JP2000035821A - Gas flow rate controller - Google Patents

Gas flow rate controller

Info

Publication number
JP2000035821A
JP2000035821A JP10204016A JP20401698A JP2000035821A JP 2000035821 A JP2000035821 A JP 2000035821A JP 10204016 A JP10204016 A JP 10204016A JP 20401698 A JP20401698 A JP 20401698A JP 2000035821 A JP2000035821 A JP 2000035821A
Authority
JP
Japan
Prior art keywords
flow rate
valve
piezo
opening
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10204016A
Other languages
Japanese (ja)
Other versions
JP3604059B2 (en
Inventor
Yutaka Yamagishi
豊 山岸
Ichiro Asano
一朗 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP20401698A priority Critical patent/JP3604059B2/en
Priority to AT99113442T priority patent/ATE268917T1/en
Priority to EP99113442A priority patent/EP0973080B1/en
Priority to DE69917837T priority patent/DE69917837T2/en
Publication of JP2000035821A publication Critical patent/JP2000035821A/en
Application granted granted Critical
Publication of JP3604059B2 publication Critical patent/JP3604059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To control gas such as air with a high speed response and high precision by adjusting the opening of a piezo valve based on a result obtained by comparing a real flow rate obtained by a differential pressure flow meter with a setting flow rate. SOLUTION: A piezo valve 33 provided with high speed responsiveness and a venturi flow meter 10 having high flow rate measurement precision are connected in series. A real flow rate obtained by the venturi flow meter 10 is compared with a setting flow rate and the opening of the piezo valve 33 is adjusted based on the result. Thus, gas such as air is controlled with a high speed response and high precision. A circuit 49 driving the piezo valve 33 receives a signal from a comparison control circuit 15 and adjusts the opening of the valve opening of the piezo valve 33. The piezo valve 33 applies suitable DC voltage to a piezo stack and therefore respective piezo elements are distorted. An output terminal presses a valve body downward, drives it and adjusts the opening of the valve opening. The responsiveness of flow rate adjustment is the considerably high speed of several 10 μ sec-several msec, for example.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば空気など
気体の流量を制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a flow rate of a gas such as air.

【0002】[0002]

【従来の技術】自動車のディーゼルエンジンなどから排
出されるガス中に含まれるすすなどの微粒子状物質(P
articulate Matter、PMと略称す
る)の測定に必要なガス希釈システムとして、近年、排
気ガスを全量採取しこれを全量希釈する従来からのフル
ダイリューションシステムに代わって、流量制御および
排ガスの部分採取を行うところの部分希釈方式の小規模
な希釈システムが採用されてきている。この部分希釈方
式の希釈システムは、希釈後の排気ガスを一定流量に維
持しながら、排気ガス希釈用空気の流量を制御すること
により、これらの流量の差として得られる排気ガスの採
取流量を制御するシステムである。
2. Description of the Related Art Fine particulate matter (P) such as soot contained in gas discharged from a diesel engine of an automobile or the like is used.
In recent years, as a gas dilution system necessary for measurement of articulate matter (PM), flow rate control and partial sampling of exhaust gas have replaced the conventional full dilution system that collects and dilutes the entire amount of exhaust gas. A small-scale dilution system of a partial dilution system for performing the above-mentioned method has been adopted. This partial dilution type dilution system controls the flow rate of the exhaust gas dilution air while maintaining the exhaust gas after dilution at a constant flow rate, thereby controlling the exhaust gas sampling flow rate obtained as the difference between these flow rates. System.

