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the respective circuits during that time. The adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.0 kgf / cm, and the insulation resistance between the circuits and the insulation resistance between the circuits separated by the polyimide resin layer are all 1 × 10Ω or less. Met.

【0034】以上の結果から前記製法で得られた多層プ
リント配線板は、特に絶縁性の点で十分な信頼性を有す
るものではなかった。
From the above results, the multilayer printed wiring board obtained by the above-mentioned manufacturing method did not have sufficient reliability, particularly in terms of insulating properties.

【0035】[比較例3]実施例1において、ゴム変性
エポキシ樹脂の含有量をポリイミド樹脂に対して0.0
5体積%とした以外は実施例1と同様な手順で4層のプ
リント配線板を得た。得られた4層のプリント配線板の
めっき皮膜の密着強度は0.8kgf/cm、回路間の
絶縁抵抗値は1×1013Ω、ポリイミド樹脂層に隔て
られた回路間の絶縁抵抗値は1×1013Ωであった。
さらにこのプリント配線板を85℃で85%の相対湿度
環境下に保持された恒温恒湿槽に静置し、その間前記の
各回路間に100Vの電圧を印加し続けた。そして前記
環境下に1000時間保持した後のめっき皮膜の密着強
度は0.6kgf/cm、回路間の絶縁抵抗値は1×1
12Ω、およびポリイミド樹脂層に隔てられた回路間
の絶縁抵抗値は2×10 12Ωであった。
[Comparative Example 3] In Example 1, the rubber was modified.
The content of epoxy resin is 0.0
The same procedure as in Example 1 was repeated except that the volume was 5% by volume.
A lint wiring board was obtained. Of the obtained four-layer printed wiring board
Adhesion strength of plating film is 0.8kgf / cm, between circuits
Insulation resistance value is 1 × 1013Ω, separated by polyimide resin layer
The insulation resistance between the circuits is 1 × 1013Ω.
Further, the printed wiring board is subjected to 85% relative humidity of 85%.
Leave it in a thermo-hygrostat kept under environmental conditions,
A voltage of 100 V was continuously applied between the circuits. And said
Adhesion strength of plating film after holding for 1000 hours in environment
The degree is 0.6kgf / cm, insulation resistance between circuits is 1 × 1
012Ω, and between circuits separated by polyimide resin layer
Has an insulation resistance of 2 × 10 12Ω.

【0036】以上の結果から前記製法で得られた多層プ
リント配線板は、特にめっき皮膜の密着強度の点で十分
な信頼性を有するものではなかった。
From the above results, the multilayer printed wiring board obtained by the above-mentioned production method did not have sufficient reliability, particularly in terms of the adhesion strength of the plating film.

【0037】[比較例4]実施例1において、ゴム変性
エポキシ樹脂の含有量をポリイミド樹脂に対して60体
積%とした以外は実施例1と同様な手順で4層のプリン
ト配線板を得た。得られた4層のプリント配線板のめっ
き皮膜の密着強度は1.5kgf/cm、回路間の絶縁
抵抗値は5×1011Ω、ポリイミド樹脂層に隔てられ
た回路間の絶縁抵抗値は1×1011Ωであった。さら
にこのプリント配線板を85℃で85%の相対湿度環境
下に保持された恒温恒湿槽に静置し、その間前記の各回
路間に100Vの電圧を印加し続けた。そして前記環境
下に1000時間保持した後のめっき皮膜の密着強度は
1.2kgf/cm、回路間の絶縁抵抗値は1×10
10Ω、およびポリイミド樹脂層に隔てられた回路間の
絶縁抵抗値は1×10 Ωであった。
[Comparative Example 4] In Example 1, the rubber was modified.
The content of epoxy resin is 60 for polyimide resin.
% In the same manner as in Example 1 except that the
A wiring board was obtained. Of the resulting four-layer printed wiring board
The adhesion strength of the film is 1.5kgf / cm, insulation between circuits
The resistance value is 5 × 1011Ω, separated by polyimide resin layer
The insulation resistance between the circuits is 1 × 1011Ω. Further
The printed wiring board is placed at 85 ° C and 85% relative humidity.
Place the sample in a thermo-hygrostat kept below, during which time
A voltage of 100 V was continuously applied between the roads. And the environment
The adhesion strength of the plating film after holding for 1000 hours under
1.2kgf / cm, insulation resistance between circuits is 1 × 10
10Ω, and between circuits separated by polyimide resin layer
Insulation resistance value is 1 × 10 6Ω.

【0038】以上の結果から前記製法で得られた多層プ
リント配線板は、特に絶縁性の点で十分な信頼性を有す
るものではなかった。
From the above results, the multilayer printed wiring board obtained by the above-mentioned manufacturing method did not have sufficient reliability, particularly in terms of insulation.