【0003】図3は、上記部分採取による部分希釈方式
のガス希釈システムの一例を示すもので、この図におい
て、1は例えば自動車に搭載されるディーゼルエンジ
ン、2はこれに連なる排気管である。3は排気管2に挿
入接続され、排気管2中を流れる排気ガスGをサンプリ
ングするためのプローブで、その下流側はサンプリング
された排気ガスGを希釈する希釈トンネル4に接続され
ている。5はこの希釈トンネル4の上流側に接続される
希釈用空気の供給路で、図4に示すような希釈用ガス流
量制御装置6が設けられている。
FIG. 3 shows an example of a gas dilution system of a partial dilution system by the above-mentioned partial sampling. In this figure, reference numeral 1 denotes a diesel engine mounted on an automobile, for example, and 2 denotes an exhaust pipe connected to the diesel engine. Reference numeral 3 denotes a probe inserted and connected to the exhaust pipe 2 for sampling the exhaust gas G flowing through the exhaust pipe 2, and the downstream side thereof is connected to a dilution tunnel 4 for diluting the sampled exhaust gas G. Reference numeral 5 denotes a supply path for dilution air connected to the upstream side of the dilution tunnel 4, and a dilution gas flow control device 6 as shown in FIG. 4 is provided.

【0004】すなわち、図4において、7は流路8に設
けられる例えば回転数制御によって吸引能力を変えるこ
とができるルーツブロアポンプで、インバータ(周波数
変換器)9によって制御される。10は測定精度の高い
差圧流量計としてのベンチュリ流量計で、その近傍には
流路8を流れる空気の圧力を検出する圧力センサ11、
差圧センサ12および温度センサ13が設けられてい
る。14は前記センサ10〜13の検出出力に基づいて
流路8を流れる空気の流量(実流量)を演算する流量演
算ユニットである。15は流量演算ユニットにおいて得
られた空気の実流量と予め設定される流量とを比較し、
所定の制御信号をインバータ9に出力する比較制御回路
である。
[0004] That is, in FIG. 4, a roots blower pump 7 provided in the flow path 8 and capable of changing the suction capacity by, for example, controlling the number of rotations is controlled by an inverter (frequency converter) 9. Reference numeral 10 denotes a Venturi flow meter as a differential pressure flow meter having high measurement accuracy, and a pressure sensor 11 for detecting a pressure of air flowing through the flow path 8 near the Venturi flow meter.
A differential pressure sensor 12 and a temperature sensor 13 are provided. Reference numeral 14 denotes a flow rate calculation unit that calculates the flow rate (actual flow rate) of the air flowing through the flow path 8 based on the detection outputs of the sensors 10 to 13. 15 compares the actual flow rate of air obtained in the flow rate calculation unit with a preset flow rate,
This is a comparison control circuit that outputs a predetermined control signal to the inverter 9.

【0005】16は希釈トンネル4の下流側に接続さ
れ、希釈されたサンプルガスSが流れるガス流路で、こ
の流路16の下流側は二つの流路17,18に分岐し、
それぞれの流路17,18にサンプルガス中に含まれる
PMを捕集するためのフィルタ19,20および絞り量
(圧損)を可変できるコントロールバルブ21,22を
設けて、一方の流路17は定常時の排気ガスを流すため
のサンプルガス流路に、また、他方の流路18は非定常
時の排気ガスを流すためのバイパス流路にそれぞれ構成
されている。
Reference numeral 16 denotes a gas passage connected to the downstream side of the dilution tunnel 4 and through which the diluted sample gas S flows. The downstream side of the passage 16 is branched into two passages 17 and 18.
Filters 19 and 20 for trapping PM contained in the sample gas and control valves 21 and 22 capable of varying the throttle amount (pressure loss) are provided in the respective flow paths 17 and 18, and one flow path 17 is fixed. The sample gas flow path for flowing the exhaust gas at all times, and the other flow path 18 are each configured as a bypass flow path for flowing the exhaust gas in an unsteady state.

【0006】23は前記サンプルガス流路17、バイパ
ス流路18の下流側に設けられる流路切換え手段として
の三方電磁弁で、そのポート23aがサンプルガス流路
17に、ポート23bがバイパス流路18にそれぞれ接
続されるとともに、ポート23cは三方電磁弁23の下
流側のガス流路24に接続されている。
Reference numeral 23 denotes a three-way solenoid valve provided as a flow path switching means provided downstream of the sample gas flow path 17 and the bypass flow path 18. The port 23a is in the sample gas flow path 17, and the port 23b is in the bypass flow path. The port 23 c is connected to a gas flow path 24 on the downstream side of the three-way solenoid valve 23.

【0007】そして、前記ガス流路24には、回転数制
御によって吸引能力を変えることができる吸引ポンプ、
例えばルーツブロアポンプ25と、測定精度の高い差圧
流量計、例えばベンチュリ流量計26とがこの順に設け
られている。そして、27はガス流路24を流れるガス
の圧力を検出する圧力センサ、28は差圧センサ、29
は温度センサである。
The gas flow path 24 has a suction pump whose suction capacity can be changed by controlling the number of rotations.
For example, a roots blower pump 25 and a differential pressure flow meter with high measurement accuracy, for example, a Venturi flow meter 26 are provided in this order. 27 is a pressure sensor for detecting the pressure of the gas flowing through the gas passage 24, 28 is a differential pressure sensor, 29
Is a temperature sensor.

【0008】また、30はルーツブロアポンプ25を制
御するインバータ(周波数変換器)であり、31は装置
全体を制御する流量制御ユニットである。この流量制御
ユニット31は、コントロールバルブ21,22やイン
バータ30に指令を出力したり、前記センサ27〜29
からの検出出力が入力される。
Reference numeral 30 denotes an inverter (frequency converter) for controlling the roots blower pump 25, and reference numeral 31 denotes a flow control unit for controlling the entire apparatus. The flow control unit 31 outputs a command to the control valves 21 and 22 and the inverter 30, and outputs a command to the sensors 27 to 29.
Is input.

【0009】而して、上記ガス希釈システムにおいて、
比較制御回路15からインバータ9に指令値が出力さ
れ、この指令値に基づいて流路8に設けたルーツブロア
ポンプ7が制御されることにより、希釈トンネル4に対
して所定流量の希釈用空気が供給される一方、流量制御
ユニット31に設けたPIDコントローラ(図示してい
ない)によって出力される指令値をインバータ30に出
力し、この指令に基づいてインバータ30から出力され
る指令値に基づいてルーツブロアポンプ25が制御され
ることにより、ガス流路16、18、24を流れるサン
プルガス流量Sが常に所定の流量になるように制御さ
れ、これによって、排気ガスの採取流量が制御される。
Thus, in the above gas dilution system,
A command value is output from the comparison control circuit 15 to the inverter 9, and the roots blower pump 7 provided in the flow path 8 is controlled based on the command value, so that a predetermined flow rate of dilution air is supplied to the dilution tunnel 4. On the other hand, a command value output by a PID controller (not shown) provided in the flow control unit 31 is output to the inverter 30, and based on the command value, the roots blower pump is output based on the command value output from the inverter 30. By controlling the flow rate 25, the flow rate S of the sample gas flowing through the gas flow paths 16, 18, 24 is controlled so as to be always a predetermined flow rate, thereby controlling the flow rate at which the exhaust gas is collected.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記構
成の希釈用ガス流量制御装置6においては、ポンプ7と
ベンチュリ流量計10とを互いに直列にして設けていた
ため、次のような不都合があった。
However, in the dilution gas flow control device 6 having the above-described structure, the pump 7 and the venturi flow meter 10 are provided in series with each other, so that there are the following inconveniences.

【0011】すなわち、空気流量の計測手段としてのベ
ンチュリ流量計10は、そのフルスケール近傍の流量域
においては、約±0.1〜0.2%といった高い流量測
定精度を有しているが、空気流量の制御手段としてのポ
ンプ7は、その回転によって流量を変化させるものであ
り、ポンプ固有の慣性のために、流量制御応答速度は、
0.5秒〜1秒程度が限界であった。
That is, the Venturi flow meter 10 as a means for measuring the air flow rate has a high flow rate measurement accuracy of about ± 0.1 to 0.2% in a flow rate range near its full scale. The pump 7 as a means for controlling the air flow rate changes the flow rate by its rotation. Due to the inherent inertia of the pump, the flow rate control response speed is:
The limit was about 0.5 to 1 second.