【0039】[比較例5]実施例1において、第1のポ
リイミド樹脂膜の厚さを2μmとした以外は実施例1と
同様な手順で4層のプリント配線板を得た。得られた4
層のプリント配線板のめっき皮膜の密着強度は1.5k
gf/cm、回路間の絶縁抵抗値は1×1013Ω、ポ
リイミド樹脂層に隔てられた回路間の絶縁抵抗値は1×
1011Ωであった。さらにこのプリント配線板を85
℃で85%の相対湿度環境下に保持された恒温恒湿槽に
静置し、その間前記の各回路間に100Vの電圧を印加
し続けた。そして前記環境下に1000時間保持した後
のめっき皮膜の密着強度は1.0kgf/cm、回路間
の絶縁抵抗値は1×1012Ω、ポリイミド樹脂層に隔
てられた回路間の絶縁抵抗値は1×10Ωであった。
Comparative Example 5 A four-layer printed wiring board was obtained in the same manner as in Example 1, except that the thickness of the first polyimide resin film was changed to 2 μm. 4 obtained
The adhesion strength of the plating film on the printed wiring board is 1.5k
gf / cm, insulation resistance between circuits is 1 × 10 13 Ω, insulation resistance between circuits separated by a polyimide resin layer is 1 ×
It was 10 11 Ω. Further, this printed wiring board is
The sample was allowed to stand still in a thermo-hygrostat kept at 85 ° C. under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the above-mentioned circuits. The adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.0 kgf / cm, the insulation resistance value between the circuits is 1 × 10 12 Ω, and the insulation resistance value between the circuits separated by the polyimide resin layer is It was 1 × 10 8 Ω.

【0040】以上の結果から前記製法で得られた多層プ
リント配線板は、特に絶縁性の点で十分な信頼性を有す
るものではなかった。
From the above results, the multilayer printed wiring board obtained by the above-mentioned manufacturing method did not have sufficient reliability particularly in terms of insulation.

【0041】[比較例6]実施例1において、第1のポ
リイミド樹脂膜に平均粒径2μmの球状のゴム変性エポ
キシ樹脂を0.2体積%含有させた以外は実施例1と同
様な手順で4層のプリント配線板を得た。得られた4層
のプリント配線板のめっき皮膜の密着強度は1.5kg
f/cm、回路間の絶縁抵抗値は1×1013Ω、ポリ
イミド樹脂層に隔てられた回路間の絶縁抵抗値は1×1
12Ωであった。さらにこのプリント配線板を85℃
で85%の相対湿度環境下に保持された恒温恒湿槽に静
置し、その間前記の各回路間に100Vの電圧を印加し
続けた。そして前記環境下に1000時間保持した後の
めっき皮膜の密着強度は1.0kgf/cm、回路間の
絶縁抵抗値は1×1012Ω、ポリイミド樹脂層に隔て
られた回路間の絶縁抵抗値は1×10Ωであった。
Comparative Example 6 A procedure was performed in the same manner as in Example 1 except that the first polyimide resin film contained 0.2% by volume of a spherical rubber-modified epoxy resin having an average particle size of 2 μm. A four-layer printed wiring board was obtained. The adhesion strength of the plating film of the obtained four-layer printed wiring board is 1.5 kg.
f / cm, insulation resistance between circuits is 1 × 10 13 Ω, insulation resistance between circuits separated by polyimide resin layer is 1 × 1
0 12 Ω. The printed wiring board is heated to 85 ° C
At a constant temperature / humidity chamber maintained under a relative humidity environment of 85%, and a voltage of 100 V was continuously applied between the respective circuits during that time. The adhesion strength of the plating film after holding for 1000 hours in the above environment is 1.0 kgf / cm, the insulation resistance value between the circuits is 1 × 10 12 Ω, and the insulation resistance value between the circuits separated by the polyimide resin layer is It was 1 × 10 9 Ω.

【0042】以上の結果から前記製法で得られた多層プ
リント配線板は、特に絶縁性の点で十分な信頼性を有す
るものではなかった。
From the above results, the multilayer printed wiring board obtained by the above-mentioned manufacturing method did not have sufficient reliability, particularly in terms of insulating properties.

【0043】[0043]