【0012】この発明は、上述の事柄に留意してなされ
たもので、その目的は、空気など気体を高速応答かつ高
精度に制御することができる気体流量制御装置を提供す
ることである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to provide a gas flow control device capable of controlling gas such as air at high speed and with high accuracy.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、この発明の気体流量制御装置は、気体が流れる流路
にピエゾバルブと差圧流量計とを互いに直列な状態にな
るように設け、差圧流量計によって得られた実流量を設
定流量と比較し、その比較結果に基づいてピエゾバルブ
の開度調整を行うようにしている。
To achieve the above object, a gas flow control device according to the present invention is provided with a piezo valve and a differential pressure flow meter in a flow path of a gas so as to be in series with each other. The actual flow rate obtained by the pressure flow meter is compared with a set flow rate, and the opening of the piezo valve is adjusted based on the comparison result.

【0014】上記ピエゾバルブは、流量制御範囲がそれ
ほど大きくない領域においては、0.2〜0.5秒程度
の高速応答性があり、したがって、このような高速応答
性を備えたピエゾバルブと高い流量測定精度を有する差
圧流量計とを組合せ、差圧流量計によって得られた実流
量を設定流量と比較し、その比較結果に基づいてピエゾ
バルブの開度調整を行うようにした気体流量制御装置に
おいては、空気など気体を高速応答かつ高精度に制御す
ることができる。
The piezo valve has a high-speed response of about 0.2 to 0.5 seconds in a region where the flow rate control range is not so large. Therefore, the piezo valve having such a high-speed response and a high flow rate measurement In a gas flow control device that combines an accurate differential pressure flow meter, compares the actual flow rate obtained by the differential pressure flow meter with a set flow rate, and adjusts the opening of the piezo valve based on the comparison result. In addition, gas such as air can be controlled at high speed and with high accuracy.

【0015】[0015]

【発明の実施の形態】発明の実施の形態を図面を参照し
ながら説明する。図1および図2はこの発明の一つの実
施の形態を示すもので、この図1において、図4におけ
る符号と同じものは同一部材を示している。
Embodiments of the present invention will be described with reference to the drawings. FIGS. 1 and 2 show one embodiment of the present invention. In FIG. 1, the same members as those in FIG. 4 indicate the same members.

【0016】図1は、この発明の気体流量制御装置32
の全体構成を概略的に示すもので、この図において、3
3は流路8に設けられるピエゾバルブで、ベンチュリ流
量計10と直列かつベンチュリ流量計10よりも上流側
に設けられる。このピエゾバルブ33は、弁口を開閉す
る弁体をピエゾスタックの歪力により押圧駆動するもの
で、例えば図2に示すように構成されている。
FIG. 1 shows a gas flow control device 32 according to the present invention.
Schematically shows the overall configuration of
Reference numeral 3 denotes a piezo valve provided in the flow path 8, which is provided in series with the Venturi flow meter 10 and upstream of the Venturi flow meter 10. The piezo valve 33 drives the valve element that opens and closes the valve opening by pressing the piezo stack by the strain force, and is configured as shown in FIG. 2, for example.

【0017】すなわち、図2において、34は本体ブロ
ック、35,36は本体ブロック34に形成された流体
入口、流体出口である。37は流体入口35と流体出口
36との間に形成される流体流路で、この流体流路37
の途中には上面に弁口38を備えたオリフィスブロック
39が設けられている。40は本体ブロック34の上面
に、オリフィスブロック39の上面を覆うようにして設
けられる中空の弁ブロックで、この弁ブロック40内に
は、弁口38の開度調節を行う弁体41がオリフィスブ
ロック39の上面を覆うようにして設けられるダイヤフ
ラム42によって上下動自在に保持されている。この弁
体41は、通常時、オリフィスブロック39の上面(弁
口38の上部周囲)との間に若干の隙間が形成されるよ
うにしてある。
That is, in FIG. 2, 34 is a main body block, and 35 and 36 are a fluid inlet and a fluid outlet formed in the main body block 34. Reference numeral 37 denotes a fluid passage formed between the fluid inlet 35 and the fluid outlet 36.
Is provided with an orifice block 39 having a valve port 38 on the upper surface. Reference numeral 40 denotes a hollow valve block provided on the upper surface of the main body block 34 so as to cover the upper surface of the orifice block 39. In the valve block 40, a valve element 41 for adjusting the opening of the valve port 38 is provided. 39 is held so as to be able to move up and down by a diaphragm 42 provided so as to cover the upper surface. Normally, a slight gap is formed between the valve body 41 and the upper surface of the orifice block 39 (around the upper portion of the valve port 38).

【0018】43は弁体41を下方に押圧駆動するピエ
ゾスタックで、複数のピエゾ素子を積層して形成してあ
り、弁ブロック40に螺着された筒状のバルブケース4
4内に収容されている。このピエゾスタック43は、そ
の上端部45がバルブケース44の上端に螺着されるナ
ット部材46に固定され、下端の出力端47が弁体40
の上端に当接するように構成されている。48はピエゾ
スタック43に給電するためのリード線である。
Reference numeral 43 denotes a piezo stack for pressing and driving the valve body 41 downward. The piezo stack 43 is formed by laminating a plurality of piezo elements, and is a cylindrical valve case 4 screwed to the valve block 40.
4. The piezo stack 43 has an upper end 45 fixed to a nut member 46 screwed to the upper end of the valve case 44, and a lower end output end 47 connected to the valve body 40.
It is configured to contact the upper end of the. Reference numeral 48 denotes a lead wire for supplying power to the piezo stack 43.

【0019】上記構成のピエゾバルブ32は、ピエゾス
タック43に適宜の直流電圧を印加することにより、各
ピエゾ素子が歪み、この歪みによって出力端47が弁体
41を下方に押圧駆動し、弁体41と弁口38との間の
距離、つまり、弁口38の開度調節を行うもので、流量
調整の応答性は数10μsec〜数msecときわめて
高速である。なお、このようなピエゾバルブ33は、例
えば実用新案登録第2516824号公報に詳しく記載
されている。
In the piezo valve 32 having the above-described structure, when an appropriate DC voltage is applied to the piezo stack 43, each piezo element is distorted, and the distortion causes the output end 47 to drive the valve element 41 downward to drive the valve element 41. The distance between the valve port 38 and the opening of the valve port 38 is adjusted, and the response of the flow rate adjustment is as fast as several tens μsec to several msec. It should be noted that such a piezo valve 33 is described in detail in, for example, Japanese Utility Model Registration No. 2516824.

【0020】再び、図1において、49は上記ピエゾバ
ルブ33を駆動する回路で、比較制御回路15からの信
号を受け、この信号に基づいてピエゾバルブ33におけ
る弁口38の開度を調整する。そして、流路8のピエゾ
バルブ33の上流側には、吸引ポンプ50、フィルタ5
1、調圧器52が設けられている。
Referring again to FIG. 1, reference numeral 49 denotes a circuit for driving the piezo valve 33, which receives a signal from the comparison control circuit 15 and adjusts the opening of the valve port 38 of the piezo valve 33 based on this signal. The suction pump 50 and the filter 5 are located upstream of the piezo valve 33 in the flow path 8.
1. A pressure regulator 52 is provided.

【0021】上記構成の気体流量制御装置32において
は、高速応答性を備えたピエゾバルブ33と高い流量測
定精度を有するベンチュリ流量計10とを互いに直列に
接続し、ベンチュリ流量計10によって得られた実流量
を設定流量と比較し、その比較結果に基づいてピエゾバ
ルブ33の開度調整を行うようにすることにより、空気
など気体を高速応答かつ高精度に制御することができ
る。したがって、このような優れた特性を有する気体流
量制御装置32を、図3に示した希釈ガス流量制御装置
に組み込んだ(空気供給路5の上流側に接続する)場
合、エンジン排気ガスのトランジェント計測に必要な高
速応答かつ高精度の希釈空気制御システムが得られ、こ
れにより、所望のPM測定を確実にしかも高精度行うこ
とができる。
In the gas flow control device 32 having the above-described structure, the piezo valve 33 having high-speed response and the Venturi flow meter 10 having high flow rate measurement accuracy are connected in series with each other. By comparing the flow rate with the set flow rate and adjusting the opening of the piezo valve 33 based on the comparison result, gas such as air can be controlled at high speed and with high accuracy. Therefore, when the gas flow control device 32 having such excellent characteristics is incorporated in the dilution gas flow control device shown in FIG. 3 (connected to the upstream side of the air supply path 5), transient measurement of engine exhaust gas is performed. A high-speed response and high-precision dilution air control system required for the above is obtained, whereby the desired PM measurement can be performed reliably and with high accuracy.