【発明の効果】以上述べたように本発明によれば、従来
困難であった高い密着信頼性および回路間絶縁信頼性を
ともに有する多層プリント配線板をビルドアップ工法で
得ることが可能となり、プリント配線板の高密度化、軽
量、薄型、小型化に十分寄与するものである。
As described above, according to the present invention, a multilayer printed wiring board having both high adhesion reliability and inter-circuit insulation reliability, which has been difficult in the past, can be obtained by a build-up method. This contributes sufficiently to high density, light weight, thin and small size of the wiring board.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導体回路を形成した絶縁基板の少くとも
一部に、溶媒可溶型のポリイミド樹脂と酸化剤に対しポ
リイミド樹脂より溶解性に優れた微粒子とを含有したポ
リイミド樹脂溶液を塗布してポリイミド樹脂層を形成
し、該ポリイミド樹脂層より溶媒を除去することによっ
て絶縁層を形成し、該絶縁層表面にめっきによって金属
皮膜を形成する多層プリント配線板の製造方法におい
て、前記絶縁基板の少くとも一部に、前記微粒子を0.
1%体積未満含有する第1のポリイミド樹脂膜と、該第
1のポリイミド樹脂膜表面に前記微粒子を0.1〜50
体積%含有する第2のポリイミド樹脂膜とにより前記絶
縁層を形成してなることを特徴とする多層プリント配線
板の製造方法。
A polyimide resin solution containing a solvent-soluble polyimide resin and fine particles more soluble in an oxidizing agent than the polyimide resin is applied to at least a part of the insulating substrate on which the conductive circuit is formed. Forming a polyimide resin layer, forming an insulating layer by removing a solvent from the polyimide resin layer, and forming a metal film by plating on the surface of the insulating layer, the method of manufacturing a multilayer printed wiring board, wherein the insulating substrate At least in part, the microparticles are added to 0.
A first polyimide resin film containing less than 1% by volume, and the fine particles having a thickness of 0.1 to 50 on the surface of the first polyimide resin film;
A method for manufacturing a multilayer printed wiring board, comprising: forming the insulating layer with a second polyimide resin film containing volume%.
【請求項2】 前記第1のポリイミド樹脂膜の厚さが3
μm以上であることを特徴とする請求項1記載の多層プ
リント配線板の製造方法。
2. The method according to claim 1, wherein the thickness of the first polyimide resin film is 3
2. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the thickness is not less than μm.
【請求項3】 前記第2のポリイミド樹脂膜に含有され
る微粒子が樹脂微粒子であることを特徴とする請求項1
または2記載の多層プリント配線板の製造方法。
3. The method according to claim 1, wherein the fine particles contained in the second polyimide resin film are resin fine particles.
Or the method for producing a multilayer printed wiring board according to 2 above.
【請求項4】 前記第2のポリイミド樹脂膜に含有され
る微粒子の平均粒径が0.01〜10μmの範囲である
ことを特徴とする請求項1〜3のいずれか1項記載の多
層プリント配線板の製造方法。
4. The multilayer print according to claim 1, wherein the average particle diameter of the fine particles contained in the second polyimide resin film is in a range of 0.01 to 10 μm. Manufacturing method of wiring board.
JP22284098A 1998-08-06 1998-08-06 Manufacture of multilayer printed wiring board Pending JP2000059036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22284098A JP2000059036A (en) 1998-08-06 1998-08-06 Manufacture of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22284098A JP2000059036A (en) 1998-08-06 1998-08-06 Manufacture of multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JP2000059036A true JP2000059036A (en) 2000-02-25

Family

ID=16788740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22284098A Pending JP2000059036A (en) 1998-08-06 1998-08-06 Manufacture of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP2000059036A (en)

Similar Documents

Publication Publication Date Title
JPH07268682A (en) Method for electroplating surface of electric nonconductor
JP4388611B2 (en) Printed wiring board having wiring made of copper coating, manufacturing method thereof, and circuit board having circuit made of copper coating
US4968398A (en) Process for the electrolytic removal of polyimide resins
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
US4976808A (en) Process for removing a polyimide resin by dissolution
JP2002337268A (en) Metal foil laminate and its manufacturing method
JP2000059036A (en) Manufacture of multilayer printed wiring board
JP2004244674A (en) In-pore plating method and wiring board
JP2000169998A (en) Electroplating pretreating liquid, electroplating method and production of multilayered printed circuit board
JPH0621157A (en) Manufactured of copper polyimide substrate
JP4529695B2 (en) Polyimide metal laminate and polyimide circuit board
JP3143707B2 (en) Mild basic accelerator for direct electroplating
JPH05283865A (en) Manufacture of multilayer flexible printed-circuit board
JP2008218540A (en) Manufacturing method for wiring board
JP2000044799A (en) Polyimide resin solution and preparation of multilayered printed wiring board using the same
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JP2003283123A (en) Laminated substrate and method of manufacturing the same
JP3936781B2 (en) Multilayer printed wiring board
JP2000059023A (en) Manufacture of polyimide resin substrate
JP2000053914A (en) Polyimide resin solution for electrodeposition and production of copper-polyimide resin base plate using the same
JP2004103979A (en) Method for forming plated through-hole
JPH09232756A (en) Manufacture of multilayered printed-wiring board
JPH1154929A (en) Multilayered printed wiring board and its manufacture
JPH10107447A (en) Manufacture of multi-layered printed wiring board
Young et al. Thermal Reliability of Laser Ablated Microvias and Standard Through-Hole Technologies as a Function of Materials and Processing