【0022】この発明は、上述の実施の形態に限られる
ものではなく、例えば、ベンチュリ流量計10に代え
て、これと同様に主として差圧センサによって流量検出
を行うラミナー流量計を用いるようにしてもよい。ま
た、ポンプ50に代えて、コンプレッサを用いてもよ
い。
The present invention is not limited to the above-described embodiment. For example, instead of the venturi flow meter 10, a laminar flow meter which mainly detects a flow rate by a differential pressure sensor is used. Is also good. Further, a compressor may be used instead of the pump 50.

【0023】そして、上述に実施の形態においては、気
体流量制御装置をエンジン排気ガス測定を行うためのガ
ス希釈システムにおける希釈用空気の定量供給装置とし
て用いていたが、この発明の気体流量制御装置は、これ
に限られるものではなく、空気を始めとする各種の気体
を高速応答かつ高精度に制御する場合に広く用いること
ができる。
In the above-described embodiment, the gas flow control device is used as a quantitative supply device of the dilution air in the gas dilution system for measuring the engine exhaust gas. The present invention is not limited to this, and can be widely used for controlling various gases including air at high speed and with high accuracy.

【0024】[0024]

【発明の効果】この発明の気体流量制御装置において
は、流量制御の応答性に優れたピエゾバルブと流量計測
精度の高い差圧流量計流量計とを組み合わせ、差圧流量
計によって得られた実流量を設定流量と比較し、その比
較結果に基づいてピエゾバルブの開度調整を行うように
しているので、空気など各種の気体を高速応答かつ高精
度に制御することができる。
According to the gas flow control device of the present invention, the actual flow rate obtained by the differential pressure flow meter is obtained by combining a piezo valve having excellent responsiveness of flow control and a differential pressure flow meter having high flow rate measurement accuracy. Is compared with the set flow rate, and the opening degree of the piezo valve is adjusted based on the comparison result, so that various gases such as air can be controlled at high speed and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の気体流量制御装置の全体構成を概略
的に示す図である。
FIG. 1 is a diagram schematically showing an overall configuration of a gas flow control device of the present invention.

【図2】前記気体流量制御装置において用いるピエゾバ
ルブの構成を概略的に示す縦断面図である。
FIG. 2 is a longitudinal sectional view schematically showing a configuration of a piezo valve used in the gas flow control device.

【図3】部分希釈方式のガスサンプルシステムの一例を
示す図である。
FIG. 3 is a diagram showing an example of a partial dilution type gas sample system.

【図4】従来の気体流量制御装置の全体構成を概略的に
示す図である。
FIG. 4 is a diagram schematically showing an overall configuration of a conventional gas flow control device.

【符号の説明】[Explanation of symbols]

8…流路、10…差圧流量計、33…ピエゾバルブ。 8: flow path, 10: differential pressure flow meter, 33: piezo valve.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H062 AA02 AA15 BB01 BB10 CC07 CC15 DD01 EE06 FF07 HH02 HH10 5H004 GA02 GB12 HA02 HB01 HB02 HB03 JB11 LA17 LA20 5H307 AA11 AA15 BB02 DD01 DD03 EE02 EE12 EE36 FF03 FF12 FF13 FF15 GG01 GG11 HH04 JJ03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3H062 AA02 AA15 BB01 BB10 CC07 CC15 DD01 EE06 FF07 HH02 HH10 5H004 GA02 GB12 HA02 HB01 HB02 HB03 JB11 LA17 LA20 5H307 AA11 AA15 BB02 DD01 DD03 EE02 FF12 FF12 FF12 JJ03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気体が流れる流路にピエゾバルブと差圧
流量計とを互いに直列な状態になるように設け、差圧流
量計によって得られた実流量を設定流量と比較し、その
比較結果に基づいてピエゾバルブの開度調整を行うよう
にしたことを特徴とする気体流量制御装置。
1. A piezo valve and a differential pressure flow meter are provided in a flow path in which gas flows so as to be in series with each other, and an actual flow rate obtained by the differential pressure flow meter is compared with a set flow rate. A gas flow control device, wherein the opening of a piezo valve is adjusted based on the pressure.
JP20401698A 1998-07-17 1998-07-17 Partial dilution type gas dilution system Expired - Lifetime JP3604059B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20401698A JP3604059B2 (en) 1998-07-17 1998-07-17 Partial dilution type gas dilution system
AT99113442T ATE268917T1 (en) 1998-07-17 1999-07-12 DEVICE FOR CONTROLLING THE FLOW OF A GAS
EP99113442A EP0973080B1 (en) 1998-07-17 1999-07-12 Gas flow rate control apparatus
DE69917837T DE69917837T2 (en) 1998-07-17 1999-07-12 Device for regulating the flow of a gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20401698A JP3604059B2 (en) 1998-07-17 1998-07-17 Partial dilution type gas dilution system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004091322A Division JP4008424B2 (en) 2004-03-26 2004-03-26 Gas sample system for measuring exhaust gas with partial dilution and gas sample system for measuring particulate matter in exhaust gas with partial dilution

Publications (2)

Publication Number Publication Date
JP2000035821A true JP2000035821A (en) 2000-02-02
JP3604059B2 JP3604059B2 (en) 2004-12-22

Family

ID=16483384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20401698A Expired - Lifetime JP3604059B2 (en) 1998-07-17 1998-07-17 Partial dilution type gas dilution system

Country Status (1)

Country Link
JP (1) JP3604059B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147001A (en) * 2005-11-29 2007-06-14 Yokohama National Univ Liquid feed system
WO2008069227A1 (en) * 2006-12-05 2008-06-12 Horiba Stec, Co., Ltd. Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
US7408995B2 (en) 1999-08-11 2008-08-05 Rambus Inc. High speed communication system with a feedback synchronization loop
JP2009510448A (en) * 2005-09-29 2009-03-12 株式会社堀場製作所 Engine exhaust dilution sampler
JP2013196607A (en) * 2012-03-22 2013-09-30 Kayaba System Machinery Kk Flow rate controller and flow rate testing device using the same
CN112327948A (en) * 2020-10-26 2021-02-05 北京七星华创流量计有限公司 Mass flow controller
WO2023119828A1 (en) * 2021-12-24 2023-06-29 株式会社堀場エステック Flow rate control valve, method for producing flow rate control valve, and flow rate control device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132929A (en) * 1987-11-18 1989-05-25 Horiba Ltd Gas sampling apparatus
JPH01143932A (en) * 1987-11-05 1989-06-06 Horiba Instr Inc Proportional exhaust sampling system
JPH01112420U (en) * 1988-01-22 1989-07-28
JPH02118226U (en) * 1989-03-07 1990-09-21
JPH03137419A (en) * 1989-10-23 1991-06-12 Chugai Ro Co Ltd Flow rate measuring device
JPH0579871A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Molti-functional fluid measuring and transmitting apparatus and fluid amount measurement control system using the same
JPH05107160A (en) * 1991-10-19 1993-04-27 Horiba Ltd Method for intermittently measuring particulate
JPH05233068A (en) * 1992-02-18 1993-09-10 Nec Corp Mass flow controller
JPH0612128A (en) * 1993-03-11 1994-01-21 Hitachi Metals Ltd Valve device
JPH06138951A (en) * 1992-10-26 1994-05-20 Toyota Central Res & Dev Lab Inc Gas mass flow rate controller
JPH0863235A (en) * 1994-08-24 1996-03-08 Burutsukusu Instr Kk Differential pressure type mass flow rate control unit
JPH08338546A (en) * 1995-06-12 1996-12-24 Fujikin:Kk Pressure type flow control device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143932A (en) * 1987-11-05 1989-06-06 Horiba Instr Inc Proportional exhaust sampling system
JPH01132929A (en) * 1987-11-18 1989-05-25 Horiba Ltd Gas sampling apparatus
JPH01112420U (en) * 1988-01-22 1989-07-28
JPH02118226U (en) * 1989-03-07 1990-09-21
JPH03137419A (en) * 1989-10-23 1991-06-12 Chugai Ro Co Ltd Flow rate measuring device
JPH0579871A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Molti-functional fluid measuring and transmitting apparatus and fluid amount measurement control system using the same
JPH05107160A (en) * 1991-10-19 1993-04-27 Horiba Ltd Method for intermittently measuring particulate
JPH05233068A (en) * 1992-02-18 1993-09-10 Nec Corp Mass flow controller
JPH06138951A (en) * 1992-10-26 1994-05-20 Toyota Central Res & Dev Lab Inc Gas mass flow rate controller
JPH0612128A (en) * 1993-03-11 1994-01-21 Hitachi Metals Ltd Valve device
JPH0863235A (en) * 1994-08-24 1996-03-08 Burutsukusu Instr Kk Differential pressure type mass flow rate control unit
JPH08338546A (en) * 1995-06-12 1996-12-24 Fujikin:Kk Pressure type flow control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408995B2 (en) 1999-08-11 2008-08-05 Rambus Inc. High speed communication system with a feedback synchronization loop
JP2009510448A (en) * 2005-09-29 2009-03-12 株式会社堀場製作所 Engine exhaust dilution sampler
JP2007147001A (en) * 2005-11-29 2007-06-14 Yokohama National Univ Liquid feed system
JP4625959B2 (en) * 2005-11-29 2011-02-02 国立大学法人横浜国立大学 Liquid feeding system
WO2008069227A1 (en) * 2006-12-05 2008-06-12 Horiba Stec, Co., Ltd. Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
US8104323B2 (en) 2006-12-05 2012-01-31 Horiba Stec, Co., Ltd. Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
JP2013196607A (en) * 2012-03-22 2013-09-30 Kayaba System Machinery Kk Flow rate controller and flow rate testing device using the same
CN112327948A (en) * 2020-10-26 2021-02-05 北京七星华创流量计有限公司 Mass flow controller
CN112327948B (en) * 2020-10-26 2024-01-09 北京七星华创流量计有限公司 Mass flow controller
WO2023119828A1 (en) * 2021-12-24 2023-06-29 株式会社堀場エステック Flow rate control valve, method for producing flow rate control valve, and flow rate control device

Also Published As

Publication number Publication date
JP3604059B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
US7647811B2 (en) Solid particle counting system with valve to allow reduction of pressure pulse at particle counter when vacuum pump is started
JP4156517B2 (en) Control method of dilution air supply, sampling method of exhaust particles
US7647810B2 (en) Solid particle counting system with flow meter upstream of evaporation unit
US7665375B2 (en) Flow splitter for a solid particle counting system
JP2000035821A (en) Gas flow rate controller
EP0973080B1 (en) Gas flow rate control apparatus
JP4603207B2 (en) Gas dilution system
JP3893115B2 (en) Mass flow controller
JP3604060B2 (en) Gas flow controller for dilution
JP4008424B2 (en) Gas sample system for measuring exhaust gas with partial dilution and gas sample system for measuring particulate matter in exhaust gas with partial dilution
JP3968085B2 (en) Partial dilution type gas dilution system for measuring exhaust gas and partial dilution type gas dilution system for measuring particulate matter in exhaust gas
JP2000075932A (en) Gas flow rate controller
JP3206705B2 (en) Exhaust gas sampling device
JP2973157B2 (en) Particulate matter measuring device
JP2739491B2 (en) Exhaust gas measurement device
JP3451012B2 (en) Dilution gas flow control device
JP2526299Y2 (en) Exhaust gas splitter
JP3650921B2 (en) Dilution gas flow controller
JP2001249064A (en) Exhaust gas diluting device
JPH05312695A (en) Particulate collector by means of dilute tunneling
JP2597033Y2 (en) Dilution exhaust gas sampling device for mini dilution tunnel
JPH08254487A (en) Exhaust gas measuring device
JP2517459B2 (en) Gas chromatograph
JP2000009639A (en) Infrared gas analyser
JPH05107160A (en) Method for intermittently measuring particulate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term